首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Tengchong volcanic field comprises numerous Quaternary volcanoes in SW China. The volcanic rocks are grouped into Units 1–4 from the oldest to youngest. Units 1, 3 and 4 are composed of trachybasalt, basaltic trachyandesite and trachyandesite, respectively, and Unit 2 consists of hornblende-bearing dacite. This rock assemblage resembles those of arc volcanic sequences related to oceanic slab subduction. Rocks of Units 1 and 3 contain olivine phenocrysts with Fo contents ranging from 65 to 85 mole%, indicating early fractionation of olivine and chromite prior to the eruption of magma. All the rocks from Units 1, 3 and 4 have very low PGE concentrations, with <0.05 ppb Ru and Rh, <0.2 ppb Pt and Pd, and Ir that is commonly close to, or slightly higher than detection limits (0.001 ppb). The small variations of Pt/Pd ratios (0.4–2.2) are explained by fractionation of silicate and oxide minerals. The 5-fold variations in Cu/Pd ratios (200,000–1,000,000) for the lavas at Tengchong, which do not vary systematically with fractionation, likely reflect retention of variable amounts of residual sulfide in the mantle source. In addition, all the rocks from Units 1, 3 and 4 have primitive mantle-normalized chalcophile element patterns depleted in PGE relative to Cu. Together with very low Cu/Zr ratios (0.06–0.24), these rocks are considered to have undergone variable degrees of sulfide-saturated differentiation in shallow crustal staging magma chambers. Large amounts of olivine and chromite crystallization probably triggered sulfide saturation of magma at depth for Units 1 and 3, whereas crustal contamination was responsible for sulfide saturation during ascent of magma for Unit 4.  相似文献   

2.
Mafic-layered intrusions and sills and spatially associated andesitic basalts are well preserved in the Funing area, SW China. The 258±3 Ma-layered intrusions are composed of fine-grained gabbro, gabbro and diorite. The 260±3 Ma sills consist of undifferentiated diabases. Both the layered intrusions and volcanic rocks belong to a low-Ti group, whereas the diabases belong to a high-Ti group. Rocks of the high-Ti group have FeO, TiO2 and P2O5 higher but MgO and Th/Nb ratios lower than those of the low-Ti group. They have initial 87Sr/86Sr ratios (0.706–0.707) lower and ɛNd (−1.5 to −0.6) higher than the low-Ti equivalents (0.710–0.715 and −9.6 to −4.0, respectively). The high-Ti group was formed from relatively primitive, high-Ti magmas generated by low degrees (7.3 –9.5%) of partial melting of an enriched, OIB-type asthenospheric mantle source. The low-Ti group may have formed from melts derived from an EM2-like, lithospheric mantle source. The mafic rocks at Funing are part of the Emeishan large igneous province formed by a mantle plume at ∼260 Ma.  相似文献   

3.
Boninite-norite (BN) suites emplaced in an intracratonic setting in Archaean Cratons, are reported from many parts of the world. Such high-Mg low-Ti siliceous rocks are emplaced during Neoarchaean-Paleoproterozoic. The Archaean central Indian Bastar Craton also contains such a boninite-norite suite, which occurs in the form of dykes and volcanics. The spatial and temporal correlation of these high-Mg low-Ti siliceous rocks with similar rocks occurring around the northern Bastar and Dharwar Cratons probably represent a Bastar-Dharwar Large Igneous Province during the Neoarchaean-Paleoproterozoic. Platinum group element (PGE) abundances in these rocks provide constraints on their geochemical evolution during the Neoarchaean-Paleoproterozoic. The PGE geochemistry of the boninite-norite suite from the southern part of the central Indian Bastar Craton is presented to understand their behaviour during magma fractionation. In primitive mantle-normalized plots all samples have similar PGE fractionated patterns that are enriched in Pd, Pt and Rh relative to Ru. The Pd/Ru ratios for eight samples range from 2.0 to 7.0 which is higher than primitive mantle (primitive mantle Pd/Ru ≈1.2). The Pd/Pt ratios range between 0.2–2.5 with an average value of 0.7 which is near chondritic (primitive mantle Pd/Pt ≈0.5). PGE variations in these rocks together with those of major and other trace elements are consistent with a model involving olivine fractionation along with chromite as a cotectic phase. The Pt fractionation from Pd and Rh is controlled by both olivine and chromite crystallization at an early stage during high temperature crystal fractionation when the Pt was strongly compatible and Pd and Rh were incompatible. Strong negative correlations of the S content with iron and TiO2 plus lithophile element contents of the rock suggest a decrease of the S solubility in the parental high-Mg magma and separation of an immiscible sulfide liquid with decreasing temperature. Palladium plus other available chalcophile elements (e.g., Re, Au, Ag) have been fractionated in this immiscible sulfide liquid after considerable olivine fractionation of the magma.  相似文献   

