首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of Sea Beam bathymetry along the Mid-Atlantic Ridge between 24°00 N and 30°40 N reveals the nature and scale of the segmentation of this slow-spreading center. Except for the Atlantis Transform, there are no transform offsets along this 800-km-long portion of the plate boundary. Instead, the Mid-Atlantic Ridge is offset at intervals of 10–100 km by nontransform discontinuities, usually located at local depth maxima along the rift valley. At these discontinuities, the horizontal shear between offset ridge segments is not accommodated by a narrow, sustained transform-zone. Non-transform discontinuities along the MAR can be classified according to their morphology, which is partly controlled by the distance between the offset neovolcanic zones, and their spatial and temporal stability. Some of the non-transform discontinuities are associated with off-axis basins which integrate spatially to form discordant zones on the flanks of the spreading center. These basins may be the fossil equivalents of the terminal lows which flank the neovolcanic zone at the ends of each segment. The off-axis traces, which do not lie along small circles about the pole of opening of the two plates, reflect the migration of the discontinuities along the spreading center.The spectrum of rift valley morphologies ranges from a narrow, deep, hourglass-shaped valley to a wide valley bounded by low-relief rift mountains. A simple classification of segment morphology involves two types of segments. Long and narrow segments are found preferentially on top of the long-wavelength, along-axis bathymetric high between the Kane and Atlantis Transforms. These segments are associated with circular mantle Bouguer anomalies which are consistent with focused mantle upwelling beneath the segment mid-points. Wide, U-shaped segments in cross-section are preferentially found in the deep part of the long-wavelength, along-axis depth profile. These segments do not appear to be associated with circular mantle Bouguer anomalies, indicating perhaps a more complex pattern of mantle upwelling and/or crustal structure. Thus, the long-recognized bimodal distribution of segment morphology may be associated with different patterns of mantle upwelling and/or crustal structure. We propose that the range of observed, first-order variations in segment morphology reflects differences in the flow pattern, volume and temporal continuity of magmatic upwelling at the segment scale. However, despite large first-order differences, all segments display similar intra-segment, morphotectonic variations. We postulate that the intra-segment variability represents differences in the relative importance of volcanism and tectonism along strike away from a zone of enhanced magma upwelling within each segment. The contribution of volcanism to the morphology will be more important near the shallowest portion of the rift valley within each segment, beneath which we postulate that upwelling of magma is enhanced, than beneath the ends of the segment. Conversely, the contribution of tectonic extension to the morphology will become more important toward the spreading center discontinuities. Variations in magmatic budget along the strike of a segment will result in along-axis variations in crustal structure. Segment mid-points may coincide with regions of highest melt production and thick crust, and non-transform discontinuities with regions of lowest melt production and thin crust. This hypothesis is consistent with available seismic and gravity data.The rift valley of the Mid-Atlantic Ridge is in general an asymmetric feature. Near segment mid-points, the rift valley is usually symmetric but, away from the segment mid-points, one side of the rift valley often consists of a steep, faulted slope while the other side forms a more gradual ramp. These observations suggest that half-grabens, rather than full-grabens, are the fundamental building blocks of the rift valley. They also indicate that the pattern of faulting varies along strike at the segment scale, and may be a consequence of the three-dimensional, thermo-mechanical structure of segments associated with enhanced mantle upwelling beneath their mid-points.  相似文献   

2.
Kravchishina  M. D.  Lein  A. Yu.  Boev  A. G.  Prokofiev  V. Yu.  Starodymova  D. P.  Dara  O. M.  Novigatsky  A. N.  Lisitzin  A. P. 《Oceanology》2019,59(6):941-959
Oceanology - The article discusses the preliminary results of plume and bottom sediment studies of the Trollveggen hydrothermal vent field based on data from cruise 68 of the R/V Akademik Mstislav...  相似文献   

