首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present investigation is to study the vortex-induced vibrations (VIV) for flow past a circular cylinder. The turbulent flow is simulated by using a 2-D standard k-ε model incorporating the finite volume method (FVM) and the Semi-Implicit Method for the Pressure Linked Equations (SIMPLE) algorithm on non-orthogonal boundary-fitted collocated grids. The wall boundaries are approximated with wall functions. In the numerical cases, the turbulent wake patterns are studied by plotting the streamlines and the turbulent kinetic energy contours. The pressure distributions are investigated. Analyses of the vortex-induced force coefficients and the structural vibrations are carried out. The variations of the Strouhal number with the Reynolds number and of the vortex-induced force coefficients with the reduced velocity are obtained. The results show that this numerical approach is feasible and efficient in investigating the VIV problem for a circular cylinder.  相似文献   

2.
With the increase of petroleum and gas production in deep ocean, marine risers of circular cylinder shape are widely used in the offshore oil and gas platform. In order to research the hydrodynamic performance of marine risers, the dynamic mesh technique and User-Defined Function (UDF) are used to simulate the circular cylinder motion. The motion of a transversely oscillat-ing circular cylinder in combination of uniform flow and oscillating flow is simulated. The uniform flow and oscillating flow both are in x direction. SIMPLE algorithm is used to solve the Navier-Stokes equations. The User-Defined Function is used to control the cylinder transverse vibration and the inlet flow. The lift and drag coefficient changing with time and the map of vorticity isolines at different phase angle are obtained. Force time histories are shown for uniform flow at Reynolds number (Re) of 200 and for the com-bination of uniform and oscillating flows. With the increase of amplitude of oscillating flow in combined flow, the change of lift am-plitude is not sensitive to the the change of cylinder oscillating frequency. Lift amplitude increases with the increase of oscillating flow amplitude in the combined flow, but there is no definite periodicity of the lift coefficient. The drag and inertia force coefficients change when the maximum velocity of the oscillating flow increases in the combined flow. The vortex shedding near the circular cylinder shows different characteristics.  相似文献   

3.
Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical results from these simulations are compared with each other and with experimental data in order to evaluate the performance of different combinations of advection scheme and two-equation turbulence model.The separate contributions from form drag and friction drag are also ana-lyzed.The computatio...  相似文献   

4.
In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique (PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wake-shedding at small spacing ratio, bi-stable flow behavior (alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.  相似文献   

5.
As a simplified model of artificial reefs, a series of plate models punched with square or circular openings are designed to investigate the effects of openings on the hydrodynamic characteristics of artificial reefs. The models are grouped by various opening numbers and opening-area ratios. They are physically tested in a water flume or used in the numerical simulation to obtain the drag force in the uniform flow with different speeds. The simulation results are found in good agreement with the experimental measurements. By the non-dimensional analysis, the drag coefficient specified to each model is achieved and the effects of openings are examined. It is found that the key factor affecting the drag coefficient is the open-area ratio. Generally, the drag coefficient is a linear function of the open area ratio with a minus slope. The empirical formulae for the square and circular openings respectively are deduced by means of the multiple regression analysis based on the measured and numerical data. They will be good references for the design of new artificial reefs. As a result of numerical simulation, the vorticity contours and pressure distribution are also presented in this work to better understand the hydrodynamic characteristics of different models.  相似文献   

6.
Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration (VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation (LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.  相似文献   

7.
The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys-CFX and model tests.The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers.CFX was used to study the single riser and two parallel risers in 2–8D spacing considering the coupling effect.Because of the limited width of water channel,only three different riser spacings,2D,3D,and 4D,were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation.The results indicate that the lift force changes significantly with the increase in spacing,and in the case of 3D spacing,the lift force of the two parallel risers reaches the maximum.The vortex shedding of the risers in 3D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area,thus equalizing the period of drag force to that of lift force.It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased.The phase difference of lift force between the two risers is also different as the spacing changes.  相似文献   

8.
The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations.Two examples are simulated to validate the model,and the results matched well with those of previous researches.The Reynolds number based on the diameter of the primary cylinder is 500.The diameter ratio between the control rod and the primary cylinder(d/D) is 0.25.It was found that the effect of the combination of one upstream tandem control rod and one staggered control rod on the hydrodynamics of the primary cylinder is a linear superposition of the effect of a corresponding single control rod,and the effect of the upstream tandem control rod is dominant at larger spacing ratios such as G/D = 2.For the combination of a downstream tandem control rod and a staggered control rod,the effect of the control rods is different from that of the corresponding single control rod in the region of 0.2G/D0.5 30?α120? and 0.9G/D1.4 30?α50?,where the additional effect is obvious.In this case,the effect of the downstream tandem control rod is dominant at small spacing ratios(such as G/D = 0.1).At moderate spacing ratios such as G/D = 0.4,the effects of the tandem control rod and the staggered control rod are comparable in both cases.  相似文献   