4.
The Kalatongke (also spelt as Karatungk) Ni–Cu–(platinum-group element, PGE) sulfide deposit, containing 33 Mt sulfide ore with a grade of 0.8 wt.% Ni and 1.3 wt.% Cu, is located in the Eastern Junggar terrane, Northern Xinjiang, NW China. The largest sulfide ore body, which occupies more than 50 vol.% of the intrusion Y1, is dominantly comprised of disseminated sulfide with a massive sulfide inner zone. Economic disseminated sulfides also occur at the base of the intrusions Y2 and Y3. The main host rock types are norite in the lower part and diorite in the upper part of each intrusion. Enrichment in large ion lithophile elements and depletion in heavy rare earth elements relative to mid-ocean ridge basalt indicate that the mafic intrusions were produced from magmas derived from a metasomatized garnet lherzolite mantle. The average grades of the disseminated ores are 0.6 wt.% Ni and 1.1 wt.% Cu, whereas those of the massive ores are 2 wt.% Ni and 8 wt.% Cu. The PGE contents of the disseminated ores (14–69 ppb Pt and 78–162 ppb Pd) are lower than those of the massive ores (120–505 ppb Pt and 30–827 ppb Pd). However, on the basis of 100% sulfide, PGE contents of the massive sulfides are lower than those of the disseminated sulfides. Very high Cu/Pd ratios (>4.5 × 104) indicate that the Kalatongke sulfides segregated from PGE-depleted magma produced by prior sulfide saturation and separation. A negative correlation between the Cu/Pd ratio and the Pd content in 100% sulfide indicates that the PGE content of the sulfide is controlled by both the PGE concentrations in the parental silicate magma and the ratio of the amount of silicate to sulfide magma. The negative correlations between Ir and Pd indicate that the massive sulfides experienced fractionation.  相似文献   

5.
The distribution of platinum group elements (PGEs) in massive sulfides and hematite–magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite–magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.  相似文献   

6.
The ~260 Ma-old Baimazhai Ni–Cu–(PGE) sulfide deposit in the Jinping region, Yunnan, SW China, is hosted in a small mafic–ultramafic intrusion, which intruded Ordovician sandstone and slate. The intrusion is concentric with lens shape, about 530 m long, 190 m wide and 24 to 64 m thick, trends 296°, and dips 22°NE. The massive sulfide ore body forms the core of the intrusion and is surrounded by variably mineralized orthopyroxenite, websterite and barren gabbro. The proportion of gabbro, websterite, orthopyroxenite and massive ore is approximately 30, 30, 20 and 20 vol.%, respectively. Magmatic pyrrhotite, pentlandite and chalcopyrite make up more than 90% of the massive ores. The massive ores contain high Ni (1.6 to 4.2 wt%) and Cu (0.4 to 6.5 wt%) and low ∑PGE contents (85 to 524 ppb). They have Pd/Ir ratios ranging from 6.7 to 530, Pd/Pt ratios from 0.7 to 2.6 and Cu/(Pd×1,000) ratios from 31 to 400, which are comparable with those of the silicate rocks [Pd/Ir = 4 to 183, Pd/Pt = 0.7 to 3.5, and Cu/(Pd×1,000) = 100 to 400]. Similar Pd/Pt and Cu/Pd ratios of the silicate rocks and massive ores throughout the intrusion indicate a single sulfide segregation event. Excess sulfide melt segregation resulted from intensive crustal contamination that formed Si-rich and Mg-rich basaltic magmas in a deep-seated staging chamber before magma emplacement. The immiscible sulfide melts and the silicate melts were eventually evacuated from the staging magma chamber by compressive forces. Flow differentiation under high velocity concentrated the sulfide melts toward the middle of the magma flow, and consequently, formed a massive sulfide ore body in the central part of the intrusion. Low concentrations of PGEs and general absence of platinum-group minerals in the massive ores may have resulted from a relatively large mass fraction of the sulfide melts (e.g. R-factor = ~70) in Baimazhai compared with other intrusions elsewhere, such as Noril’sk-Talnakh with a R-factor of >10,000.  相似文献   