3.
Immediately southwest of Iceland, the Reykjanes Ridge consists of a series ofen échelon, elongate ridges superposed on an elevated, smooth plateau. We have interpreted a detailed magnetic study of the portion of the Reykjanes Ridge between 63°00N and 63°40N on the Icelandic insular shelf. Because the seafloor is very shallow in our survey area (100–500 m), the surface magnetic survey is equivalent to a high-sensitivity, nearbottom experiment using a deep-towed magnetometer. We have performed two-dimensional inversions of the magnetic data along profiles perpendicular to the volcanic ridges. The inversions, which yield the magnetization distribution responsible for the observed magnetic field, allow us to locate the zones of most recent volcanism and to measure spreading rates accurately. We estimate the average half spreading rate over the last 0.72 m.y. to have been 10 mm/yr within the survey area. The two-dimensional inversions allow us also to measure polarity transition widths, which provide an indirect measure of the width of the zone of crustal accretion. We find a mean transition width on the order of 4.5±1.6 km. The observed range of transition widths (2 to 8.4 km) and their mean value are characteristic of slow-spreading centers, where the locus of crustal accretion may be prone to lateral shifts depending on the availability of magmatic sources. These results suggest that, despite the unique volcanotectonic setting of the Reykjanes Ridge, the scale at which crustal accretion occurs along it may be similar to that at which it occurs along other slow-spreading centers. The polarity transition width measurements suggest a zone of crustal accretion 4–9 km wide. This value is consistent with the observed width of volcanic systems of the Reykjanes Peninsula. The magnetization amplitudes inferred from our inversions are in general agreement with NRM intensity values of dredge samples measured by De Boer (1975) and ourselves. Our thermomagnetic measurements do not support the hypothesis that the low amplitude of magnetic anomalies near Iceland is the result of a high oxidation state of the basalts. We suggest that the observed reduction in magnetic anomaly amplitude toward Iceland may be the result of an increase in the size of pillows and other igneous units.  相似文献   

4.
Using a new tool of seafloor characterisation (sonar images from FARA-SIGMA cruise; Needham et al., 1992), coupled with submersible observations (DIVA1 cruise) we compare, at different scales of observation, three contiguous segments of the Mid-Atlantic Ridge, South of the Azores Triple Junction, between 37° N and 38°30 N.The two northernmost segments (38°20 N and Menez-Gwen) show unusual morphological features for the MAR; the rift valley is absent and the present-day magmatism is focused on shallow axial volcanoes. On the third segment (Lucky Strike), the morphology is the one usually found on the MAR. On the Menez-Gwen and 38°20 N segments, volcanic constructional activity can obliterate, during periods of high magmatic supply, the morphology inherited from tectonic activity. The dive results constrain the recent evolution of each segment and show that a temporal variability in volcanic dynamics exists. On the three segments, outcrops of eruptive lavas alternate with large areas of explosive volcanic ejecta. This cycle in volcanic activity is influenced by changes in water depth, both spatially (i.e. between segments) and temporally (i.e. for the same segment through time).Each segment has known a specific history in its accretionary processes with a succession of tectonic and volcanic predominance and changes in its volcanic phases between volcanic ejecta and effusive dynamics.The hydrothermal activity is focused at the central part of each segment and is controlled by the presence of fresh lava and major tectonic features.  相似文献   

5.
Seafloor acoustic and photographic imagery combined with high- resolution bathymetry are used to investigate the geologic and tectonic relations between active and relict zones of hydrothermal venting in the TAG (Trans-Atlantic Geotraverse) hydrothermal field at 26°08N on the Mid-Atlantic Ridge (MAR). The TAG field consists of a large, currently active, high-temperature mound, two relict zones (the Alvin and Mir zones), and an active low-temperature zone. The active mound and the Alvin relict zone lie along a series of closely-spaced, axis-parallel (NNE-trending) faults in an area of active extension east of the neovolcanic zone. The Alvin zone extends for 2.5 km along these faults from the valley floor onto the eastern wall, and consists of at least five mounds identified using DSL-120 sidescan sonar and bathymetric data. The existence of sulfide structures on most of these mounds is verified with near-bottom electronic still camera (ESC) images from the Argo-II deep-towed vehicle, and is confirmed in at least one case with collected samples. Two of these mounds were previously unidentified. The existence of these mounds extends the length of the Alvin zone by ~0.5 km to the south. Much of the Alvin relict zone appears to be buried by debris from a large mass wasting event on the eastern wall of the median valley. The Mir zone, located on normal fault blocks of the eastern valley wall, cannot be clearly identified in the sidescan data and no structural connections from it to the active mound or Alvin zone can be discerned. The active mound is located at the intersection of an older oblique fault set with the younger axis- parallel faults which extend into the Alvin relict zone, and no fresh volcanics are observed in the vicinity of the mound. The fact that both the active mound and the Alvin relict zone lie along the same set of active, axis-parallel faults suggests that the faults may be a major control on the location of hydrothermal activity by providing pathways for fluid flow from a heat source at the ridge axis.  相似文献   

