首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A model oscillator for irregular stellar variability presented by Tanaka and Takeuti has only one singularity in the original form. We show it has three different types of singular points when damping terms are ignored. The nonlinear pulsation of Baker's one-zone stellar models is discussed in comparison with the properties of the Tanaka-Takeuti oscillator.  相似文献   

2.
This paper is a continuation of the author's work on stellar convection (Vandakurov, 1975a; hereafter referred to as Paper I). The approximate equations for convective perturbations in Paper I are somewhat corrected and generalized to include both nonlinear terms and possible variations in molecular weight. A crude estimate of the nonlinear terms is given by means of an expansion of the solution in powers of the perturbation amplitude. We assume that only the most rapidly growing unstable modes are of significance and that the initial kinetic energy of each independent mode is the same. An expansion in powers of the angular velocity is also performed. (This means that some upper stellar layers with small, but not very small, superadiabaticity are considered.) It is shown that an azimuth-averaged azimuthal force is created by the unstable perturbations. In particular, it is most likely that in the upper part of any stellar convection envelope the rigid rotation is nonequilibrious. A simple formula for the above azimuthal force is derived in the case of a latitudedependent angular velocity and a small viscosity of the medium. If the perturbed characteristic scaleheight is sufficiently small, the azimuthal force created by the most unstable modes is equivalent to a viscous force, but with a negative viscosity coefficient. In the approximation under consideration, the heat flux is spherically symmetric.  相似文献   

3.
4.
Techniques for deriving amplitude equations for stellar pulsation are outlined. For the simplest such equations with multiple instabilities, the derivation of a map for the patterns of pulsation phases is described. This map gives the time between two successive maxima of pulsation in terms of the time between the previous pair, under suitable conditions. The phase differences can be regular, chaotic or hyperchaotic.  相似文献   

5.
Modal coupling oscillation models for the stellar radial pulsation and coupled-oscillators are reviewed. Coupled-oscillators with the second-order and third-order terms seemed to behave non-systematically. Using the equation by Schwarzschild and Savedoff (1949) with the dissipation term of van del Pol's type which is third-order, we demonstrate the effect of each term. The effects can be understood by the terms of the nonlinear dynamics, which is recently developing, that is. phase-locking, quasi-periodicity, period doubling, and chaos. As the problem of stellar pulsation, especially of double-mode cepheids on the period-ratio, we examine the dependence on the stellar structure from which the coupling constants in the second-order terms are derived. Eigen functions for adiabatic pulsations had been used for the calculation of the constants. It is noted that only two set of the constants are available, that is, for the polytrope model withn = 3 and a cepheid model without convection. Some examples of nonlinear dynamical effects will be shown.It is shown that if the constants were suitable values, the period-ratio of double-mode cepheids is probably realized. The possibility is briefly suggested.  相似文献   

6.
Some new families of electrically charged stellar models of ultra-compact star have been studied. With the help of particular form of one of the metric potentials the Einstein–Maxwell field equations in general relativity have been transformed to a system of ordinary differential equations. The interior matter pressure, energy–density, and the adiabatic sound speed are expressed in terms of simple algebraic functions. The constant parameters involved in the solution have been set so that certain physical criteria satisfied. Based on the analytic model developed in the present work, the values of the relevant physical quantities have been calculated by assuming the estimated masses and radii of some well known potential strange star candidates like X-ray pulsar Her X-1, millisecond X-ray pulsar SAX J 1808.4-3658, and 4U 1820-30. The analytical equations of state of the charged matter distribution may play a significant role in the study of the internal structure of highly compact charged stellar objects in general relativity.  相似文献   

7.
It is known that stellar winds from late type stars are of mixed thermal and magnetic origin. The stellar wind model presented in this work uses the hydrodynamic equations of mass and momentum conservation and closes the system of equations with a detailed energy equation. Both momentum and energy equations have terms due to the effects of Alfvén waves. A smooth transition between the two regimes for Alfvén wave propagation, the undamped and the damped modes, is achieved by considering the geometrical mean of both wave amplitudes. It will be shown that the initial push on the plasma is provided by the mechanical heating input, and that further out the Alfvén waves take over energetically.  相似文献   