7.
Mafic intrusions and dykes are well preserved in the Yinmin and Lanniping districts, located within the western margin of the Yangtze Block, SW China. Although these mafic rocks from the two areas formed during different periods, they share similar ranges of PGE concentration. Most of the Yinmin gabbroic dykes contain relatively high PGE concentrations (PGEs = 13.9–87.0 ppb) and low S contents (0.003 %–0.020 %), higher than the maximum PGE concentrations of mafic magmas melting from the mantle. Two exceptional Yinmin samples are characterized by relatively low PGE (PGEs = 0.31–0.37 ppb) and high S (0.114 %–0.257 %) contents. In contrast, most samples from the Lanniping gabbroic intrusion have low PGE concentrations (PGEs = 0.12–1.02 ppb) and high S contents (0.130 %–0.360 %), except that the three samples exhibit relatively high PGE (PGEs = 16.3–34.8 ppb) and low S concentrations (0.014 %–0.070 %). All the Yinmin and Lanniping samples are characterized by the enrichment of PPGE relative to IPGE in the primitive-mantle normalized diagrams, and the high-PGE samples exhibit obvious Ru anomalies. This study suggests that during the ascent of the parental magma, removal of Os–Ir–Ru alloys and/or chromite/spinel leads to high Pd/Ir ratios and Ru anomalies for the Yinmin high-PGE samples and relatively lower Pd/Ir ratios and Ru anomalies for the Lanniping low-PGE samples. We propose that the magmas parental to the Yinmin gabbroic dykes are initially S-unsaturated, and subsequently, minor evolved magma reached sulfur saturation and led to sulfide segregation. Although the Lanniping parental magmas are originally not saturated in S, the high Cu/Pd ratios (3.8 × 104 to 3.2 × 106) for most of the Lanniping samples indicate the S-saturated state and sulfide segregation. A calculation shows that the PGE-poor magmas might have experienced 0.01 %–0.1 % sulfide segregation in the magma chamber. Therefore, our study provides a possible opportunity to discover PGE-enriched sulfide mineralization somewhere near or within the Lanniping mafic intrusion.  相似文献   

8.
The behavior of the platinum group elements (PGE) and Re in felsic magmas is poorly understood due to scarcity of data. We report the concentrations of Ni, Cu, Re, and PGE in the compositionally diverse Boggy Plain zoned pluton (BPZP), which shows a variation of rock type from gabbro through granodiorite and granite to aplite with a SiO2 range from 52 to 74 wt %. In addition, major silicate and oxide minerals were analyzed for Ni, Cu, and Re, and a systematic sulfide study was carried out to investigate the role of silicate, oxide, and sulfide minerals on chalcophile element geochemistry of the BPZP. Mass balance calculation shows that the whole rock Cu budget hosted by silicate and oxide minerals is <13 wt % and that Cu is dominantly located in sulfide phases, whereas most of the whole rock Ni budget (>70 wt %) is held in major silicate and oxide minerals. Rhenium is dominantly hosted by magnetite and ilmenite. Ovoid-shaped sulfide blebs occur at the boundary between pyroxene phenocrysts and neighboring interstitial phases or within interstitial minerals in the gabbro and the granodiorite. The blebs are composed of pyrrhotite, pyrite, chalcopyrite, and S-bearing Fe-oxide, which contain total trace metals (Co, Ni, Cu, Ag, Pb) up to ~16 wt %. The mineral assemblage, occurrence, shape, and composition of the sulfide blebs are a typical of magmatic sulfide. PGE concentrations in the BPZP vary by more than two orders of magnitude from gabbro (2.7–7.8 ppb Pd, 0.025–0.116 ppb Ir) to aplite (0.05 ppb Pd, 0.001 ppb Ir). Nickel, Cu, Re, and PGE concentrations are positively correlated with MgO in all the rock types although there is a clear discontinuity between the granodiorite and the granite in the trends for Ni, Rh, and Ir when plotted against MgO. Cu/Pd values gradually increase from 6,100 to 52,600 as the MgO content decreases. The sulfide petrology and chalcophile element geochemistry of the BPZP show that sulfide saturation occurred in the late gabbroic stage of magma differentiation. Segregation and distribution of these sulfide blebs controlled Cu and PGE variations within the BPZP rocks although the magma of each rock type may have experienced a different magma evolution history in terms of crustal assimilation and crystal fractionation. The sulfide melt locked in the cumulate rocks must have sequestered a significant portion of the chalcophile elements, which restricted the availability of these metals to magmatic-hydrothermal ore fluids. Therefore, we suggest that the roof rocks that overlay the BPZP were not prospective for magmatic-hydrothermal Cu, Au, or Cu–Au deposits.  相似文献   