6.
The morphological characteristics of the segmentation of the Central Indian Ridge (CIR) from the Indian Ocean Triple Junction (25°30S) to the Egeria Transform Fault system (20°30S) are analyzed. The compilation of Sea Beam data from R/VSonne cruises SO43 and SO52, and R/VCharcot cruises Rodriguez 1 and 2 provides an almost continuous bathymetric coverage of a 450-km-long section of the ridge axis. The bathymetric data are combined with a GLORIA side-scan sonar swath to visualize the fabric of the ridge and complement the coverage in some areas. This section of the CIR has a full spreading rate of about 50 mm yr–1, increasing slightly from north to south. The morphology of the CIR is generally similar to that of a slow-spreading center, despite an intermediate spreading rate at these latitudes. The axis is marked by an axial valley 5–35 km wide and 500–1800 m deep, sometimes exhibiting a 100–600 m-high neovolcanic ridge. It is offset by only one 40km offset transform fault (at 22°40S), and by nine second-order discontinuities, with offsets varying from 4 to 21 km, separating segments 28 to 85 km long. The bathymetry analysis and an empirical orthogonal function analysis performed on across-axis profiles reveal morphologic variations in the axis and the second-order discontinuities. The ridge axis deepens and the relief across the axial valley increases from north to south. The discontinuities observed south of 22°S all have morphologies similar to those of the slow-spreading Mid-Atlantic Ridge. North of 22°S, two discontinuities have map geometries that have not been observed previously on slow-spreading ridges. The axial valleys overlap, and their tips curve toward the adjacent segment. The overlap distance is 2 to 4 times greater than the offset. Based on these characteristics, these discontinuities resemble overlapping spreading centers (OSCs) described on the fast-spreading EPR. The evolution of one such discontinuity appears to decapitate a nearby segment, as observed for the evolution of some OSCs on the EPR. These morphological variations of the CIR axis may be explained by an increase in the crustal thickness in the north of the study area relative to the Triple Junction area. Variations in crustal thickness could be related to a broad bathymetric anomaly centered at 19°S, 65°E, which probably reflects the effect of the nearby Réunion hotspot, or an anomaly in the composition of the mantle beneath the ridge near 19°S. Other explanations for the morphological variations include the termination of the CIR at the Rodriguez Triple Junction or the kinematic evolution of the triple junction and its resultant lengthening of the CIR. These latter effects are more likely to account for the axial morphology near the Triple Junction than for the long-wavelength morphological variation.  相似文献   

7.
Previous work has shown that methane anomalies frequently occur within the rift valley of the Mid-Atlantic Ridge (MAR). The plumes appear confined within the high, steep walls of the valley, and it is not known whether methane may escape to the open ocean outside. In order to investigate this question, the concentration and 13C/12C ratio of methane together with CCl3F concentration were measured in the northeastern Atlantic including the rift valley near 50°N. This segment contained methane plumes centered several 100 m above the valley floor with δ13C values mostly between –15‰ and –10‰. A limited number of helium isotope measurements showed that δ3He increased to 17% at the bottom of the valley, which suggests the helium and methane sources may be spatially separated. In the eastern Atlantic away from the ridge (48°N, 20°W), the methane concentration decreased monotonically from the surface to the bottom, but the methane δ13C exhibited a mid-water maximum of about –25‰. The bottom water methane contained a significantly lower δ13C of about –36‰. Thus, it appears that isotopically heavy methane escapes from the MAR into North Atlantic Deep Water (NADW) that contacts the ridge crest while circulating to the east. The formation of NADW supplies isotopically light methane that dilutes the input of heavy carbon from the ridge. We employed a time-dependent box model to calculate the extent of isotope dilution and thereby the flux of MAR methane into the NADW circulation. The degree of methane oxidation, which affects the 13C/12C of methane through kinetic isotope fractionation, was estimated by comparing methane and CFC-11 model results with observations. The model calculations indicate a MAR methane source of about 0.06×10−9 mol L−1 yr−1 to waters at the depth of the ridge crest. Assuming this extends to a 500 m thick layer over half of the entire Atlantic, the amount of methane escaping from the MAR to the open ocean is estimated to be about 1×109 mol yr−1. The total production of methane within the rift valley is likely much greater than the flux from the valley to the outside because of local oxidation. This implies that serpentinization of ultramafic rocks supports much of methane production in the rift valley because the amount expected from basalt degassing in association with mantle helium (<0.6×109 mol CH4 yr−1) is less than even the net amount escaping from the valley. The model results also indicate the methane specific oxidation rate is about 0.05 yr−1 in open waters of the northern Atlantic.  相似文献   

