首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshwater inflow is a driver of the functioning of estuaries, and average salinity is usually measured to identify the effects of inflow in salinity-zone habitats. However, salinity variability could act as a disturbance by producing unstable habitats, leading to the question: is salinity variance an indicator of benthic disturbance, and therefore a driver of community stability? The macrofauna communities of five estuaries that lie in a climatic gradient on the Texas coastline were analyzed using a 26-year data set. Comparisons within and between estuaries with different inflow regimes were used as a natural experiment to simulate press disturbance events (i.e., climatic inflow) and pulse disturbance (i.e., floods) in maintaining community stability. Salinity average and variance was compared with benthic community diversity, evenness, and species richness. Salinity variance was more correlated to benthic diversity for each estuarine system (r?=??0.6610; p?=?0.0015) than average salinity (r?=?0.3818; p?=?0.0967). As salinity variance decreased (i.e., stability increased), diversity levels of benthic communities increased, and areas with mgore freshwater inflow displayed lower levels of benthic diversity. These findings advance a component of the general theory of diversity maintenance that persistent stressors, such as salinity variability, can influence diversity.  相似文献   

2.
During the transition of juveniles from fresh water to estuarine and coastal environments, the survival of Pacific salmon (Oncorhynchus spp.) can be strongly size selective and cohort abundance is partly determined at this stage. Because quantity and quality of food influence juvenile salmon growth, high rates of prey and energy acquisition during estuarine residence are important for survival. Human activities may have affected the foraging performance of juvenile salmon in estuaries by reducing the area of wetlands and by altering the abundance of salmon. To improve our understanding of the effects of wetland loss and salmon density on juvenile salmon foraging performance and diet composition in estuaries, we assembled Chinook salmon (Oncorhynchus tshawytscha) diet and density data from nine US Pacific Northwest estuaries across a gradient of wetland loss. We evaluated the influence of wetland loss and density on juvenile Chinook salmon instantaneous ration and energy ration, two measures of foraging performance, and whether the effect of density varied among estuaries with different levels of wetland loss. We also assessed the influence of wetland loss and other explanatory variables on salmon diet composition. There was no evidence of a direct effect of wetland loss on juvenile salmon foraging performance, but wetland loss appeared to mediate the effect of density on salmon foraging performance and alter salmon diet composition. Specifically, density had no effect on foraging performance in the estuaries with less than 50 % wetland loss but had a negative effect on foraging performance in the estuaries with greater than 50 % wetland loss. These results suggest that habitat loss may interact with density to constrain the foraging performance of juvenile Chinook salmon, and ultimately their growth, during a life history stage when survival can be positively correlated with growth and size.  相似文献   

3.
West Coast estuaries are geologically young and composed of a variety of geomorphological types. These estuaries range from large fjords to shallow lagoons; from large to low freshwater flows. Natural hazards include E1 Niños, strong Pacific storms, and active tectonic activity. West Coast estuaries support a wide range of living resources: five salmon species, harvestable shellfish, waterfowl and marine birds, marine mammals, and a variety of algae and plants. Although populations of many of these living resources have declined (salmonids), others have increased (marine mammals). West Coast estuaries are also centers of commerce and increasingly large shipping traffic. The West Coast human population is rising faster than most other areas of the U.S. and Canada, and is distributed heavily in southern California, the San Francisco Bay area, around Puget Sound, and the Fraser River estuary. While water pollution is a problem in many of the urbanized estuaries, most estuaries do not suffer from poor water quality. Primary estuarine problems include habitat alterations, degradation, and loss; diverted freshwater flows; marine sediment contamination; and exotic species introductions. The growing West Coast economy and population are in part related to the quality of life, which is dependent on the use and enjoyment of abundant coastal natural resources.  相似文献   