9.
The Jinbaoshan Pt–Pd deposit in Yunnan, SW China, is hosted in a wehrlite body, which is a member of the Permian (∼260 Ma) Emeishan Large Igneous Province (ELIP). The deposit is reported to contain one million tonnes of Pt–Pd ore grading 0.21% Ni and 0.16% Cu with 3.0 g/t (Pd + Pt). Platinum-group minerals (PGM) mostly are ∼10 μm in diameter, and are commonly Te-, Sn- and As-bearing, including moncheite (PtTe2), atokite (Pd3Sn), kotulskite (PdTe), sperrylite (PtAs2), irarsite (IrAsS), cooperite (PtS), sudburyite (PdSb), and Pt–Fe alloy. Primary rock-forming minerals are olivine and clinopyroxene, with clinopyroxene forming anhedral poikilitic crystals surrounding olivine. Primary chromite occurs either as euhedral grains enclosed within olivine or as an interstitial phase to the olivine. However, the intrusion has undergone extensive hydrothermal alteration. Most olivine grains have been altered to serpentine, and interstitial clinopyroxene is often altered to actinolite/tremolite and locally biotite. Interstitial chromite grains are either partially or totally replaced by secondary magnetite. Base-metal sulfides (BMS), such as pentlandite and chalcopyrite, are usually interstitial to the altered olivine. PGM are located with the BMS and are therefore also interstitial to the serpentinized olivine grains, occurring within altered interstitial clinopyroxene and chromite, or along the edges of these minerals, which predominantly altered to actinolite/tremolite, serpentine and magnetite. Hydrothermal fluids were responsible for the release of the platinum-group elements (PGE) from the BMS to precipitate the PGM at low temperature during pervasive alteration. A sequence of alteration of the PGM has been recognized. Initially moncheite and atokite have been corroded and recrystallized during the formation of actinolite/tremolite, and then, cooperite and moncheite were altered to Pt–Fe alloy where they are in contact with serpentine. Sudburyite occurs in veins indicating late Pd mobility. However, textural evidence shows that the PGM are still in close proximity to the BMS. They occur in PGE-rich layers located at specific igneous horizons in the intrusion, suggesting that PGE were originally magmatic concentrations that, within a PGE-rich horizon, crystallized with BMS late in the olivine/clinopyroxene crystallization sequence and have not been significantly transported during serpentinization and alteration.  相似文献   

10.
. The continental flood basalts of the East Greenland volcanic rifted margin were extruded during continental breakup above the ancestral Iceland mantle plume at 55 Ma. Three distinct magma types, the low-Ti, high-Ti and very high-Ti series (LTS, HTS and VHTS respectively), are found intercalated in the ~6-km-thick Plateau Lava sequence. Incompatible trace elements indicate that the LTS are derived from a more depleted mantle source compared to HTS and VHTS. The LTS is characterised by increasing Cu (105 to 248 ppm) and Pd (7 to 24 ppb), constant Cu/Pd ratio (~10,000), and decreasing Ir (1.1 to <0.05 ppb) and Ru (1.8 to <0.3 ppb) concentrations during magmatic differentiation (16 to 7 wt% MgO). The constant Cu/Pd ratio reflects silicate- and chromite-dominated fractionation without concurrent segregation of sulphide. S-undersaturated differentiation is also indicated in the HTS, which also displays increasing Pd (6-16 ppb) and decreasing Ir concentrations (1 to <0.05 ppb) during differentiation, and the Cu/Pd ratios for the entire series average 21,000. However, some HTS samples have elevated Cu/Pd ratios (up to 33,000). Cu/Pd ratios in the HTS do not correlate with MgO, and this is interpreted to reflect varying Cu/Pd ratios of HTS parental magmas rather than S-saturated differentiation. During S-undersaturated differentiation of the LTS and HTS, Pt/Pd ratios decrease from 1.3 to 0.11 and 1.1 to 0.2 respectively, which indicates that Pd is much more incompatible than Pt during S-undersaturated differentiation. The VHTS consists exclusively of highly evolved samples with low MgO (6.6-6.1 wt%) and Pd/Ir ratios 98-228. Here, Cu/Pd ratios increase from 17,500 to 35,000 with decreasing Cr concentrations which indicate that these magmas experienced silicate fractionation with concurrent segregation of sulphide. The LTS represent melting of a depleted source and show high PGE concentrations and constant Cu/Pd ratios during S-undersaturated differentiation. Melting of a normal depleted upper mantle source generates S-saturated melts (MORB), and the depleted LTS source is therefore considered an extraordinary S-poor component within the ancestral Iceland plume. Of the three series, the VHTS contain the largest contribution from enriched mantle portions. The VHTS have similar PGE but much higher Nb concentrations for instance compared to the most evolved LTS and HTS samples, indicating that the enriched source contributes Nb but not PGE.  相似文献   

11.
Concentrations of the platinum-group elements have been determined in several suites of southern African flood-type basalts and mid-ocean ridge basalt (MORB), covering some 3 Ga of geologic evolution and including the Etendeka, Karoo, Soutpansberg, Machadodorp, Hekpoort, Ventersdorp and Dominion magmas. The magmas cover a compositional range from 3.7 to 18.7% MgO, 26–720 ppm Ni, 16–250 ppm Cu, and <1–255 ppb total platinum-group elements (PGE). The younger basalts (Etendeka, Karoo) tend to be depleted in PGE relative to Cu, while most of the older basalts (Hekpoort, Machadodorp, Ventersdorp, Dominion) show no PGE depletion relative to Cu. Further, the younger basalts tend to have lower average Pt/Pd ratios than the older basalts, and the MORBs have lower average Pt/Pd than the continental basalts within the broad groupings of "old" and "young" basalts. This may reflect (1) a decreasing degree of mantle melting through geologic time, and (2) source heterogeneity, in that the MORBs are derived from predominantly asthenospheric mantle, whereas the continental basalts also contain a lithospheric mantle component enriched in Pt. In addition to these factors, some PGE fractionation also occurred during differentiation of the magmas, with Pd showing incompatible behaviour and the other PGE variably compatible behaviour. The examined southern African flood-type basalts and MORB appear to offer limited prospects for magmatic sulfide ores, largely because they show little evidence for significant chalcophile metal depletion that could be the result of sulphide extraction during ascent and crystallization.Editorial responsibility: I. Parsons  相似文献   