8.
The orthogonal supersegment of the ultraslow-spreading Southwest Indian Ridge at 16°–25°E is characterized by significant along-axis variations of mantle potential temperature. A detailed analysis of multibeam bathymetry,gravity, and magnetic data were performed to investigate its variations in magma supply and crustal accretion process. The results revealed distinct across-axis variations of magma supply. Specifically, the regionally averaged crustal thickness reduced systematically from around 7 Ma to the present, indicating a regionally decreasing magma supply. The crustal structure is asymmetric in regional scale between the conjugate ridge flanks, with the faster-spreading southern flank showing thinner crust and greater degree of tectonic extension. Geodynamic models of mantle melting suggested that the observed variations in axial crustal thickness and major element geochemistry can be adequately explained by an eastward decrease in mantle potential temperature of about40°C beneath the ridge axis. In this work, a synthesized model was proposed to explain the axial variations of magma supply and ridge segmentation stabilities. The existence of large ridge-axis offsets may play important roles in controlling melt supply. Several large ridge-axis offsets in the eastern section(21°–25°E) caused sustained along-axis focusing of magma supply at the centers of eastern ridge segments, enabling quasi-stable segmentation. In contrast, the western section(16°–21°E), which lacks large ridge-axis offsets, is associated with unstable segmentation patterns.  相似文献   

9.
We analyse TOBI side-scan sonar images collected during Charles Darwin cruise CD76 in the axial valley of the Mid-Atlantic Ridge (MAR) between 27°N and 30°N (Atlantis Transform Fault). Mosaics of the two side-scan sonar swaths provide a continuous image of the axial valley and the inner valley walls along more than six second-order segments of the MAR. Tectonic and volcanic analyses reveal a high-degree intra-segment and inter-segment variability. We distinguish three types of volcanic morphologies: hummocky volcanoes or volcanic ridges, smooth, flat-topped volcanoes, and lava flows. We observe that the variations in the tectonics from one segment to another are associated with variations in the distribution of the volcanic morphologies. Some segments have more smooth volcanoes near their ends and in the discontinuities than near their mid-point, and large, hummocky axial volcanic ridges. Their tectonic deformation is usually limited to the edges of the axial valley near the inner valley walls. Other segments have smooth volcanoes distributed along their length, small axial volcanic ridges, and their axial valley floor is affected by numerous faults and fissures. We propose a model of volcano-tectonic cycles in which smooth volcanoes and lava flows are built during phases of high magmatic flux. Hummocky volcanic ridges are constructed more progressively, by extraction of magma from pockets located preferentially beneath the centre of the segments, during phases of low magma input. These cycles might result from pulses in melt migration from the mantle. Melt arrival would lead to the rapid emplacement of smooth-textured volcanic terrains, and would leave magma pockets, mostly beneath the centre of the segments where most melt is produced. During the end of the volcanic cycle magma would be extracted from these reservoirs through dikes with a low magma pressure, building hummocky volcanic ridges at low effusion rates. In extreme cases, this volcanic phase would be followed by amagmatic extension until a new magma pulse arrives from the mantle.  相似文献   

