首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
The VSOP82 and TOP82 theories intend to represent the motion of planets, with a satisfactory accuracy, over an interval of 1000 years from and after J2000.0. The precision of the newtonian part of the solutions for the system of the sun and eight point masses is given in table 1. We present the construction of complements in order to keep this accuracy over one thousand years for the real motion: the relativistic perturbations, the perturbations by the minor planets, the perturbations by the Moon. Besides, we have undertaken the improvement of the solutions through lengthening the interval of validity up to six thousand years from and after J2000.0.  相似文献   

2.
The accuracy of the rigid Earth solution SMART97 is 2?μ as over the time interval (1968, 2023), accuracy showed by the comparison with a numerical integration using the positions of the Moon, the Sun, and the planets given by DE403. To obtain a nonrigid Earth solution, we use the transfer function of Mathews et al. (2000) and , to keep the precision of our rigid Earth solution in the computation of the geophysical effects, we apply this transfer function to the Earth's angular velocity vector in order to avoid the inherent approximations of the classical methods. Moreover the perturbations of the third component of the angular velocity vector are taken into account. Lastly, we take into account, in an iterative process, the second order perturbations due to the geophysical effects. The results are compared with the Herring solution (1996) published in the IERS Conventions.  相似文献   

3.
We analyse the secular dynamics of planets on S-type coplanar orbits in tight binary systems, based on first- and second-order analytical models, and compare their predictions with full N-body simulations. The perturbation parameter adopted for the development of these models depends on the masses of the stars and on the semimajor axis ratio between the planet and the binary. We show that each model has both advantages and limitations. While the first-order analytical model is algebraically simple and easy to implement, it is only applicable in regions of the parameter space where the perturbations are sufficiently small. The second-order model, although more complex, has a larger range of validity and must be taken into account for dynamical studies of some real exoplanetary systems such as \(\gamma \) Cephei and HD 41004A. However, in some extreme cases, neither of these analytical models yields quantitatively correct results, requiring either higher-order theories or direct numerical simulations. Finally, we determine the limits of applicability of each analytical model in the parameter space of the system, giving an important visual aid to decode which secular theory should be adopted for any given planetary system in a close binary.  相似文献   

4.
For numerical integration of the geocentric equations of motion of Earth satellites in the general relativity framework one may choose now between rather simple equations involving in their relativistic dynamical part only the Earth-induced terms and very complicated equations taking into account the relativistic third-body action. However, it is possible quite easily to take into account the relativistic indirect third-body perturbations and to neglect much lesser direct third-body perturbations. Such approach is based on the use of the Newtonian third-body perturbations in geocentric variables with expressing them in the relativistic manner in terms of the barycentric arguments. Together with it, to extend the known results for the spheroid model of the Earth, the Earth-induced terms are treated in great detail by including the non-spin part of the Earth vector-potential and the Earth triaxial non-sphericity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth’s satellites. We describe parameters of the motion model used for the artificial Earth’s satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.  相似文献   

6.
The limitations on determining the masses of the outer planets from their mutual perturbations are investigated based on the magnitudes of the periodic perturbations given in general theories and the accuracy of the observational data.  相似文献   

7.
The four-planet problem is solved by constructing an averaged semi-analytical theory of secondorder motion by planetary masses. A discussion is given of the results obtained by numerical integration of the averaged equations of motion for the Sun–Jupiter–Saturn–Uranus–Neptune system over a time interval of 10 Gyr. The integration is based on high-order Runge–Kutta and Everhart methods. The motion of the planets is almost periodic in nature. The eccentricities and inclinations of the planetary orbits remain small. Short-period perturbations remain small over the entire interval of integration. Conclusions are drawn about the resonant properties of the motion. Estimates are given for the accuracy of the numerical integration.  相似文献   

8.
A new analytical solution of the system of differential equations describing secular perturbations and long-period solar perturbations of mean orbits of outer satellites of giant planets was obtained. As distinct from other solutions, the solution constructed using von Zeipel’s method approximately takes into account, in the secular part of the perturbing function, the totality of fourth order with respect to the small parameter m of the ratio of the mean motions of the primary planet and the satellite. This enables us to describe more accurately the evolution of satellite orbits with large apocentric distances, which in the course of evolution may exceed the halved radius of the Hill sphere of the planet with respect to the Sun. Among these are the orbits of the two outermost Neptunian satellites N10 (Psamathe) and N13 (Neso). For these satellites, the parameter m amounts to 0.152 and 0.165, respectively. Different from a purely analytical solution, the proposed solution requires preliminary calculations for each satellite. More precisely, in doing so, we need to construct some simple functions to approximate more complex ones. This is why we use the phrase “constructive analytical.” To illustrate the solution, we compare it with the results of the numerical integration of the strict motion equations of the satellites N10 and N13 over time intervals 5–15 thousand years.  相似文献   