12.
We have analysed 18 samples of komatiite from five consecutivelava flows of the Komati Formation at Spinifex Creek, BarbertonMountain Land. Our samples include massive komatiite, varioustypes of spinifex-textured komatiite, and flow-top breccias.The rocks have low platinum-group element (PGE) contents andPd/Ir ratios relative to komatiites from elsewhere, at 0·45–2ppb Os, 1–1·4 ppb Ir, <1–5 ppb Ru, 0·33–0·79ppb Rh, 1·7–6 ppb Pt, 1·6–6·1ppb Pd, and Pd/Ir 3·3. Pt/Pd ratios are c. 1·1.Platinum-group elements are depleted relative to Cu (Cu/Pd =15 300). They display a tendency to increase in the less magnesiansamples, suggesting that the magmas were S-undersaturated uponeruption and that all PGE were incompatible with respect tocrystallizing olivine. Komatiites from the Westonaria Formationof the Ventersdorp Supergroup and the Roodekrans Complex nearJohannesburg have broadly similar PGE patterns and concentrationsto the Komati rocks, suggesting that the PGE contents of SouthAfrican ultrabasic magmas are controlled by similar processesduring partial mantle melting and low-P magmatic crystallization.Most workers believe that the Barberton komatiites formed byrelatively moderate-degree batch melting of the mantle at highpressure. Based on the concentration of Zr in the Komati samples,we estimate that the degree of partial melting was between 26and 33%. We suggest that the low PGE contents and Pd/Ir ratiosof all analysed South African komatiites are the result of sulphideshaving been retained in the mantle source during partial melting.The difference in Pd/Ir between our samples and Al-undepletedkomatiites from elsewhere further suggests that the PGE arefractionated during progressive partial melting of the mantle.Thus, our data are in agreement with other recent studies showingthat the PGE are hosted by different phases in the mantle, withPd being concentrated by interstitial Cu-rich sulphide, andthe IPGE (Os, Ir, Ru) and Rh resting in monosulphide solid solutionincluded within silicates. Pt is possibly controlled by a discreterefractory phase, as Pt/Pd ratios of most komatiites worldwideare sub-chondritic. KEY WORDS: platinum-group elements; komatiites; Barberton; mantle melting; South Africa  相似文献   

13.
The Nantianwan mafic intrusion in the Panxi region, SW China, part of the ~260?Ma Emeishan large igneous province, consists of the olivine gabbro and gabbronorite units, separated by a transitional zone. Olivine gabbros contain olivine with Fo values ranging from 83 to 87, indicating crystallization from a moderately evolved magma. They have 0.2 to 0.9?wt?% sulfide with highly variable PGE (17?C151?ppb) and variable Cu/Pd ratios (1,500?C32,500). Modeling results indicate that they were derived from picritic magmas with high initial PGE concentrations. Olivine gabbros have negative ??Nd(t) values (?1.3 to ?0.1) and positive ??Os(t) values (5?C15), consistent with low degrees of crustal contamination. Gabbronorites include sulfide-bearing and sulfide-poor varieties, and both have olivine with Fo values ranging from 74 to 79, indicating crystallization from a more evolved magma than that for olivine gabbros. Sulfide-bearing gabbronorites contain 1.9?C4.1?wt?% sulfide and 37?C160?ppb PGE and high Cu/Pd ratios (54,000?C624,000). Sulfide-poor gabbronorites have 0.1?C0.6?wt?% sulfide and 0.2?C15?ppb PGE and very high Cu/Pd ratios (16,900?C2,370,000). Both sulfide-bearing and sulfide-poor gabbronorites have ??Nd(t) values (?0.9 to ?2.1) similar to those for olivine gabbros, but their ??Os(t) values (17?C262) are much higher and more variable than those of the olivine gabbros. Selective assimilation of crustal sulfides from the country rocks is thus considered to have resulted in more radiogenic 187Os of the gabbronorites. Processes such as magma differentiation, crustal contamination and sulfide saturation at different stages in magma chambers may have intervened during formation of the intrusion. Parental magmas were derived from picritic magmas that had fractionated olivine under S-undersaturated conditions before entering a deep-seated staging magma chamber, where the parental magmas crystallized olivine, assimilated minor crustal rocks and reached sulfide saturation, forming an olivine- and sulfide-laden crystal mush in the lower part and evolved magmas in the upper part of the chamber. The evolved magmas were forced out of the staging chamber and became S-undersaturated due to a pressure drop during ascent to a shallow magma chamber. The magmas re-attained sulfide saturation by assimilating external S from S-rich country rocks. They may have entered the shallow magma chamber as several pulses so that several gabbronorite layers each with sulfide segregated to the base and a sulfide-poor upper part. The olivine gabbro unit formed from a new and more primitive magma that entrained olivine crystals and sulfide droplets from the lower part of the staging chamber. A transitional zone formed along the boundary with the gabbronorite unit due to chemical interaction between the two rock units.  相似文献   

