首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical solutions have been obtained for the vertical uplift capacity of strip plate anchors embedded adjacent to sloping ground in fully cohesive soil under undrained condition. The analysis was performed using finite element lower bound limit analysis with second-order conic optimization technique. The effect of anchor edge distance from the crest of slope, angle and height of slope, normalized overburden pressure due to soil self-weight, and embedded depth of anchor on the uplift capacity has been examined. A nondimensional uplift factor defined as F owing to the combined contribution of soil cohesion (cu), and soil unit weight (γ) is used for expressing the uplift capacity. For an anchor buried near to a sloping ground, the ultimate uplift capacity is dependent on either pullout failure of anchor or overall slope failure. The magnitude of F has been found to increase with an increase in the normalized overburden pressure up to a certain maximum value, beyond which either the behavior of anchor transfers from shallow to deep anchor or overall slope failure occurs.  相似文献   

2.
As offshore energy developments move towards deeper water, moored floating production facilities are increasingly preferred to fixed structures. Anchoring systems are therefore of great interest to engineers working on deep water developments. Suction embedded plate anchors (SEPLAs) are rapidly becoming a popular solution, possessing a more accurate and predictable installation process compared to traditional alternatives. In this paper, finite element analysis has been conducted to evaluate the ultimate pullout capacity of SEPLAs in a range of post-keying configurations. Previous numerical studies of anchor pullout capacity have generally treated the soil as an elastic-perfectly plastic medium. However, the mechanical behaviour of natural clays is affected by inter-particle bonding, or structure, which cannot be accounted for using simple elasto-plastic models. Here, an advanced constitutive model formulated within the kinematic hardening framework is used to accurately predict the degradation of structure as an anchor embedded in a natural soft clay deposit is loaded to its pullout capacity. In comparison with an idealised, non-softening clay, the degradation of clay structure due to plastic strains in the soil mass results in a lower pullout capacity factor, a quantity commonly used in design, and a more complex load–displacement relationship. It can be concluded that clay structure has an important effect on the pullout behaviour of plate anchors.  相似文献   

3.
K.D. Jones  Y. Cho 《Ocean Engineering》2007,34(16):2107-2114
An analytical solution has been developed to estimate the horizontal, vertical, and inclined loading pullout capacities of embedded suction anchors in sand. Validation of the analytical solution on pullout capacities has been made through comparisons with the centrifuge model test results. Primary variables for the centrifuge model tests are the depth to the loading point, the load inclination angle, and the addition of flanges. The results indicate that both the horizontal and vertical pullout capacities of the embedded suction anchor in sand increase, reach the peak and then start to decrease as the loading point moves downward. The inclined loading pullout capacity is very much dependent on the load inclination angle and the loading point. The effect of flanges on the pullout capacities is also found to be significant.  相似文献   

4.
ABSTRACT

The uplift capacity of a group of circular plate anchors buried horizontally in sand along a line has been determined. The uplift capacity of an interfering anchor is presented in terms of nondimensional uplift factors, Fγi and Fqi, due to components of soil unit weight and surcharge pressure acting on the ground surface, respectively. Theoretical solutions have been developed by applying the upper bound theorem of limit analysis based on a simple rigid wedge collapse mechanism. In the case of two and infinite number of anchors, closed-form solutions have been developed for computing the factor Fqi, whereas the factor Fγi is determined using a semianalytical approach. As expected, the interference of the anchors leads to a continuous reduction in the uplift resistance with a decrease in the spacing between the anchors, and the uplift resistance decreases with the increasing number of anchors at a given spacing. The results compare reasonably well with the available theoretical and experimental data from the literature.  相似文献   

5.
6.
法向承力锚是一种新型的适用于深海工程的系泊基础,其极限抗拔力是锚在工程应用中的关键指标。尝试用两种不同的方法评估法向承力锚的极限抗拔力,其一是基于塑性上限分析理论;其二是运用非线性有限元数值方法。与已有的经验公式相比,所建立的计算模型不仅可考虑海床土性质,还能反映锚板定位(嵌入深度及角度)以及系缆力角度对锚极限抗拔力的影响。在与已有评估方法进行比较的基础上,还特别对锚板的嵌入深度、角度以及系缆力角度变化对极限抗拔力的影响规律进行了分析,对三种方法的适用性进行了评述。  相似文献   

