首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
地质、岩相学特征表明胶东晚中生代金矿区矿田体系产出的富钾暗色脉岩是由煌斑岩、安山玢岩和英安玢岩等组成,以富钾高碱、贫钛为特征,属超钾质-钾玄质-高钾钙碱性岩系。岩浆具较高的(^87Sr/^86Sr)i(0.7033-0.7087)、较低的(^143Nd/^144Nd)i(0.5108-0.5125)和δ^18OSMOW,全岩在5.8‰-10.6‰之间、均值为7.1‰的特征,揭示源区性质具洋壳为主的板块俯冲过程提供的以H2O为主流体交代大陆岩石圈地幔而形成的富集地幔楔特征,初始岩浆为弧后拉张环境、富集地幔进入成熟期的低程度部分熔融产生,岩浆演化过程存在分离结晶(石英脉岩型矿田体系)和混合作用或被古地壳源物质或变质岩强烈混染作用(蚀变岩型矿田体系)的两种趋势。这一结论对于深入研究该区中生代幔-壳交换成岩、成矿作用具有重要的指导意义。  相似文献   

2.
胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究   总被引:16,自引:5,他引:16  
胶北煌斑岩分别采自龙口、烟台和威海地区,包括拉辉煌斑岩、斜闪正煌岩和角闪煌斑岩,煌斑岩K—Ar全岩年龄变化于89.3~169.5Ma,为晚中生代岩浆活动的产物。在岩石化学组成上,SiO2=42.02%~54.95%,以钙碱性系列为主.岩石以富集大离子亲石元素(LILE)(Ba,U,K,Th)和LREE,亏损高场强元素(HFSE)(Nb,Ta和Ti)为特征,Mg^#=33.9~53.9,Eu/Eu^*=0.71~0.89,^87Sr/^86Sr初始比值0.707642~0.709791,εNd(t)为-17.6~-10.4,^206Pb/^204Pb=37.588~38.431,^207Pb/^204Pb=15.423~15.531,^206Pb/^204Pb=17.204~18.179。表明煌斑岩源自俯冲陆壳(扬子下地壳)在地幔源区发生交代作用时形成的富集型地幔的部分熔融体.考虑到煌斑岩具有大陆边缘弧玄武岩的特征,我们认为煌斑岩在成因上同样与古大洋板块的俯冲作用有关,为碰撞后弧岩浆作用形成的脉岩。  相似文献   

3.
湖南锡矿山锑矿矿区煌斑岩的地球化学特征   总被引:9,自引:3,他引:9  
对湖南锡矿山矿区煌斑岩脉进行了系统的元素和同位素地球化学研究,来探讨煌斑岩的成因。本区煌斑岩形成时代大约为120Ma,早于锑成矿时间,并与锑成矿有密切相关。其微量元素MORB蛛网图,以富集高场强元素,Nb-Ta亏损和Ti不亏损,Th强富集和Ce弱富集为特征,具有岛弧型玄武岩微量元素分配模式,构造环境可能为大陆内部破坏板块边缘。稀土元素具有总量高,无明显的负铕异常,配分模式呈轻稀土富集的右倾型特征。同位素以高^87Sr/^86Sr、低^143Nd/^144Nd为特征。结合元素地球化学、同位素特征和地质发展史分析,煌斑岩可能为富含REE和高场强元素的俯冲带流体交代过的富集地幔部分熔融所产生的岩浆,在上升过程中同化和混合很少量的矿区隐伏花岗岩浆和灰岩的产物。  相似文献   

4.
湖南煌斑岩以富集大离子亲石元素和轻稀土元素,而亏损高强场元素(Nb-Ta-Ti)为特征,同位素以高^87Sr/^86Sr、低^143Nd/^144Nd为特征。源区可能为早期俯冲交代的古老岩石圈富集地幔。煌斑岩的侵入是软流圈上涌的结果,表明湖南地区于晚三叠世已从岩石圈的挤压阶段开始向岩石圈伸展-减薄阶段转换。  相似文献   