9.
【目的】研究均匀流多管束干涉流动下圆柱受迫振动的水动力特性。【方法】基于SSTκ-ω模型,在亚临界雷诺数下(Re=1×105)对多管束共振强迫的涡激振动问题进行二维数值模拟,比较与分析三种典型附属管排布方式对主管路流体动力学特征的影响。【结果与结论】采用模型3下的附属管排布方式可在较大范围的振幅比下(Ay/D=0.1~0.8)有效改善主管路水动力特性:1)有效降低主管路上平均升力系数的幅值;2)抑制在单管路系统中出现的脉动升力系数突变衰减。同时,由于多管束对流动产生干涉效应,主管路上表现的尾迹涡度随着振动幅度的增大而呈现出不同的模式。此外,功率谱密度分析发现,多管束系统相较于单圆柱系统,在频率比为1时,模型2与模型3的共振“锁定”状态得到改善。  相似文献   

10.
This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.  相似文献   

11.
Characteristics from a hydrodynamic model of a trapezoidal artificial reef   总被引:1,自引:0,他引:1  
Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef. Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices; and forces for the reef model were measured by load cell. The results of flume experiments agree well with the numerical data. In addition, the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes, showing a more complicated flow structure than that of a stand-alone reef. Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef. The role of the reef in water flow is to reduce flow velocity and generate turbulence.  相似文献   

12.
Vortex-induced vibration is quite common during the operation of offshore risers or umbilical cables,commonly leading to serious damage to risers and reduced service life.Vortex-induced vibration of the offshore risers could be effectively suppressed by fairing devices.In this paper,a newly developed vortex-induced vibration fairing and large eddy simulation model of the FLUENT software were used for numerical analysis,experimental research and stimulating vortex-induced vibration at 0.1–2 ms^-1.The data of the numerical model with fairing was compared and analyzed to study the vortex shedding frequency at different Reynolds numbers and changes in drag and lift coefficients.The displacement state of 12 in risers with and without fairing was experimentally tested using a five degree-of-freedom balance.The vortex-induced vibration effect of the fairing was tested at different velocities.The result shows the drag reduction effect of the fairing is more obvious when the flow velocity is 0.4–1.2 ms^-1 and the maximum drag reduction reaches 55.6%when the flow velocity is 0.6 ms^-1.Additionally,the drag reduction effect was obvious when the flow velocity was greater than 1.3 ms^-1 and less than 0.3.The result indicates that the developed 12 in fairing,with good potential in engineering applications,has good vortex-induced vibration-suppression effects.  相似文献   

13.
This paper presents a study on drag coefficients under typhoon wind forcing based on observations and numerical experiments. The friction velocity and wind speed are measured at a marine observation platform in the South China Sea. Three typhoons: SOULIK(2013), TRAMI(2013) and FITOW(2013) are observed at a buoy station in the northeast sea area of Pingtan Island. A new parameterization is formulated for the wind drag coefficient as a function of wind speed. It is found that the drag coefficient(Cd) increases linearly with the slope of 0.083′10~(-3) for wind speed less than 24 m s~(-1). To investigate the drag coefficient under higher wind conditions, three numerical experiments are implemented for these three typhoons using SWAN wave model. The wind input data are objective reanalysis datasets, which are assimilated with many sources and provided every six hours with the resolution of 0.125?×0.125?. The numerical simulation results show a good agreement with wave observation data under typhoon wind forcing. The results indicate that the drag coefficient levels off with the linear slope of 0.012′10~(-3) for higher wind speeds(less than 34 m s~(-1)) and the new parameterization improvese the simulation accuracy compared with the Wu(1982) default used in SWAN.  相似文献   

14.
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K0.1); transitional flow(0.1 k/K1); and turbulent flow(k/K1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.  相似文献   

15.
Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non- desingularized technique. Free surface and seabed surface profiles are represented by continuous panels rather than a discretization by isolated points. These panels are positioned exactly on the fluid boundary surfaces and therefore no desingularization technique is required. Space increment method is applied for both free surface source and seabed source arrangements to reduce computational cost and improve numerical efficiency. Fourth order Runge-Kutta iteration scheme is adopted on the free surface updating at every time step. The finite water depth effect is studied quantitatively for a series of cylinders with different B/T ratios. The accuracy and efficiency of the proposed model are validated by comparison with published numerical results and experimental data. Numerical results show that hydrodynamic coefficients vary for cylinder bodies with different ratios of B/T. For certain set of B/T ratios the effect of finite water depth increases quickly with the increase of motion frequency and becomes stable when frequency is relatively large. It also shows that water depths have larger hydrodynamic effects on cylinder with larger breadth to draft ratios. Both the heave added mass and damping coefficients increase across the frequency range with the water depths decrease for forced heave motion. The water depths have smaller effects on sway motion response than on heave motion response.  相似文献   