7.
复合加载条件下吸力式沉箱基础承载特性数值分析   总被引:2,自引:0,他引:2  
王志云  王栋  栾茂田  范庆来  武科 《海洋工程》2007,25(2):52-56,71
吸力式沉箱基础的承载特性是海洋工程结构设施建造与设计中的一个关键问题。这种新型的深水海洋基础型式,通常承受竖向上拔荷载与水平荷载的共同作用,其工作性能与设计理论远远不能满足工程实践的需要。本文采用有限元分析方法对吸力式沉箱基础的极限承载特性进行数值计算。以大型通用有限元分析软件ABAQUS为平台,通过二次开发,数值实现了Swipe试验加载方法和固定位移比分析方法,针对不同的沉箱长径比、土的强度折减系数,探讨了沉箱基础在垂直上拔荷载和水平荷载单调联合作用下的极限承载力,通过对不同荷载组合的数值计算构造了复合加载条件下沉箱基础破坏包络面。  相似文献   

8.
传统吸力基础是一个单桶结构,被广泛作为海洋平台、漂浮结构的基础,近年来也被推广到海上风电塔架。作为风电塔架基础,要充分提高其水平承载能力。为此,提出一种改进的基础形式—裙式吸力基础。采用Z_SOIL有限元软件,针对砂土地基,从水平单调加载和循环加载两个方面,对传统单桶吸力基础和裙式吸力基础进行了承载性能对比研究,得到了相应的荷载-位移曲线。研究结果表明,裙式吸力基础由于设置了"裙"结构,显著提高了其抵抗水平静载和循环水平动力荷载的能力,并能有效控制基础的水平位移,是值得推广应用的一种新型海洋工程基础形式。  相似文献   

9.
This paper presents the results of three-dimensional finite element analyses of the suction bucket foundation used for offshore wind turbines. The behavior of the bucket and the response of soil supporting the bucket in dense and medium dense sandy soils subjected to static horizontal load are investigated. Field tests results and a centrifuge model test are used to validate the numerical model. Dimensionless horizontal load-displacement and overturning moment-rotation relationships are derived utilizing the Power law and Buckingham’s theorem. The results show good agreement between the numerical analysis results and the straight lines obtained from the Power law until a specific value of horizontal load and overturning moment. Regarding stress behavior of soil supporting the bucket, due to soil densification and bucket movement, maximum stresses are seen near the bucket tip at the right inside of the bucket. The major part of the applied load is transferred by the bucket skirt. Numerical analysis modeling results show that the bucket rotation and displacement are highly dependent on the bucket geometry and soil properties in addition to loading conditions. Normalized equations and figures for the ultimate horizontal load and overturning-moment capacities are presented and can be used for the preliminary design of the bucket foundations in sandy soils.  相似文献   

10.
Considering the current disadvantages of present offshore wind turbine foundations, a novel anchor foundation with skirt and branches is proposed, called offshore umbrella suction anchor foundation (USAF). A series of experiments and numerical simulations were performed to explore the bearing capacity of the USAF under various kinds of loading modes. The bearing characteristics and the anchor–soil interactions are described in detail for horizontal static loading, horizontal cyclic loading, and an antidrawing (pullout) test in silty soil. In the static loading test, the load–deflection of the anchor under step loading was analyzed and the normalized curve of the load–deflection was obtained to determine the ultimate horizontal bearing capacity of the anchor under normal working conditions. Under horizontal cyclic loading, the relationship between the plastic cumulative deformation and cyclic number was determined. In addition, the responses of USAF were investigated for a low wave frequency and storm surges. In the drawing test, it was found that a “segmentation phenomenon” occurred during the test. Moreover, a method to identify the maximum antidrawing load of USAF was provided based on dynamic mechanics. The numerical results show that the use of anchor branches and skirt can enhance the bearing performance of USAF to a certain degree. However, the anchor branch has a slight positive influence on the bearing performance improvement. The USAF is not only similar to a stiff short pile, but a rotation occurs. The failure envelope under composite loading (V-M) was obtained and the changes associated with changes in the aspect ratio of the internal compartment were clarified.  相似文献   