4.
Species richness and abundance of epibenthic fishes and decapod crustaceans were quantified with day-time beam trawl tows and throw traps to provide information on nekton assemblages inZostera marina and unvegetated sandy habitats in northern latitudes. Sampling at randomly selected stations with a 1.0-m beam trawl occurred in eelgrass (Zostera marina) and unvegetated sandy substrates of two mid-coastal Maine estuaries: Casco Bay and Weskeag River. Random 1.0-m throw trap samples were collected inZostera and adjacent unvegetated sandy substrates in Casco Bay and Weskeag River as well. Species richness and faunal abundances were positively associated with the occurrence ofZostera within Weskeag River and Casco Bay estuaries using both gear types. A total of 17 species of fishes and 6 species of decapods were collected in the two estuaries using both gears. Populations of most species were dominated by young-of-the-year and juvenile life history stages. Number and densities of fishes were higher inZostera, due primarily to the abundances of eelgrass residents such as threespine,Gasterosteus aculeatus, and fourspine sticklebacks,Apeltes quadracus, grubby,Myoxocephalus aenaeus, and cunner,Tautogolabrus adspersus. Crangon septemspinosa dominated decapod catch per unit effort and density in both estuaries and habitats.  相似文献   

5.
English sole (Pleuronectes vetulus) is one of a few commercially important marine fishes on the Pacific coast of North America that use estuarine areas as nurseries for juvenile stages. Trawl surveys of four United States Pacific Northwest estuaries were conducted to determine spatial patterns of juvenile English sole residence in estuaries during 1998–2000. Additional data from 1983–1988 were also analyzed. Two size classes of juvenile English sole were identified during surveys, with densities of small (Total length [TL] <50 mm) sole ranging from 0 to 11,300 fish ha?1 across all sites, and densities of large (TL 50–150 mm) sole ranging from 0 to 33,000 fish ha?1 across all sites. Principal components analysis of static habitat data collected at each trawl survey site was used to define habitat types within each estuary, and discriminant function analysis was used to test the resulting classification scheme. Both small and large cohort English sole used lower side channel locations at significantly higher densities than other estuarine areas. Small English sole also showed significant relationships with both bottom temperature and depth. These patterns in habitat use were consistent across all estuaries and indicate that English sole used shallow depth areas surrounded by extensive tidal flats, where temperatures were optimal for growth. The analysis also suggested a carrying capacity may exist for large English sole in nursery estuaries.  相似文献   

6.
In this study, we explored the extent to which secondary production in a well-mixed estuary reflects local differences in biotic and physical characteristics of habitats, or larger-scale, estuary-wide characteristics governed by a freshwater-marine gradient. We addressed the following questions: To what extent do organic components of seston within habitats in an estuary reflect distributions of local autotrophs and to what extent do estuarine consumers such as sessile filter-feeders, respond to small-scale, local differences in habitat characteristics in a wellmixed estuary? We contrasted habitat quality and consumer growth at four sites within Padilla Bay estuary, Washington, representing the major autotrophic sources of organic carbon in Pacific Northwest estuaries (i.e., phytoplankton, eelgrass (Zostera marina), epibenthic and macro-algal species, and marsh macrophytes.) The natural abundances of stable carbon isotopes {ie898-1} were used to resolve origins of organic carbon in diets of blue mussels (Mytilus edulis), a representative suspension feeder. To assess consumer responses to habitat, quality, we combined measures of sestonic food quantity and quality and physical parameters with in situ determination of mussel growth. We used measures of food quality {ie898-2} and consumer response (growth of transplanted mussels) to integrate the effects of high variability in estuarine physical and biological characteristics on primary and secondary production. Using ANOVA, we detected significant differences in the concentrations of sestonic food, seston composition as indicated by {ie898-3}, and mussel {ie898-4} values and growth rates among the four representative habitats. That significant differences in {ie898-5} values of mussel tissue corresponded to the significant differences in {ie898-6} values of local autotrophs and seston among habitats suggests that mussels in Padilla Bay rely primarily on local sources of carbon for food. Mussel growth throughout, the estuary was significantly correlated with both sestonic {ie898-7} and salinity. We conclude that differences in local seston composition and mussel growth rates reflect in part the heterogeneous, distribution of benthic primary producer habitats in Padilla Bay, despite its well-mixed nature. In addition, local differences in salinity levels, as opposed to the bay-wide freshwater-marine, gradient, explained a significant proportion of the variance in mussel growth within the bay. Our results counter the prediction that seston quality and consumer production are comparable throughout well-mixed estuaries, and suggest that the paradigm of physically and chemically determined gradients in estuarine secondary production needs to be broadened to include local biotic factors as well.  相似文献   