5.
胶东金矿区高钾-钾质脉岩地球化学与俯冲-壳幔作用研究   总被引:4,自引:2,他引:2  
胶东金矿区与金矿成矿伴生的脉岩为一套高钾 -钾质脉岩。根据地质、岩相学及与金矿化的时空关系 ,将主要岩石类型划分为煌斑岩、安山玢岩、英安玢岩类 ,它们分别形成与金矿化早期、同期和晚期 ;主要元素成分以富碱高钾、低钛为特征 ,成分变异具同源岩浆结晶分异演化的一般规律 ,早期以辉石和橄榄石、中晚期以角闪石和斜长石为主的矿物相分离结晶控制岩浆的演化 ;岩石明显富 Ba、Sr、Rb、K、L REE等大离子元素、强烈亏损 Cr、Ni及相对亏损 Th、Nb、Ti、Y等高场强元素元素 ,体现初始岩浆起源于富集地幔源区 ;大量的挥发组分及强烈的富集 Ba、Sr及低的 Sr/ Nd比值 ,指示源区为以俯冲陆源沉积为主、有玄武质洋壳参与的脱水、脱气等作用交代早期地幔楔形成的富集地幔源 ,初始岩浆是在中生代印支期形成的富集地幔向燕山期亏损方向演化的特定阶段发生低程度熔融形成 (熔融程度为 6 %~ 8% ) ;就位环境的不同是导致石英脉岩型与蚀变岩型矿区脉岩成岩作用有一定差别的主要原因  相似文献   

6.
云南老王寨金矿区煌斑岩岩石学研究   总被引:8,自引:0,他引:8       下载免费PDF全文
在研究云南老王寨金矿区与金矿化时间上、空间上密切共生的煌斑岩岩相学、矿物学以及主要元素、微量元素和同位素地球化学的基础上,总结出该区煌斑岩的岩石类型主要为云煌岩,其次为云斜煌岩,两种岩石均属碱性系列、钾质-富钾质钙碱性煌斑岩为交代富集地幔部分熔融的产物。板块俯冲进人地幔楔的地壳物质脱水形成的流体可能是引起该区地幔交代作用的主要因素。  相似文献   

7.
闽东南的海边斜闪煌斑岩脉和赤湖辉长岩脉分别形成于晚白垩世和古新世,为高钾钙碱性和钙碱性系列岩石,具有高Al、Na2O>K2O的特征;岩浆演化过程中可能经历了以橄榄石、单斜辉石为主的结晶分异作用.海边和赤湖基性岩脉具有相对富集大离子亲石元素和轻稀土元素,亏损高强场元素特征,不相容元素蛛网图显示出大陆边缘弧的地球化学特征,以Nb、Ta、Ti负异常为特征;海边和赤湖明显富集轻稀土元素,(La/Yb)N分别为5.0~10.9和11.2~12.0.具有高Sr同位素初始值和低εNd(t)值,海边的(^87Sr/^86Sr)i:0.70577~0.707574,εNd(t):-8.1~-1.8,赤湖的(^87Sr/^86Sr)i:0.70547~0.70552,εNd(t):-0.2~0.6.根据Sr、Nd同位素、微量元素研究及野外地质观察,本区基性岩脉的岩浆在上升侵位过程中未发生地壳物质混染.通过Sr、Nd同位素和微量元素等研究,认为地幔源区的演化与古太平洋板块俯冲密切相关,俯冲流体交代地幔楔、消减洋壳携带的海洋与陆源沉积物参与地幔源区的混合,形成本区基性岩脉的富集地幔源区,大离子亲石元素和轻稀土元素特别富集是俯冲流体与沉积物共同参与源区演化的结果.海边和赤湖基性岩脉形成的构造背景属于活动大陆边缘弧,构造性质应为活动陆缘拉张带(或裂谷带).晚白垩世和古新世,闽东南发生了地壳拉张事件,与中国东南部晚白垩世以来的地壳拉张期次是一致.  相似文献   