11.
When suction caissons are used as foundations for jacket structures, the caissons are exposed to significant vertical loads. If the self-weight of the structure is relatively low, a large horizontal load may lead to tension on the foundation on the incoming side. For steady loads, such as the wind load during production, the soil response will be drained. This paper presents the results from a series of finite element analysis (FEA) on suction caissons in cohesionless soil. The analyses are performed on suction caissons with different dimensions and different soil conditions. For normalization, dimensional analyses of the calculated results are performed to create dimensionless groups. The dimensionless groups are used to establish a relation between the normalized tensile capacity and the interface strength. This relation is used to establish two formulations of the drained tensile capacity for suction caissons in cohesionless soils. One for associated plasticity and one for non-associated plasticity with the dilatation angle equal zero.  相似文献   

12.
Numerous studies have investigated the weakening effect of corrosion or erosion induced defects on the limit pressure capacity of straight pipes, but few have focused on elbows. In this paper the roles of material and geometric parameters of an elbow with a single defect were studied and formulized by means of a vast nonlinear parametric finite element analysis followed by artificial neural network. Results showed that length, depth and circumferential position of the corroded area have the most effects on the limit pressure capacity. In addition to the primary approach of this paper, an analytical approach was also used by combining some ideas from previous relevant studies to reach to a simple and easy-to-use formula. The predictions of the two methods were compared with each other. This paper presents the first part of two-part study investigating elbows with single defects (part 1) and interacting defects (part 2).  相似文献   

13.
The passive suction of suction foundations plays a significant role in pull-out resistance. The factors influencing the uplift capacity include stress state, embedment ratio, and loading rate. This article investigates the effect of embedment ratio and loading rate on the bearing behavior of suction foundations using centrifuge testing. A series of uplift tests on a suction foundation in clay were performed using a beam centrifuge. During the tests, uplift displacement, suction, and loading rate were monitored. The suction was obtained by measurement of water pressure. To compare the influence of different factors on uplift capacity due to passive suction, two types of uplift tests were conducted; the first was on the closed caisson and the second was on the vented caisson. The results show that the pull-out resistance increased with an increase of the uplift loading rate, which was induced by the suction. The maximum resistance occurred when the upward displacements reached 14%D under a ratio of skirt length (L) to diameter (D) (L/D) of 0.5 and 17%D under an L/D ratio of 2. These findings provide a way for suction caissons to resist pull-out load or for structures to be removed from the seabed.  相似文献   

14.
土体在剪切变形过程中产生主应力方向的旋转时,主应变率方向与主应力方向之间存在着非共轴现象,然而,传统的弹塑性本构模型并不能考虑该现象的影响。通过在传统本构模型屈服面的切线方向增加一项非共轴塑性应变率,即可实现对非共轴现象的反映。利用有限元软件ABAQUS的材料子程序接口UMAT,通过显式积分算法和自动分步方法实现了非共轴模型在有限元分析中的应用。首先,对砂土的单剪试验进行数值模拟,预测了主应力方向和主应变率方向之间的关系,所得结论与试验结果较为吻合。然后,针对吸力桶与砂质地基间的相互作用问题进行弹塑性有限元计算,分析了土体主应力方向在剪切变形过程中的旋转规律,以及桶体的端部阻力、侧壁摩擦阻力和顶部阻力在变形过程中的变化规律。最后,检验了非共轴现象对地基承载力计算结果的影响。研究结果表明,所开发的非共轴模型对非共轴现象具有良好的预测能力。  相似文献   

15.
港口、海洋工程结构物基础一般处于复合加载状态,其极限承载力通常采用近来引入的极限荷载图进行评价.对位于地基表面的重力式海洋基础,需要考虑基础与地基间的接触特性对极限承载力的影响.以大型通用有限元软件ABAQUS为计算平台,建立了复合加载模式的地基极限承载力数值分析方法;针对饱和黏土地基上的表面基础,利用在ABAQUS平台上开发的接触计算模块,模拟基础与地基间竖向可分离、切向完全粘结的接触作用;进而基于建立的分析方法,进行系统的有限元计算,分析地基的破坏模式随荷载条件的变化,给出地基的极限荷载包络图,并与经典承载力计算公式结果进行对比.研究结果表明,经典承载力计算公式低估了三维荷载条件下的地基极限承载力,有限元计算模型及数值分析方法,可以较好地分析研究地基的失稳机理及承载力特性,并可考虑基础与地基不同的接触条件对破坏模式及组合极限承载力的影响.  相似文献   