14.
The Mesoarchean Nuasahi chromite deposits of the Singhbhum Craton in eastern India consist of a lower chromite-bearing ultramafic unit and an upper magnetite-bearing gabbroic unit. The ultramafic unit is a ∼5 km long and ∼400 m wide linear belt trending NNW-SSE with a general north-easterly dip. The chromitite ore bodies are hosted in the dunite that is flanked by the orthopyroxenite. The rocks of the ultramafic unit including the chromitite crystallized from a primitive boninitic magma, whereas the gabbro unit formed from an evolved boninitic magma. A shear zone (10–75 m wide) is present at the upper contact of the ultramafic unit. This shear zone consists of a breccia comprising millimeter- to meter-sized fragments of chromitite and serpentinized rocks of the ultramafic unit enclosed in a pegmatitic and hybridized gabbroic matrix. The shear zone was formed late synkinematically with respect to the main gabbroic intrusion and intruded by a hydrous mafic magma comagmatic with the evolved boninitic magma that formed the gabbro unit. Both sulfide-free and sulfide-bearing zones with platinum group element (PGE) enrichment are present in the breccia zone. The PGE mineralogy in sulfide-rich assemblages is dominated by minerals containing Pd, Pt, Sb, Bi, Te, S, and/or As. Samples from the gabbro unit and the breccia zone have total PGE concentrations ranging from 3 to 116 ppb and 258 to 24,100 ppb, respectively. The sulfide-rich assemblages of the breccia zone are Pd-rich and have Pd/Ir ratios of 13–1,750 and Pd/Pt ratios of 1–73. The PGE-enriched sulfide-bearing assemblages of the breccia zone are characterized by (1) extensive development of secondary hydrous minerals in the altered parts of fragments and in the matrix of the breccia, (2) coarsening of grain size in the altered parts of the chromitite fragments, and (3) extensive alteration of primary chromite to more Fe-rich chromite with inclusions of chlorite, rutile, ilmenite, magnetite, chalcopyrite, and PGE-bearing chalcogenides. Unaltered parts of the massive chromitite fragments from the breccia zone show PGE ratios (Pd/Ir = 2.5) similar to massive chromitite (Pd/Ir = 0.4–6.6) of the ultramafic unit. The Ir-group PGE (IPGE: Ir, Os, Ru) of the sulfide-rich breccia assemblages were contributed from the ultramafic–chromitite breccia. Samples of the gabbro unit have fractionated primitive mantle-normalized patterns, IPGE depletion (Pd/Ir = 24–1,227) and Ni-depletion due to early removal of olivine and chromite from the primitive boninitic magma that formed the ultramafic unit. Samples of the gabbro and the breccia zone have negative Nb, Th, Zr, and Hf anomalies, indicating derivation from a depleted mantle source. The Cu/Pd ratios of the PGE-mineralized samples of the breccia zone (2.0 × 103–3.2 × 103) are lower than mantle (6.2 × 103) suggesting that the parental boninitic magma (Archean high-Mg lava: Cu/Pd ratio ∼1.3 × 103; komatiite: Cu/Pd ratio ∼8 × 103) was sulfur-undersaturated. Samples of the ultramafic unit, gabbro and the mineralized breccia zone, have a narrow range of incompatible trace element ratios indicating a cogenetic relationship. The ultramafic rocks and the gabbros have relatively constant subchondritic Nb/Ta ratios (ultramafic rocks: Nb/Ta = 4.1–8.8; gabbro unit: Nb/Ta = 11.5–13.2), whereas samples of the breccia zone are characterized by highly variable Nb/Ta ratios (Nb/Ta = 2.5–16.6) and show evidence of metasomatism. The enrichment of light rare earth element and mobile incompatible elements in the mineralized samples provides supporting evidence for metasomatism. The interaction of the ultramafic fragments with the evolved fluid-rich mafic magma was key to the formation of the PGE mineralization in the Nuasahi massif.  相似文献   

15.
The peridotites of the Manipur Ophiolite Complex (MOC) have been examined based on mineral chemistry, major elements and PGE contents. They represent high-magnesian cumulates with Mg# > 0.90 (Mg/Mg+Fe) in olivine and Cr# > 0.12 (Cr/Cr+Al) in spinel. High Mg* contents of the olivine show that these rocks are most likely derived from partial melting of the residual upper mantle. The peridotites contain higher concentration of Palladium Group PGE (PPGE) (Rh=4.4−6.6ppb; Pd=336−458ppb and Pt=14.6−36.4ppb) than the Iridium Group PGE (IPGE) (Os=2.4−5.8ppb; Ir=3.2−4.16ppb and Ru=5.2−7ppb). These are characterized by overall enrichment of PGE concentration (σPGE=365.8 − 516.6 ppb) and high ratio of (Pt+Pd)/(Os+Ir+Ru). This suggests that the rocks are formed by partial melting and crystal fractionation of olivine-rich (picritic) magma.  相似文献   