7.
The use of multiple stable isotopes in the study of trophic relationships in temperate estuaries has usually been limited to euhaline systems, in which phytoplankton, benthic microalgae, andSpartina alterniflora are major sources of organic matter for consumers. Within large estuaries such as Chesapeake Bay, however, many species of consumers are found in the upper mesohaline to oligohaline portions. These lower salinity wetlands have a greater abundance of macrophytes that use C3 photosynthesis to fix carbon, in addition toS. alterniflora, which fixes carbon via the C4 photosynthetic pathway. In a broad survey of the biota and sediments of a brackish tidal creek tributary to Chesapeake Bay, combined δ13C and δ34S measurements disclosed a balanced contribution to secondary production from phytoplankton, C3 macrophytes,Spartina sp., and benthic microalgae. Surface sediment δ13C suggested that the organic matter from C3 plants was derived both from allochthonous sources (terrestrial runoff) and from autochthonous production (marsh macrophytes). Unlike most estuarine systems studied to date, which are dominated by algae (phytoplankton and benthic microalgae) and C4 macrophytes, C3 plants are of greater importance in the diets of consumers in this low-salinity creek system.  相似文献   

8.
A synoptic reconnaissance survey was performed over a five-day period in August 1988 to assess benthic habitat quality throughout Narragansett Bay, Rhode Island, using REMOTS® sediment-profile photography and analysis in combination with measurements of the levels ofClostridium perfringens spores (a fecal indicator) in sediments. Three main areas of degraded benthic habitat quality related to either excessive organic enrichment or physical disturbance were identified based solely on the REMOTS® analysis: the Providence River Reach, Greenwich Bay and its associated coves and harbors, and an area located along the southwest side of Prudence Island. Sediments at many stations in these areas exhibited shallow apparent redox-potential discontinuity (RPD) depths, high apparent oxygen demand, and low-order benthic successional stages. ElevatedClostridium perfringens spore counts in surface sediments were attributed to inputs from wastewater treatment facilities. The highest spore counts occurred at the head of the bay, where wastewater treatment discharges and associated combined sewer overflows are numerous. Using data from the REMOTS® analysis and the sediment inventory ofC. perfringens spores, a distinction was made between organic enrichment of the bottom from sewage, versus nonsewage enrichment or physical disturbance. The combination of techniques employed in this investigation could be used to design more efficient monitoring programs to assess eutrophication effects in estuaries and determine the effectiveness of regulatory or management initiatives to reduce organic overenrichment of benthic habitats.  相似文献   

9.
Monitoring of small-scale distribution patterns of benthic invertebrates has demonstrated distinct trends in faunal abundances with position relative to individual culms of saltmarsh cordgrass,Spartina alterniflora, at Tar Landing Bay Marsh, near Morehead City, North Carolina. Samples containing culms ofSpartina yielded significantly higher abundances (at least three times) than did samples without them. Among common species, onlyNereis succinea did not show this effect. Matrix-arranged and randomly placed sets of samples have confirmed a positive relationship between cross-sectional area of culms in a sample (at the sediment-water interface) and contained numbers of macrofauna, juvenile macrofauna and meiofauna. These patterns occurred despite a decreased volume of sediment in samples containing culms. Heightened abundances of benthic invertebrates associated with structural elements at the sediment-water interface may result from either nonrandom recruitment (either active via recruit selectivity or passive through hydrogeographic effects of culms) or differential post-recruitment mortality (resulting from inhibition of epibenthic predators or from variable habitat quality).  相似文献   

10.
The complexity of habitat structure created by aquatic vegetation is an important factor determining the diversity and composition of soft-sediment coastal communities. The introduction of estuarine organisms, such as oysters or other forms of aquaculture, that compete with existing forms of habitat structure, such as seagrass, may affect the availability of important habitat refugia and foraging resources for mobile estuarine fish and decapods. Fish and invertebrate communities were compared between adjacent patches of native seagrass (Zostera marina), nonnative cultured oyster (Crassostrea gigas), and unvegetated mudflat within a northeastern Pacific estuary. The composition of epibenthic meiofauna and small macrofaunal organisms, including known prey of fish and decapods, was significantly related to habitat type. Densities of these epifauna were significantly higher in structured habitat compared to unstructured mudflat. Benthic invertebrate densities were highest in seagrass. Since oyster aquaculture may provide a structural substitute for seagrass being associated with increased density and altered composition of fish and decapod prey resources relative to mudflat, it was hypothesized that this habitat might also alter habitat preferences of foraging fish and decapods. The species composition of fish and decapods was more strongly related to location within the estuary than to habitat, and fish and decapod species composition responded on a larger landscape scale than invertebrate assemblages. Fish and decapod species richness and the size of ecologically and commercially important species, such as Dungeness crab (Cancer magister), English sole (Parophrys vetulus), or lingcod (Ophiodon elongatus), were not significantly related to habitat type.  相似文献   