10.
A bathymetric and magnetic survey of the California Seamount region (17°40′N × 124°00′W) shows that existing charts are in error. California Seamount is a peak extending to within 454 m (248 fathoms) of the surface. Its true location is 17°41′N × 124°01′W, 25 km southwest of the charted position. Near the old charted position there is an elongated feature which extends to within 1818 m (994 fathoms) of the surface. Both features are located on the Clarion Fracture Zone.  相似文献   

11.
In August–September of 1995, 20 Nautile dives and detailed magnetic surveys (spaced every 1.8 km) were undertaken on two segments of the Mid-Atlantic Ridge between the Oceanographer and Hayes fractures zones. These two segments are only 65 km apart and show strong morphology and gravity contrasts. OH1 is shallower and has a large mantle Bouguer anomaly (MBA) bull's eye, whereas OH3 is deeper and has a smaller MBA bull's eye.Thirteen dives were devoted to segment OH1. The Median Ridge (MR) located on the central high (1700 m deep) is topped by 100 to 300 m high circular volcanoes. The volcanics consists mainly of porphyritic and/or vesicular pillows and volcaniclastics. The NVZ (2200 m deep), located in the valley floor east of the MR, consists of near aphyric fluid lava flows. A chain of off-axis volcanoes, displaying a magnetic continuity with surroundings, extends on both sides of the axis. Three volcanoes on the east side and one on the west side of the axis were explored and sampled by submersible. The off-axis increase of weathering, Fe-Mn coating and magnetic signature suggest that the volcanoes were built at or near the ridge axis. The spacing of NS elongated hills bearing circular volcanoes and separated large magnetic signature (2 to 4 km) depressions suggests that several similar volcanic events occured during the past 2 Ma. The last 1 Ma episode involves (1) the construction of an axial ridge (MR) by fissure eruptions and the formation of circular summit volcanoes by focused volcanism, and (2) the extrusion of fluid magma in the depressions formed by further fissuring and faulting of the MR.  相似文献   

12.
Deep sea photographs were collected for several camera-tow transects along and across the axis at the East Pacific Rise crest between 9°49 and 9°52 N, covering terrain out to 2 km from the ridge axis. The objective of the surveys was to utilize fine-scale morphology and imagery of seafloor volcanic terrain to aid in interpreting eruptive history and lava emplacement processes along this fast-spreading mid-ocean ridge. The area surveyed corresponds to the region over which seismic layer 2A, believed to correspond to the extrusive oceanic layer, attains full thickness (Christeson et al., 1994a, b, 1996; Hooft et al., 1996; Carbotte et al., 1997). The photographic data are used to identify the different eruptive styles occurring along the ridge crest, map the distribution of the different morphologies, constrain the relative proportions of the three main morphologies and discuss the implications of these results. Morphologic distributions of lava for the area investigated are 66% lobate lava, 20% sheet lava, 10% pillow lava, and 4% transitional morphologies between the other three main types. There are variations in inferred relative lava ages among the different morphological types that do not conform to a simple increase in age versus distance relationship from the spreading axis, suggesting a model in which off-axis transport and volcanism contribute to the accumulation of the extrusive layer. Analysis of the data suggests this ridge crest has experienced three distinctly different types of volcanic emplacement processes: (1) axial summit eruptions within a 1 km wide zone centered on the axial summit collapse trough (ASCT); (2) off-axis transport of lava erupted at or near the ASCT through channelized surface flows; and (3) off-axis eruptions and local constructional volcanism at distances of 0.5-1.5 km from the axis. Major element analyses of basaltic glasses from lavas collected by Alvin, rock corer and dredging in this area indicate that the most recent magmatic event associated with the present ASCT erupted relatively homogeneous and mafic (>8.25 weight percent wt.% MgO) basalts compared to older, off-axis lavas which tend to be more chemically evolved (Perfit and Chadwick, 1998; Perfit and Fornari, unpublished data). The more primitive lavas have a more extensive distribution within and east of the ASCT. More evolved basalts (MgO <8.0wt.%) are concentrated in a broad area a few kilometers east of the axis, and in an oval-shaped area south of 9°50 N, west of the ASCT. Transitional and enriched (T- and E-) mid-ocean ridge basalts exist in relatively small areas (<1 km2) on the crestal plateau and correlate with scarps or fissures where pillow lavas were erupted. Mafic lavas in this area are primarily related to the youngest magmatic events. Geochemical analysis of samples collected at distances >500 m from the ASCT suggests that regions of off-axis volcanism may be sourced from older and cooler sections of the axial magma lens. Analysis of these data suggests that this portion of the EPR has not experienced large scale volcanic overprinting in the past 30 ka. The predominance of lobate flows (66%) throughout much of the crestal region, and subtle variations in sediment cover and apparent age between flows, suggest that eruptive volumes and effusion rates of individual eruptions have been similar over much of the last 30 ka and that most of the eruptions have been small, probably similar in volume to the 1991 EPR flow which had an estimated volume of 1×106 m3 (Gregg et al., 1996).  相似文献   