16.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

17.
The Gabbro Akarem (Late Precambrian) intrusion is concentrically zoned with a dunite core surrounded by lherzolite–clinopyroxenite enveloped by olivine–plagioclase hornblendite and plagioclase hornblendite. Cu–Ni–PGE mineralization is closely associated with peridotite, especially in the inner, olivine-rich core (dunite pipes) where net-textured and massive sulfides (pyrrhotite, pentlandite, chalcopyrite) are found in association with Al–Mg-rich spinel and Cr-magnetite. Primary magmatic textures are well preserved; however, deformation and mobilization due to shearing are locally observed. Platinum-group minerals (PGM) documented from the deposit are: merenskyite (PdTe2) and michenerite (PdTeBi), as well as palladian bismuthian melonite (Ni,Pd) (Te,Bi)2. These minerals occur in intimate association with hessite (Ag2Te) and electrum (Au0.65Ag0.31Bi0.04) in two distinct textural positions: (1) as inclusions in pyrrhotite, pentlandite, and rarely chalcopyrite and (2) at sulfide–silicate grain boundaries and on microfractures in base-metal sulfides (BMS) and olivine associated with serpentine and secondary magnetite. Textural features suggest that PGM were exsolved from monosulfide solid solution over a wide range of temperatures. Late-stage, low-temperature hydrothermal solutions led to redistribution of PGE. Mineralized samples show Ni/Cu ratios ranging from 0.2 to 2 with an average of 1.0. The (Pt + Pd + Rh)/(Os + Ir + Ru) ratio is generally >6 in most samples, and Os, Ru, and Ir are below the detection limit (2 ppb). The PGE contents show positive correlation with S only at low sulfur contents. The PGE patterns of Gabbro Akarem are similar to those of Alaskan-type deposits. Compared with stratiform deposits, Gabbro Akarem is depleted in PGE. The consistently low PGE contents of the mineralization and their uniform distribution in the ultramafic rocks despite the high sulfur content of the rock is attributed to rapid crystallization of sulfides in a highly dynamic environment. Received: 3 November 1999 / Accepted: 29 July 2000  相似文献   

18.
The Ferguson Lake Ni–Cu–Co–platinum-group element (PGE) deposit in Nunavut, Canada, occurs near the structural hanging wall of a metamorphosed gabbroic sill that is concordant with the enclosing country rock gneisses and amphibolites. Massive to semi-massive sulfide occurs toward the structural hanging wall of the metagabbro, and a low-sulfide, high-PGE style of mineralization (sulfide veins and disseminations) locally occurs ~30–50 m below the main massive sulfide. Water–rock interaction in the Ferguson Lake Ni–Cu–Co–PGE deposit is manifested mostly as widespread, post-metamorphic, epidote–chlorite–calcite veins, and replacement assemblages that contain variable amounts of sulfides and platinum-group minerals (PGM). PGM occur as inclusions in magmatic pyrrhotite and chalcopyrite in both the massive sulfide and high-PGE zones, at the contact between sulfides and hornblende or magnetite inclusions in the massive sulfide, in undeformed sulfide veins and adjacent chlorite and/or epidote halos, in hornblende adjacent to hydrothermal veins, and in plagioclase–chlorite aggregates replacing garnet cemented by sulfide. The PGM are mostly represented by the kotulskite (PdTe)–sobolevskite (PdBi) solid solution but also include michenerite (PdBiTe), froodite (PdBi2), merenskyite (PdTe2), mertieite II (Pd8[Sb,As]3), and sperrylite (PtAs2) and occur in variety of textural settings. Those that occur in massive and interstitial sulfides, interpreted to be of magmatic origin and formed through exsolution from base metal sulfides at temperatures <600°C, are dominantly Bi rich (i.e., Te-bearing sobolevskite), whereas those that occur in late-stage hydrothermal sulfide/silicate veins and their epidote–chlorite alteration halos tend to be more Te rich (i.e., Bi-bearing kotulskite). The chemistry and textural setting of the various PGM supports a genetic model that links the magmatic and hydrothermal end-members of the sulfide–PGM mineralization. The association of PGM with magmatic sulfides in the massive sulfide and high-PGE zones has been interpreted to indicate that PGE mineralization was initially formed through exsolution from base metal sulfides which formed by magmatic sulfide liquid segregation and crystallization. However, the occurrence of PGM in undeformed sulfide-bearing veins and in their chlorite–epidote halos and differences in PGM chemistry indicate that hydrothermal fluids were responsible for post-metamorphic redistribution and dispersion of PGE.  相似文献   