8.
云南老王寨金矿区煌斑岩岩石学研究   总被引:4,自引:0,他引:4       下载免费PDF全文
 在研究云南老王寨金矿区与金矿化时间上、空间上密切共生的煌斑岩岩相学、矿物学以及主要元素、微量元素和同位素地球化学的基础上,总结出该区煌斑岩的岩石类型主要为云煌岩,其次为云斜煌岩,两种岩石均属碱性系列、钾质-富钾质钙碱性煌斑岩为交代富集地幔部分熔融的产物。板块俯冲进人地幔楔的地壳物质脱水形成的流体可能是引起该区地幔交代作用的主要因素。  相似文献   

9.
河北涞源─八达岭岩基段单元-超单元特征及其成因   总被引:3,自引:0,他引:3  
刘凤山  石准立 《现代地质》1995,9(4):409-418
涞源-八达岭地区花岗岩类是华北地区中生代燕山期岩浆侵入活动的典型代表,它对研究中国东部乃至亚洲东部地壳的形成、发展、演化都具有重要意义.本文从花岗岩类单元-起单元入手,对涞源-八达岭岩基段进行了划分,探讨了单元-超单元的主要特征,指出本岩基段是在太平洋板块俯冲机制下走滑造山作用的结果,岩浆来源于下地壳未经地表地质作用的深变质火山岩的部分熔融,并有地幔衍生岩浆的混合。  相似文献   

10.
河北涞源─八达岭岩基段单元-超单元特征及其成因   总被引:3,自引:0,他引:3  
涞源-八达岭地区花岗岩类是华北地区中生代燕山期岩浆侵入活动的典型代表,它对研究中国东部乃至亚洲东部地壳的形成、发展、演化都具有重要意义.本文从花岗岩类单元-起单元入手,对涞源-八达岭岩基段进行了划分,探讨了单元-超单元的主要特征,指出本岩基段是在太平洋板块俯冲机制下走滑造山作用的结果,岩浆来源于下地壳未经地表地质作用的深变质火山岩的部分熔融,并有地幔衍生岩浆的混合。  相似文献   

11.
The gneisses and granitoids of Bastar craton (with rock suites up to 3.5 Ga) show calc-alkaline trondhjemitic characteristics. The rocks are enriched in both LILE and HFSE than primordial mantle. They have also relatively higher abundances of LILE and strong depletion at P and Ti in the multielement diagram. The depletion of Ti and P indicates retention of these elements by titanite and/or apatite during partial melting. It is proposed that subduction of an oceanic slab and its consequent melting led to the formation of the protoliths of the gneisses without much interaction with the mantle wedge. The granitoids represent temporally distinct suites formed in response to further melting of slab at greater depth and interaction of magma with the mantle wedge during their transport to the crust.  相似文献   

12.
胶东和小秦岭:两类不同构造环境中的造山型金矿省   总被引:8,自引:13,他引:8  
胶东和小秦岭是我国排名前两位的金矿产地,根据对这两个地区的实地野外考察、室内研究及对已有大量研究成果的总结,我们认为胶东与小秦岭地区的金矿床均可归入造山型金矿的范畴,它们分别形成于增生型造山体制和碰撞型造山体制.胶东金矿床形成于早白垩世(130~120Ma左右)与洋壳俯冲(增生)造山相关的活动大陆边缘环境,矿床主要产于中生代花岗岩岩体中,严格受断裂带(NNE向或NE向为主)控制,成矿流体具有低盐度高CO_2含量的特征,He-Ar同位素研究显示成矿过程有幔源物质的加入.综合金矿床及中生代岩浆岩(特别是与成矿近同时的早白垩世郭家岭花岗岩及基性岩脉)的地质地球化学特征与成岩成矿动力学,我们提出在俯冲的太平洋板块后退的背景下,胶东地区增厚地壳中的榴辉岩相下地壳及下伏岩石圈地幔发生两阶段拆沉,强烈的壳幔相互作用最终导致了早白垩世普遍的岩浆活动及金的爆发成矿的模式.小秦岭地区金矿床主要以大型含金石英脉的形式产出于太华群变质基底的脆性-韧性剪切带(EW向为主)中,而与区域内燕山期大型花岗岩岩基没有直接联系,矿床地质特征(如低盐度高CO_2,以变质流体为主的成矿热液)与造山型金矿吻合,He-Ar同位素特征表明金矿床形成时有幔源物质的加入.小秦岭地区脉状Au-Mo矿床印支期成矿年龄(215~256Ma,辉钼矿Re-Os)表明印支期是小秦岭地区金成矿的主要时期,小秦岭金矿属于陆陆(华北与扬子)碰撞造山过程中形成的造山型金矿.  相似文献   