9.
The level of precision of modern numerical ephemeris of the Solar System necessitates taking into account the gravitational influence of the largest asteroids on the terrestrial planets. This can be done in a straightforward manner when assuming that the mass of the asteroid is well known. Nevertheless, this is rarely the case, even for the largest asteroids. In this paper, we use recent determinations of the masses of Ceres, Pallas, and Vesta to both qualitatively and quantitatively determine the action of these asteroids on the orbital parameters of the Earth and Mars. This is done by the numerical integration by comparing the orbital motions of the perturbed planet when adding or not the perturbing asteroid to the classical 9 bodies problem (the Sun + the eight planets). Some preliminary results are discussed. Published in Russian in Astronomicheskii Vestnik, 2009, Vol. 43, No. 1, pp. 83–86. The text was submitted by the autors in English.  相似文献   

10.
The dynamics of near-Earth asteroids near mean motion resonances with the Earth or other planets is considered. The probability domains of the motion of some near-Earth asteroids close to low-order resonances are presented. The investigations have been carried out by means of a numerical integration of differential equations, taking into account the perturbations from the major planets and the Moon. For each investigated object an ensemble of 100 test particles with orbital elements nearby those of the nominal orbit has been constructed and its evolution has been retraced over the time interval (–3000, +3000 years). The initial set of orbits has been generated on the basis of probable variations of the initial orbital elements obtained from the least square analysis of observations.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
Today there are more than 340 extra-solar planets in about 270 extra-solar systems confirmed. Besides the observed planets there exists also the possibility of a Trojan planet moving in the same orbit as the Jupiter-like planet. In our investigation we take also into account the habitability of a Trojan planet and whether such a terrestrial planet stays in the habitable zone. Its stability was investigated for multi-planetary systems, where one of the detected giant planets moves partly or completely in the habitable zone. By using numerical computations, we studied the orbital behaviour up to 107 years and determined the size of the stable regions around the Lagrangian equilibrium points for different dynamical models for fictitious Trojans. We also examined the interaction of the Trojan planets with a second or third giant planet, by varying its semimajor axis and eccentricity. We have found two systems (HD 155358 and HD 69830) that can host habitable Trojan planets. Another aim of this work was to determine the size of the stable region around the Lagrangian equilibrium points in the restricted three body problem for small mass ratios μ of the primaries μ ≤ 0.001 (e.g. Neptune mass of the secondary and smaller masses). We established a simple relation for the size depending on μ and the eccentricity.  相似文献   

12.
From 146 B.C. to 1760 A.D., 363 sets of cometary observations for a total 88 different comets were recorded in Chinese Ancient Records of Celestial Phenomena. According to those records, we reduced apparent positions and mean equatorial coordinates (epoch 2000.0) for all more than three times recorded comets. Taking into account the perturbations of all nine planets and using the numerical method of N-body problem, the orbits of correlative comets were calculated. For thirty different comets, new orbits are presented for the first time.  相似文献   

13.
An accurate theory of the rotation of the Moon has been constructed by numerical integration. All direct perturbations on the Moon's rotational motion have been analysed. The requirements of the current observational accuracy are such that some improvements had to be added to the theoretical models. First, the gravitational figure of the Moon has been developed up to the fifth degree harmonics. Second, mutual potential effects between the figure of the Moon and the figure of the Earth have been expanded farther up. The direct action of planets must be taken into account, its effects being very small but not always negligible. The physical librations resulting of planetary effects and Earth-Moon figure-figure interactions are presented in this paper.  相似文献   