8.
By use of a simple set of scaling equations it is demonstrated that atomic and stellar systems show evidence of quantitative self-similarity. Six of the basic parameters characterizing the atomic scale, when properly scaled, are nearly identical to the corresponding six basic measurements characterizing the stellar scale. Galactic scale extrapolations are mentioned and a definitive prediction with which to test the principle of self-similarity is identified.  相似文献   

9.
The existence proof of continuous spectra of eigenvaluess developed in the framework of the function space ofq-regularizations (Perdang, 1976) is extended in this paper by relaxing the severe restrictions previously imposed o the mathematical structure of the stellar stability equations. It is stressed that these local modes depend on the variable system in terms of which the linearized stellar structure equations are set up. We therefore search for a systematic procedure to select the most satisfactory system to analyze Local Stability. Our procedure is illustrated in great detail in the case of nonradial adiabatic stability. Moreover when applied to nonadiabatic perturbations it reveals the existence of two new types of local instability which seem to prevail in the majority of stars in a thermonuclear burning phase: (a) a nonrdial local secular instability; (b) a radial local nuclear instability. Numerical test calculations exhibit that the latter helps us to understand certain evolutionary features of stars, in particular it provides an interpretation of Hayashiet al.'s (1962) rule.  相似文献   

10.
We investigate the potential importance of molecular cloud and stellar perturbations on the orbits of Pluto and more distant (hypothetical) planets up to 500 AU from the Sun. It is found that stellar and molecular cloud-core perturbations are of roughly equal importance. It also is found that the likelihood of substantial perturbations on Pluto is not insignificant, and that numerous substantial stellar and molecular cloud perturbations are likely to have influenced the orbits of any planets beyond 200 AU. These perturbations may contribute to a prevalence of moderate eccentricities and inclinations for planets beyond the orbit of Neptune, and may be a characteristic of distant planetary orbits in other solar systems. Given the recent discovery of chaotic behavior in Pluto's orbit (Sussman and Wisdom 1988), the effects of external perturbations on the long-term stability of Pluto's orbit warrant continued study.  相似文献   

11.
Phenomena of bifurcation in hydrodynamic stellar models of radial pulsation are reviewed. By changing control parameters of models, we can see qualitatively different pulsation behaviors in hydrodynamic models with transitions due to various types of bifurcation.In weakly dissipative models (classical Cepheids), the bifurcation is induced by modal resonances. Two types of the modal resonances found in models are discussed: The higherharmonic resonances of the second overtone mode in the fundamental mode pulsator and of the fourth overtone mode in the first overtone pulsator are relevant to observations. The subharmonic resonance between the fundamental and first overtone modes is confirmed in classical Cepheid models.In strongly dissipative models (less-massive supergiant stars), the bifurcation of nonlinear pulsation is induced by the hydrodynamics of ionization zones as well as modal resonances. The sequence of the bifurcation sometimes leads to chaotic behaviors in nonlinear pulsation. The transition routes from regular to the chaotic pulsations found in models are discussed with respect to the theory of chaos in simple dynamical systems: The cascade of period-doubling bifurcation is confirmed to cause chaotic pulsation in W Virginis models. For models of higher luminosity, the tangent bifurcation is found to lead intermittent chaos.Finally, hydrodynamic models for chaotic pulsation with small amplitudes observed in the post-AGB stars are briefly discussed.  相似文献   

12.
13.
We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.  相似文献   

14.
We study spherical and disc clusters in a near-Keplerian potential of galactic centres or massive black holes. In such a potential orbit precession is commonly retrograde, that is, the direction of the orbit precession is opposite to the orbital motion. It is assumed that stellar systems consist of nearly-radial orbits. We show that if there is a loss-cone at low angular momentum (e.g. due to consumption of stars by a black hole), an instability similar to loss-cone instability in plasma may occur. The gravitational loss-cone instability is expected to enhance black hole feeding rates. For spherical systems, the instability is possible for the number of spherical harmonics   l ≥ 3  . If there is some amount of counter-rotating stars in flattened systems, they generally exhibit the instability independent of azimuthal number m . The results are compared with those obtained recently by Tremaine for distribution functions monotonically increasing with angular momentum.
The analysis is based on simple characteristic equations describing small perturbations in a disc or a sphere of stellar orbits highly elongated in radius. These characteristic equations are derived from the linearized Vlasov equations (combining the collisionless Boltzmann kinetic equation and the Poisson equation), using the action-angle variables. We use two techniques for analysing the characteristic equations: the first one is based on preliminary finding of neutral modes, and the second one employs a counterpart of the plasma Penrose–Nyquist criterion for disc and spherical gravitational systems.  相似文献   