13.
The Palaeo-Tethyan tectonic evolution of central Tibet remains a topic of controversy. Two Permian to Late Triassic arc-like volcanic suites have been identified in the eastern Qiangtang (EQ) block of north-central Tibet. Three competing models have been proposed to explain the formation of these volcanic suites, with two models involving a single stage of long-lived subduction but with opposing subduction polarities, while the other model involves a two-stage subduction process. Here, we present new whole-rock geochemistry, including Sr–Nd isotope data, for late Permian felsic volcanics of the Zaduo area. These volcanics are mainly low to middle K calc-alkaline felsic tuffs and rhyolites with SiO2 concentrations up to 73 wt.%. In primitive mantle-normalized diagrams, the volcanics are typified by large ion lithophile element enrichment and high-field-strength element (e.g. Nb, Ta, P, and Ti) depletion, with slightly negative Eu anomalies. They have initial Sr ratios (87Sr/86Sr) i of 0.70319–0.70547, and ?Nd(t) values of +3.4 to +3.5, suggesting derivation by the partial melting of a depleted mantle wedge, followed by assimilation of crustal material. The available geochemical data indicate the presence of two distinctive igneous evolution trends within the Permian to Late Triassic volcanics of the EQ block, consistent with a two-stage subduction model. Permian to Early Triassic arc-like volcanics are formed during northward (present-day orientation) subduction, whereas the Late Triassic volcanics are related to southward (present-day orientation) subduction of mafic crust of the Garze–Litang Ocean.  相似文献   

14.
《Gondwana Research》2014,25(2):859-872
Mesozoic lamprophyres are widely present in gold province in the Jiaodong Peninsula. In this study, we analyzed major and trace elements and Sr–Nd–Pb isotopic compositions of lamprophyres from the Linglong and Penglai Au-ore districts in the Jiaodong Peninsula, in an attempt to better understand Mesozoic lithospheric evolution beneath the eastern North China Craton. These lamprophyre dikes are calc-alkaline in nature, and are characterized by low concentrations of SiO2, TiO2 and total Fe2O3, high concentrations of MgO, Mg# and compatible element, enriched in LREE and LILE but variably depleted in HFSE. They display initial 87Sr/86Sr ratios of 0.709134–0.710314, εNd(t) values of − 13.2 to − 18.3, 206Pb/204Pb of 17.364–17.645, 207Pb/204Pb of 15.513–15.571 and 208Pb/204Pb of 37.995–38.374. Interpretation of elemental and isotopic data suggests that the Linglong and Penglai lamprophyres were derived from partial melting of a phlogopite- and/or amphibole-bearing lherzolite in the spinel–garnet transition zone. The parental magma might have experienced fractionation of olivine and clinopyroxene, and minor crustal materials were incorporated during ascent of these mafic magmas. Before ~ 120 Ma of emplacement of these calc-alkaline lamprophyres, the ancient lithospheric mantle was variably metasomatized by hydrous fluids rather than melts from subducted/foundered continental crust. It is proposed that continuous modification by slab-derived hydrous fluids from the Paleo-Pacific plate converted the old cratonic lithospheric mantle to Mesozoic enriched lithospheric mantle. Geodynamic force for generation of these lamprophyres may be related to large scale lithospheric thinning coupled with upwelling of the asthenosphere beneath the North China Craton. Continental arc-rifting related to the Paleo-Pacific plate subduction is favored as a geodynamic force for the cratonic lithosphere detachment.  相似文献   