19.
Nickel-, copper-, and platinum group element (PGE)-enriched sulphide mineralization in large igneous provinces has attracted numerous PGE studies. However, the distribution and behavior of PGEs as well as the history of sulphide saturation are less clear in oxide-dominated mineralization. Platinum group elements of oxide-bearing layered mafic intrusions from the Emeishan large igneous province are examined in this study. Samples collected from the Baima and Taihe oxide-bearing layered gabbroic intrusions reveal contrasting results. The samples from Baima gabbroic rocks have low total PGE abundances (ΣPGE < 4 ppb) whereas the Taihe gabbroic rocks, on average, have more than double the concentration but are variable ranging from ΣPGE < 2 ppb to ΣPGE ∼300 ppb. The Baima gabbro is platinum-subgroup PGE (PPGE = Rh, Pt and Pd) enriched and iridium-subgroup PGE (IPGE = Os, Ir and Ru) depleted, with a distinct positive Ru anomaly on a primitive mantle normalized multi-element plot. The Taihe gabbros are also PPGE enriched but with negative Ru and Pd anomalies on a primitive mantle normalized multi-element plot. The PGE concentrations of Baima rocks are indicative of fractionation of a relatively evolved, mafic, S-undersaturated parental magma that was affected by earlier sulphide segregation. In contrast, the Taihe rocks record evidence of both S-saturated and S-undersaturated conditions and that the parental magma was likely emplaced very close to S-saturation. Comparisons of the platinum group element contents in the Emeishan flood basalts and the Emeishan oxide-bearing intrusions suggest that the PGE budget in a magma is not controlled by magma series (high-Ti vs. low-Ti), but very much by crustal contamination. The unlikelihood of substantial crustal contamination in the Taihe magma allowed the magma to remain S-undersaturated for a longer duration. PGE and sulphide mineralization was not identified in the Taihe intrusion but the presence of one PGE-enriched sample (Pt + Pd = ∼300 ppb) suggests that the parental magma likely did not experience sulphide segregation and is a potential target for further prospecting.  相似文献   

20.
The Xigaze ophiolite in the central part of the Yarlung–Zangbo suture zone, southern Tibet, has a well-preserved sequence of sheeted dykes, basalts, cumulates and mantle peridotites at Jiding and Luqu. Both the basalts and diabases at Jiding have similar compositions with SiO2 ranging from 45.9 to 53.5 wt%, MgO from 3.1 to 6.8 wt% and TiO2 from 0.87 to 1.21 wt%. Their Mg#s [100Mg/(Mg + Fe)] range from 40 to 60, indicating crystallization from relatively evolved magmas. They have LREE-depleted, chondrite-normalized REE diagrams, suggesting a depleted mantle source. These basaltic rocks have slightly negative Nb- and Ti-anomalies, suggesting that the Xigaze ophiolite represents a fragment of mature MORB lithosphere modified in a suprasubduction zone environment. The mantle peridotites at Luqu are high depleted with low CaO (0.3–1.2 wt%) and Al2O3 (0.04–0.42 wt%). They display V-shaped, chondrite-normalized REE patterns with (La/Gd)N ratios ranging from 3.17 to 64.6 and (Gd/Yb)N from 0.02 to 0.20, features reflecting secondary metasomatism by melts derived from the underlying subducted slab. Thus, the geochemistry of both the basaltic rocks and mantle peridotites suggests that the Xigaze ophiolite formed in a suprasubduction zone.Both the diabases and basalts have Pd/Ir ratios ranging from 7 to 77, similar to MORB. However, they have very low PGE abundances, closely approximating the predicted concentration in a silicate melt that has fully equilibrated with a fractionated immiscible sulfide melt, indicating that the rocks originated from magmas that were S-saturated before eruption. Moderate degrees of partial melting and early precipitation of PGE alloys explain their high Pd/Ir ratios and negative Pt-anomalies. The mantle peridotites contain variable amounts of Pd (5.99–13.5 ppb) and Pt (7.92–20.5 ppb), and have a relatively narrow range of Ir (3.47–5.01 ppb). In the mantle-normalized Ni, PGE, Au and Cu diagram, they are relatively rich in Pd and depleted in Cu. There is a positive correlation between CaO and Pd. The Pd enrichment is possibly due to secondary enrichment by metasomatism. Al2O3 and Hf do not correlate with Ir, but show positive variations with Pt, Pd and Au, indicating that some noble metals can be enriched by metasomatic fluids or melts carrying a little Al and Hf. We propose a model in which the low PGE contents and high Pd/Ir ratios of the basaltic rocks reflect precipitation of sulfides and moderate degrees of partial melting. The high Pd mantle peridotites of Xigaze ophiolites were formed by secondary metasomatism by a boninitic melt above a subduction zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号