16.
The estimation of the value on the engineering project in tourist towns is usually very challenging and controversial. In this study, an attempt has been made to evaluate the economic value of the debris flow control engineering in tourist towns by integrating both welfare and disaster economics. The total value of debris flow prevention and control engineering in tourist towns (VDFE) includes investment cost (IC), disaster mitigation benefit (DMB), and loss of brand value (LBV). Here DMB is assessed by the cost-benefit method. The LBV is estimated by incorporating brand equity and cost-benefit methods. The engineering for debris flow control in the Hongchun Gully of southwest China was built to protect Yingxiu tourist town and was assessed as an example. The IC for the engineering is 180 million RMB, however, the VDFE reaches as high as 3401 million RMB, of which the LBV is 169 million RMB, and the input-output ratio is 1:18. Thus, the LBV cannot be neglected in case of VDFE estimation process. The more developed the tourism in one town or city is, the greater the LBV and the higher the VDFE are.  相似文献   

17.
It is difficult to scale up measurements of the sap flux density (Js) for the characterization of tree or stand transpiration (E) due to spatial variations in JS and their temporal changes. To assess spatial variations in the sap flux density of Korean pine (Pinus koraiensis) and their effects on E estimates, we measured the Js using Granier-type sensors. Within trees, the Js decreased exponentially with the radial depth, and the Js of the east aspects were higher than those of the west aspects. Among trees, there was a positive relationship between Js and the tree diameter at breast height, and this positive relationship became stronger as the transpiration demand increased. The spatial variations that caused large errors in E estimates (i.e., up to 110.8 % when radial variation was ignored) had varied systematically with environmental factors systematic characteristics in relation to environmental factors. However, changes in these variations did not generate substantial errors in the E estimates. For our study periods, the differences in the daily E (E D) calculated by ignoring radial, azimuthal and tree-to-tree variations and the measured E D were fairly constant, especially when the daily vapor pressure deficit (D_D) was higher than 0.6 kPa. These results imply that the effect of spatial variations changes on sap flow can be a minor source of error compared with spatial variations (radial, azimuthal and tree-to-tree variations) when considering E estimates.  相似文献   

18.
Shallow water flow (SWF), a disastrous geohazard in the continental margin, has threatened deepwater drilling operations. Under overpressure conditions, continual flow delivering unconsolidated sands upward in the shallow layer below the seafloor may cause large and long-lasting uncontrolled flows; these flows may lead to control problems and cause well damage and foundation failure. Eruptions from over-pressured sands may result in seafloor craters, mounds, and cracks. Detailed studies of 2D/3D seismic data from a slope basin of the South China Sea (SCS) indicated the potential presence of SWF. It is commonly characterized by lower elastic impedance, a higher Vp/Vs ratio, and a higher Poisson’s ratio than that for the surrounding sediments. Analysis of geological data indicated the SWF zone originated from a deepwater channel system with gas bearing over-pressured fluid flow and a high sedimentation rate. We proposed a fluid flow model for SWF that clearly identifies its stress and pressure changes. The rupture of previous SWF zones caused the fluid flow that occurred in the Baiyun Sag of the northern SCS.  相似文献   

19.
Rivers often witness non-uniform bed load sediment transport. For a long time, non-uniform bed load transport has been assumed to be at capacity regime determined exclusively by local flow. Yet whether the capacity assumption for non-uniform bed load transport is justified remains poorly understood. Here, the relative time scale of non-uniform bed load transport is evaluated and non-capacity and capacity models are compared for both aggradation and degradation cases with observed data. As characterized by its relative time scale, the adaptation of non-uniform bed load to capacity regime should be fulfilled quickly. However, changes in the flow and sediment inputs from upstream or tributaries hinder the adaptation. Also, the adaptation to capacity regime is size dependent, the finer the sediment size the slower the adaptation is, and vice versa. It is shown that the capacity model may entail considerable errors compared to the non-capacity model. For modelling of non-uniform bed load, noncapacity modelling is recommended, in which the temporal and spatial scales required for adaptation are explicitly appreciated.  相似文献   

20.
Lobophora rosacea C.W. Vieira, Payri et De Clerck is reported from the South China Sea for the first time. Our specimens are very similar to L. rosacea recently described from New Caledonia, not only in morphology but also in rbcL and cox3 gene sequences. The fan-shaped thallus grows erectly, attaching to the substrate by a basal holdfast. The thallus is composed of a single layer of large medullary cells and three to four layers of cortical cells on both sides of the medulla. Mature sporophytes are detected, with sporangium sori scattered on both surfaces of the thallus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号