15.
The South arm of Sulawesi was an active continental margin from approximately 60 to 10 Ma, when it collided with the microcontinental fragment of Buton. Pre-collisional samples analyzed for this study are characterized by a geochemical signature typical of arc volcanics: high LILE/HFSE ratios; 87Sr/86Sr slightly higher than MORB; 143Nd/144Nd ratios similar to MORB. Syn-collisional samples have more enriched isotopic signatures, and are relatively potassium rich. This is interpreted to reflect a larger contribution from subducted sediments, added to the mantle wedge as a silicic melt. Melting of subducted sediments is interpreted to result from a decrease in subduction rate and an increase of temperature in the slab. Magmatism that postdates the collisional event by 10 Ma is characterized by higher Nb/Y ratios than the pre- or syn-collisional samples, and Sr and Nd isotopic signatures intermediate between these two groups. This is likely to reflect melting of a subduction-modified mantle, with a significant contribution from the sub-continental lithospheric mantle. Comparison with post-collisional magmatism from other areas of the world suggests that trace element signatures are similar, but isotopic characteristics are variable. The latter are likely to reflect both the age of the sub-continental lithospheric mantle and the time lag between cessation of subduction and formation of the post-collisional magmas.  相似文献   

16.
Subduction related basalts display wide ranges in large ion lithophile element ratios (e.g., Rb/Ba and Rb/ Sr) which are unlikely to result from mixing, but suggest a role for small degree partial melting of a relatively Rb-poor mantle wedge source. However, these variations do not correlate with other trace element criteria, such as the depletions of high field strength elements (HFSE) and light rare earth elements (LREE) relative to the LILE, which characterise subduction related magmatism. Integration of radiogenic isotope and trace element data demonstrates that the elemental enrichment cannot be simply related to two component mixtures inferred from isotopic variations. Thus a minimum of three components is required to describe the geochemistry of subduction zone basalts. Two are subduction related: high Sr/Nd material is derived from the dehydration of subducted basaltic ocean crust, and a low Sr/Nd component is thought to be from subducted terrigenous sediment. The third component is in the mantle wedge, it is usually similar to the source of MORB, particularly in its isotopic composition. However, in some cases, notably continental areas, more enriched mantle wedge material with relatively high 87Sr/86Sr, low 143Nd/144Nd and elevated incompatible trace element contents may be involved Mixing of these three components is capable of producing both the entire range of Sr, Nd and Pb isotope signatures observed in destructive margin basalts, and their distinctive trace element compositions. The isotope differences between Atlantic and Pacific island arc basalts are attributed to the isotope compositions of sediments in the two oceans.  相似文献   