13.
14.
Miranda  J.M.  Silva  P.F.  Lourenço  N.  Henry  B.  Costa  R.  Saldanha Team  the 《Marine Geophysical Researches》2002,23(4):299-318
We present a study of the magnetic properties of a group of basalt samples from the Saldanha Massif (Mid-Atlantic Ridge – MAR – 36° 33 54 N, 33° 26 W), and we set out to interpret these properties in the tectono-magmatic framework of this sector of the MAR. Most samples have low magnetic anisotropy and magnetic minerals of single domain grain size, typical of rapid cooling. The thermomagnetic study mostly shows two different susceptibility peaks. The high temperature peak is related to mineralogical alteration due to heating. The low temperature peak shows a distinction between three different stages of low temperature oxidation: the presence of titanomagnetite, titanomagnetite and titanomaghemite, and exclusively of titanomaghemite. Based on established empirical relationships between Curie temperature and degree of oxidation, the latter is tentatively deduced for all samples. Finally, swath bathymetry and sidescan sonar data combined with dive observations show that the Saldanha Massif is located over an exposed section of upper mantle rocks interpreted to be the result of detachment tectonics. Basalt samples inside the detachment zone often have higher than expected oxidation rates; this effect can be explained by the higher permeability caused by the detachment fault activity.  相似文献   

15.
The structure of northerly overflow of Antarctic Bottom Water (AABW) through passages in the East Azores Ridge (37° N) in the East Atlantic from the Madeira Basin to the Iberian Basin is studied on the basis of hydrographic measurements carried out by the Institute of Oceanology, Russian Academy of Sciences (RAS) in October 2011, historical World Ocean Data Base 2009, and recent data on the bottom topography. The overflow of the coldest layers of this water occurs through two passages with close depths at 16° W (Discovery Gap) and at 19°30′ W (nameless Western Gap). It is shown that it is likely that the role of the latter passage in water transport was underestimated in earlier publications because the water (2.01°C) found in the region north of the Western Gap was cooler than in the region north of the Discovery Gap (2.03°C). In 2011, we found a decrease of 0.01°C in the AABW temperature near the bottom compared to previous measurements in 1982 (from 2.011°C to 2.002°C). Analysis of the historical database shows that this decrease is most likely caused by the cooling trend in the abyssal waters in the East Atlantic basins.  相似文献   

16.
17.
The distribution of pH and alkalinity has been used to calculate the distribution of total inorganic carbon (TC) and fugacity of carbon dioxide (fCO2) in the upper 200 m of the water column in coastal upwelling areas off northern Chile (23–24°S, near Antofagasta) and central Chile (30–31°S, near Coquimbo) during austral summer 1997. In these upwelling areas, colder surface waters were oxygen poor and strongly CO2 supersaturated (100% near Antofagasta and 200% near Coquimbo), although below the pycnocline the CO2 supersaturation invariably exceeded 200% in both areas. The larger surface CO2 supersaturation and outgassing at 30°S were associated with stronger winds that promoted the upwelling of denser water (richer in CO2) as well as a higher air–sea CO2 transfer velocity. The consistent decrease in intensity of the southerly winds (as derived from NSCAT scatterometer data) from 30–31°S to 23–24°S suggests a corresponding decline in the intensity of the CO2 outgassing due to upwelling. Additionally, we suggest here that the intensity of the local upwelling forcing (i.e. alongshore–equatorward winds) plays a role in determining the water mass composition and phytoplankton biomass of the coastal waters. Thus, while deep upwelling of salty and cold water resulted in high fCO2 (up to 1000 μatm) and very low phytoplankton biomass (chlorophyll a concentration lower than 0.5 mg m−3), the shallow upwelling of less salty (e.g. salinity <34.5) and less CO2-supersaturated water resulted in a higher phytoplankton biomass, which further reduced surface water fCO2 by photosynthesis.  相似文献   