15.
Stellar and atomic systems obey analogous angular momentum/mass relationships and analogous angular momentum/magnetic dipole moment relationships. The dimensional constants in both pairs of angular momentum laws appear to be related by a simple set of self-similar scaling equations, suggesting that atomic and stellar systems may be self-similar.  相似文献   

16.
We present a study of the origin of infrared (IR) emission in the optically normal, infrared luminous galaxy NGC 4418. By decomposing the stellar absorption features and continua in the range of 3600-8000 A from the Sloan Digital Sky Survey into a set of simple stellar populations, we derive the stellar properties for the nuclear region of NGC 4418. We compare the observed infrared luminosity with the one derived from the starburst model, and find that star-forming activity contributes only 7% to the total IR emission, that as the IR emission region is spatially very compact, the most possible source for the greater part of the IR emission is a deeply embedded AGN, though an AGN component is found to be unnecessary for fitting the optical spectrum.  相似文献   

17.
One-armed oscillation modes in the circumstellar discs of Be stars may explain the cyclical variations in their emission lines. We show that a 3D effect, involving vertical motion and neglected in previous treatments, profoundly influences the dynamics. Using a secular theory of eccentric discs that reduces the problem to a second-order differential equation, we show that confined prograde modes are obtained for all reasonable disc temperatures and stellar rotation rates. We confirm these results using a numerical analysis of the full set of linearized equations for 3D isothermal discs including viscous terms that couple the horizontal motions at different altitudes. In order to make these modes grow, viscous damping must be overcome by an excitation mechanism such as viscous overstability.  相似文献   

18.
The test-particle motion in the centrally symmetric gravitational field can be described by the equation in the form appropriate for a nonlinear oscillator — the nonlinear terms being due to the nonrelativistic effects. This enables us to apply to this equation the well-known asymptotic methods of the theory of nonlinear oscillations. Typical nonlinear oscillation phenomena arising from the action of external forces are shown to take place. The form of equations and the main results remain valid in the problem of two bodies of comparable mass in the post-Newtonian approximation.  相似文献   

19.
Global lopsided instability in a purely stellar galactic disc   总被引:1,自引:0,他引:1  
It is shown that pure exponential discs in spiral galaxies are capable of supporting slowly varying discrete global lopsided modes, which can explain the observed features of lopsidedness in the stellar discs. Using linearized fluid dynamical equations with the softened self-gravity and pressure of the perturbation as the collective effect, we derive self-consistently a quadratic eigenvalue equation for the lopsided perturbation in the galactic disc. On solving this, we find that the ground-state mode shows the observed characteristics of the lopsidedness in a galactic disc, namely the fractional Fourier amplitude A 1, increases smoothly with the radius. These lopsided patterns precess in the disc with a very slow pattern speed with no preferred sense of precession. We show that the lopsided modes in the stellar disc are long-lived because of a substantial reduction (approximately a factor of 10 compared to the local free precession rate) in the differential precession. The numerical solution of the equations shows that the ground-state lopsided modes are either very slowly precessing stationary normal mode oscillations of the disc or growing modes with a slow growth rate depending on the relative importance of the collective effect of the self-gravity. N -body simulations are performed to test the spontaneous growth of lopsidedness in a pure stellar disc. Both approaches are then compared and interpreted in terms of long-lived global   m = 1  instabilities, with almost zero pattern speed.  相似文献   

20.
We apply vector spherical functions to problems of stellar kinematics. Using these functions allows all of the systematic components in the stellar velocity field to be revealed without being attached to a specific physical model. Comparison of the theoretical decomposition coefficients of the equations for a particular kinematical model with observational data can provide precise information about whether the model is compatible with the observations and can reveal systematic components that are not described by this model. The formalism of vector spherical functions is particularly well suited for analyzing the present and future (e.g., GAIA) catalogs containing all three velocity vector components: the propermotions in both coordinates and the radial velocity. We show that there are systematic components in the proper motions of Hipparcos stars that cannot be interpreted in terms of the linear Ogorodnikov-Milne model. The same result is also confirmed by an analysis of the radial velocities for these stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号