17.
Abstract

Along the Periadriatic Lineament in the Alps and the Sava-Vardar Zone of the Dinarides and Hellenides, Paleogene magmatic associations form a continuous belt, about 1700 km long. The following magmatic associations occur: (1) Eocene granitoids; (2) Oligocene granitoids including tonalites; (3) Oligocene shoshonite and calc-alkaline volcanics with lamprophyres; (4) Egerian-Eggenburgian (Chattian) calc-alkaline volcanics and granitoids. All of these magmatic associations are constrained by radiometric ages, which indicate that the magmatic activity was mainly restricted to the time span between 55 and 29 Ma. These igneous rocks form, both at surface and in the subsurface, the distinct linear Periadriatic-Sava-Vardar magmatic belt, with three strikes that are controlled by the indentation of Apulia and Moesia and accompanying strike-slip faulting. The geology, seismicity, seismic tomography and magnetic anomalies within this belt suggest that it has been generated in the African-Eurasian suture zone. Based on published analytical data, the petrology, major and trace element contents and Sr, Nd and O isotopie composition of each magmatic association are briefly defined. These data show that Eocene and Oligocene magmatic associations of the Late Paleogene Periadriatic-Sava-Vardar magmatic belt originated along a consuming plate margin. Based on isotopie systems, two main rock groups can be distinguished: (1) 87Sr/86Sr = 0.7036–0.7080 and δ18O = 5.9–7.2‰, indicating basaltic partial melts derived from a continental mantle-lithosphere, and (2) 87Sr/86Sr = 0.7090–72131 and δ18O = 7.3–11.5‰, indicating crustal assimilation and melting. The mantle sources for the primary basalt melts are metasomatized garnet peridotites and/or spinel lherzolites and phlogopite lherzolites of upper mantle wedge origin. The geodynamic evolution of the plutonic and volcanic associations of the Periadriatic-Sava-Vardar magmatic belt was related to the Africa-Eurasia suture zone that was dominated by break-off of the subducted lithospheric slab of Mesozoic oceanic crust, at depths of 90–100 km. This is indicated by their contemporaneity along the 1700 km long belt. © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   

18.
The Jurassic ophiolites in the South Apuseni Mountains represent remnants of the Neotethys Ocean and belong to the East Vardar ophiolites that contain ophiolite fragments as well as granitoids and volcanics with island-arc affinity. New U–Pb zircon ages, and Sr and Nd isotope ratios give insights into their tectono-magmatic history. The ophiolite lithologies show tholeiitic MOR-type affinities, but are occasionally slightly enriched in Th and U, and depleted in Nb, which indicates that they probably formed in a marginal or back-arc basin. These ophiolites are associated with calc-alkaline granitoids and volcanics, which show trace element signatures characteristic for subduction-enrichment (high LILE, low HFSE). Low 87Sr/86Sr ratios (0.703836–0.704550) and high 143Nd/144Nd ratios (0.512599–0.512616) of the calc-alkaline series overlap with the ratios measured in the ophiolitic rocks (0.703863–0.704303 and 0.512496–0.512673), and hence show no contamination with continental crust. This excludes a collisional to post-collisional origin of the granitoids and is consistent with the previously proposed intra-oceanic island arc setting. The new U–Pb ages of the ophiolite lithologies (158.9–155.9 Ma, Oxfordian to Early Kimmeridgian) and granitoids (158.6–152.9 Ma, latest Oxfordian to Late Kimmeridgian) indicate that the two distinct magmatic series evolved within a narrow time range. It is proposed that the ophiolites and island arc granitoids formed above a long-lived NE-dipping subduction zone. A sudden flip in subduction polarity led to collision between island arc and continental margin, immediately followed by obduction of the ophiolites and granitoids on top of the continental margin of the Dacia Mega-Unit. Since the granitoids lack crustal input, they must have intruded the Apuseni ophiolites before both magmatic sequences were obducted onto the continental margin. The age of the youngest granitoid (~153 Ma, Late Kimmeridgian) yields an estimate for the maximum age of emplacement of the South Apuseni ophiolites and associated granitoids onto the Dacia Mega-Unit.  相似文献   

19.
The Afyon stratovolcano exhibits lamprophyric rocks, emplaced as hydrovolcanic products, aphanitic lava flows and dyke intrusions, during the final stages of volcanic activity. Most of the Afyon volcanics belong to the silica-saturated alkaline suite, as potassic trachyandesites and trachytes, while the products of the latest activity are lamproitic lamprophyres (jumillite, orendite, verite, fitztroyite) and alkaline lamprophyres (campto-sannaite, sannaite, hyalo-monchiquite, analcime–monchiquite). Afyon lamprophyres exhibit LILE and Zr enrichments, related to mantle metasomatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号