18.
The latitudinal pattern of species richness of free-living marine nematodes from exposed sandy beaches along the coast of Chile between 18 and 42° S was examined. Unlike many other examinations of latitudinal gradients, this study is not based on data mined from the literature, but on samples collected specifically to examine these themes. Five replicate quantitative 50 cm3 samples of sediment were taken from the zone of retention of 66 exposed sandy beaches. The free-living nematode fauna was identified and quantified to species level. The data were then examine using ordinary least squares and simultaneous autoregressive model (SARerr) regression methods, examining the associations between species richness and latitude, coastline complexity, and sea surface temperature, primary productivity of the adjacent coastal waters and mean latitudinal range size. The species richness of free-living marine nematodes from exposed sandy beaches along the coast of Chile decreased with increasing latitude and was strongly associated with mean annual sea surface temperature. Mean latitudinal range size increased with increasing latitude, supporting Rapoport’s rule, and decreased with increasing species richness. The results suggest that the nematode fauna of exposed sandy beaches is derived from a low latitude fauna that has dispersed to higher latitudes, but that many species may be physiologically constrained, by temperature, from dispersing further south.  相似文献   

19.
The North Sea Basin has been subsiding during the Quaternary and contains hundreds of metres of fill. Seismic surveys (170 000 km2) provide new evidence on Early Quaternary sedimentation, from about 2.75 Ma to around the Brunhes-Matuyama boundary (0.78 Ma). We present an informal seismic stratigraphy for the Early Quaternary of the North Sea, and calculate sediment volumes for major units. Early Quaternary sediment thickness is > 1000 m in the northern basin and >700 m in the central basin (total about 40 000 km3). Northern North Sea basin-fill comprises several clinoform units, prograding westward over 60 000 km2. Architecture of the central basin also comprises clinoforms, building from the southeast. To the west, an acoustically layered and mounded unit (Unit Z) was deposited. Remaining accommodation space was filled with fine-grained sediments of two Central Basin units. Above these units, an Upper Regional Unconformity-equivalent (URU) records a conformable surface with flat-lying units that indicate stronger direct glacial influence than on the sediments below. On the North Sea Plateau north of 59°N, the Upper Regional Unconformity (URU) is defined by a shift from westward to eastward dipping seismic reflectors, recording a major change in sedimentation, with the Shetland Platform becoming a significant source. A model of Early Quaternary sediment delivery to the North Sea shows sources from the Scandinavian ice sheet and major European rivers. Clinoforms prograding west in the northern North Sea Basin, representing glacigenic debris flows, indicate an ice sheet on the western Scandinavian margin. In the central basin, sediments are generally fine-grained, suggesting a distal fluvial or glacifluvial origin from European rivers. Ploughmarks also demonstrate that icebergs, derived from an ice sheet to the north, drifted into the central North Sea Basin. By contrast, sediments and glacial landforms above the URU provide evidence for the later presence of a grounded ice sheet.  相似文献   

20.
The results of geochemical studies of particulate matter in the water mass over the hydrothermal field at 9°50′ N on the East Pacific Rise are presented. The particulate matter was tested in background waters, in the buoyant plume, and in the near-bottom waters. The contents of Si, Al, P, Corg, Fe, Mn, Cu, Zn, Ni, Co, As, Cr, Cd, Pb, Ag, and Hg were determined. No definite correlations were found between the ele-ments in the background waters. Many of the chemical elements correlated with Fe and associated with its oxyhydroxides in the buoyant plume. In the near-bottom waters, microelements are associated with Fe, Zn, and Cu (probably, to their sulfides formed under fluid mixing with seawater). The matter precipitated in a sed-imentation trap was similar to the near-bottom particulate matter in the elemental composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号