16.
在非传统近似(即,包含地转水平分量在内的完整地转效应)条件下,用 WKB(Wentzel-Kramers-Brillouin)方法得到了密度连续分层海洋内波的一类 WKB近似解.为了检验所得到的 WKB 近似解的有效性,对WKB解各垂向速度模态与基于三点中心差分格式及QR算法的数值计算结果进行了详细比对,结果表明,当浮...  相似文献   

17.
Sandwich pipes (SP), a composite structure consisting of two concentric steel tubes and a polymeric or cement-based core has been proposed to be well-insulated and withstand high installation and operational loads in deepwater oil and gas field. In the paper, the post-buckling responses and pressure capacity of sandwich pipes filled with the solid polypropylene annular were investigated. The degree of the inter-layer adhesion condition between the core layer and the surrounding pipes was modeled by the contact surfaces adopting different maximum shear strength values to allow the relative displacement between the layers. The effects such as inter-layer adhesion interactions, thickness-to-radius ratios, the core thickness, the material parameters, the relative initial ovality directions and the inelastic anisotropy on the collapse pressure of SPs were discussed. More than 2000 finite element (FE) models of the sandwich pipes with practical configurations were constructed and analyzed using the programming language Python within the FE software package ABAQUS. Based on the FE results, a simplified equation was developed and recommended for the collapse pressure calculation of sandwich pipes with the polypropylene annular.  相似文献   

18.
S. Surendran  S.K. Lee  K.H. Sohn   《Ocean Engineering》2007,34(3-4):630-637
The world container fleet shows the fastest growth of any ship type. The infrastructure for loading and unloading container ships are also growing in many ports around the world. Such a trend is due to the fact that the containerized transportation is becoming more and more attractive due to many factors. The increasing demand in container transportation is met by use of more number of container ships including Post-Panamax and Malacca-max containers. Loss of containers in seas and accidents of container vessels are reported from many parts of seas. New generation containers are severely hit by parametric rolling. Pure loss of stability, due to exponential increase of roll in either broaching—to or head sea conditions, is called parametric rolling, is subjected to rigorous investigation by many researchers. Algebraic expression based on well known Duffing's method is proposed for solutions in parametric rolling. The variation in GM and damping values from trough to crest conditions associated with bow flare immersion and emergence in head sea conditions with pitch resonance with the heading waves are said to be the prime reason for parametric rolling. A simple model to predict the beginning of parametric rolling is described in this paper.  相似文献   

19.
李红明  韩纯强  王珂 《海洋工程》2012,30(3):105-111
由于腐蚀、海生物附着等因素导致老龄化海洋平台在与船舶碰撞的事故作用下,桩腿变形加大,降低了承载性能。为减少碰撞对桩腿的损伤,提高其耐撞性能,提出了利用吸收能力较强的高弹模CFRP材料加固平台桩腿的方法。以某自升式海洋平台桩腿为例,利用有限元法建立简化的碰撞模型,通过在局部损伤部位粘贴高弹模CFRP材料来提高桩腿的耐撞性能,验证高弹模CFRP加固方法,提高其耐撞性能的有效性。研究表明,相同的碰撞条件下,加固前碰撞力使桩腿产生了接近屈服强度的应力;粘贴2层CFRP布后,桩腿吸能下降56.3%,极值应力下降了14.7%;粘贴CFRP板后,桩腿吸能下降70.68%,桩腿的极值应力下降57.36%。  相似文献   

20.
国内外海上风电开发正逐渐走向成熟阶段,但早期的工程设计对海上升压站在靠船工况下的振动舒适性关注不够,相关的规范体系或可依据的准则也没有建立。针对实践中出现的这一问题,以位于江苏海域的某典型海上升压站结构为对象,进行了船舶碰撞工况下的动力数值模拟,分析了不同碰撞位置对结构响应的影响,以及上部组块不同区域的响应分布情况,并提出了改善舒适性的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号