14.
The results of improving the orbit accuracy for the asteroid Apophis and the circumstances of its approach to Earth in 2029 are described. Gravitational perturbations from all of the major planets and Pluto, Ceres, Pallas, and Vesta are taken into account in the equations of motion of the asteroid. Relativistic perturbations from the Sun and perturbations due to the oblateness of the Sun and Earth and due to the light pressure are also included in the model. Perturbations from the Earth and Moon are considered separately. The coordinates of the perturbing bodies are calculated using DE405. The phase correction and the gravitational deflection of light are taken into account. The numerical integration of the equations of motion and equations in variations is performed by the 15th-order Everhart method. The error of the numerical integration over the 2005–2029 interval, estimated using forward and backward computations, is not more than 3 × 10?11 AU. Improved coordinates and velocities at epoch JD2454200.5 (April 10, 2007) were obtained applying the weighted leastsquares fit. For the period from March 15, 2004, to August 16, 2006, 989 optical and 7 radar observations were used. The resulting system represents the optical observations with an error of 0.37 (66 conditional equations were rejected). The residuals of the radar observations are an order, or more, smaller than their errors. The system of Apophis’ elements and the estimates of their precision obtained in this study are in perfect agreement with the results published by other authors. The minimum Apophis-Earth distance is about 38 200 km on April 13, 2029. This estimate agrees to within 20 km with those calculated based on other published systems of elements. The effect of some model components on the minimum distance is estimated.  相似文献   

15.
The literal solution of the restricted three body problem obtained by the authors up to the eleventh order with respect to the minor parameter is applied to the investigation of the motion of Phoebe, the ninth satellite of Saturn. As distinct from the existing analytical theories of the motion of the satellite, in the present paper the planetary perturbations are taken into account. A comparison with the modern numerical theory of the motion of Phoebe has shown that the new analytical theory of the satellite motion represents observations with the same degree of accuracy.  相似文献   

16.
For coplanar circular orbits, the mutual perturbations between two bodies can be expressed in term of the argument of Jacobian elliptic functions instead of the difference of the mean longitudes. For a given pair of planets, such a change of time variable improves the convergence of the developments. At the first order of planetary masses an integration of Lagrange's equations for the osculating elements is performed. When compared to classical developments the results are reduced by an important factor. The method is then extended to the mutual perturbations of Jupiter and Saturn, at any order of planetary masses, either with Fourier series with two arguments, or with one argument solely, taking advantage of the close commensurability of the mean motions.  相似文献   

17.
Continuing a work initiated in an earlier publication (Yamada et al. in Phys Rev D 91:124016, 2015), we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein–Infeld–Hoffmann form of equations of motion for N-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e., we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these do not grow with time, but always precess with two frequency modes, namely, the same with the orbital frequency and the slightly different one due to the 1PN effect. The condition of stability, which is identical to that obtained by the previous work (Yamada et al. 2015) and is valid for the general perturbations, is obtained from the lying perturbations.  相似文献   

18.
We present the results of a numerical study on encounter frequencies of fictitious Halley-like comets with the planets in a dynamical model of the solar system, in which we take into account the gravitational forces of the Sun and the planets Venus through Neptune. The change of the orbital elements during a close approach with a planet was carefully monitored with the aid of a thoroughly tested numerical integration method with automatic step size control. We computed the encounter frequencies of the comets' orbits using two different spheres of influence and compared the results. In both cases, it turned out that the encounter frequency of the fictitious Halley-like comets with Jupiter and Saturn is about a factor 10 to 100 higher than for the other planets. Concerning the changes of the semi-major axes and inclinations our results show that an increase and decrease of these elements is equally probable after an encounter.  相似文献   

19.
The analytical planetary solution VSOP2000 determines the planetary perturbations with the help of an iterative method from a solution developed till the third order of the disturbing masses. This solution is from 10 to 100 times more precise than the previous analytical solutions VSOP82 and VSOP87, at the level of some 0.1mas for Mercury, Venus and the Earth and some mas for the other planets over the timespan 1900–2000.With this solution, the relation between the Barycentric Coordinate Time (TCB) and the Geocentric Coordinate Time (TCG) is computed with an accuracy better than 0.1 nanosecond over the interval 1965–2015. We also determined the contribution to the Eulerian angles of the geodetic precession-nutation.  相似文献   

20.
Most investigations of the stability of the solar system have been concerned with the question as to whether the very long term effect of the gravitational attractions of the planets on each other will be to alter the nearly coplanar, nearly circular nature of the orbits in which they move. Analytical investigations in the traditions of Laplace, Lagrange, Poisson and Poincaré strongly indicate stability, though rely on asymptotic expansions with difficult analytical properties. The question is related to the existence of invariant tori, which have been proved to exist in certain motions. Numerical integration experiments have thrown considerable light on possible types of motions, especially in fictitious solar systems in which the planetary masses have been increased to enhance the perturbations, and in testing how critical are stability boundary estimates given by Hill surface type methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号