11.
The benthic community structure of the southernmost part of Samborombon Bay was studied at 13 stations for 2 yr. A detailed examination of the zoobenthos, using similarity indices and cluster analysis, is presented. The area was characterized by low diversity. The Shannon-Weaver information diversity index H′ showed low values of 0.28–1.60. The brackish part of the area was dominated by two opportunistic polychaetes species,Heteromastus similis andLaeonereis acuta. The only species found in the transitional marine zone was the bivalveMesodesma mactroides. Variability in benthic community has been interpreted in terms of spatial and temporal changes. Depending on the area, abundance appeared to be controlled by pollution and intense predation during the warmer months. The observed gradient in species composition and dominance of these benthic communities are compared with some other North and South Atlantic estuaries.  相似文献   

12.
Diversity within distinct trophic groups is proposed to increase ecosystem functions such as the productivity of this group and the efficiency of resource use. This proposition has mainly been tested with plant communities, consumer assemblages, and multitrophic microbial assemblages. Very few studies tested how this diversity–productivity relationship varies under different environmental regimes such as disturbances. Coastal benthic assemblages are strongly affected by temporal instability of abiotic conditions. Therefore, we manipulated benthic ciliate species richness in three laboratory experiments with three diversity levels each and analyzed biomass production over time in the presence or absence of a single application of a disturbance (ultraviolet-B [UVB] radiation). In two out of three experiments, a clear positive relationship between diversity and productivity was found, and also the remaining experiment showed a small but nonsignificant effect of diversity. Disturbance significantly reduced the total ciliate biomass, but did not alter the relation between species richness and biomass production. Significant overyielding (i.e., higher production at high diversity) was observed, and additive partitioning indicated that this was caused by niche complementarity between ciliate species. Species-specific contribution to the total biomass varied idiosyncratically with species richness, disturbance, and composition of the community. We thus present evidence for a significant effect of consumer diversity on consumer biomass in a coastal ciliate assemblage, which remained consistent at different disturbance regimes.  相似文献   

13.
Salmonid fishes are typically anadromous, that is, they achieve the bulk of their growth in the sea, and migrate into rivers to reproduce. As juveniles, they may arrive in the estuary almost immediately after emergence from a gravel bed in the river, or after a few days, weeks, months, or years in fresh water, according to species and developmental opportunity. Thereafter, the length of estuarine residence depends on the estuary’s size, shape, and productivity; on water flow patterns and velocities; on salinity and temperature; and on the species and size of the salmon. It is supposed that estuaries offer salmonids three primary advantages: productive foraging, relative refuge from predators, and a physically intermediate environment for transition from fresh water to marine physiological control systems. The present paper finds the evidence for the foraging advantage strong, for the predator refuge equivocal, and for the physiological transition function applicable particularly to Pacific species migrant at the fry stage.  相似文献   

14.
Chinook salmon (Oncorhynchus tshawytscha) are ecologically and geographically differentiated into two life history types: “ocean-type,” which enter estuaries as fry or fingerlings in the first year of life and rear there for up to 6 wk before migrating to sea, and “stream-type,” which migrate seaward as smolts after one or more years in fresh water and are only transient residents in the outer portion of estuaries. Following exposure to a long-day priming photoperiod for 2 mo from the time of first feeding, progeny of stream-type chinook salmon undergo a reduction in growth during summer and remain as parr, whereas progeny of ocean-type chinook salmon and hybrids continue to grow during the summer and develop into underyearling smolts. Male purebred and hybrid F1 progeny of ocean-type and stream-type chinook salmon were backcrossed to females of both parental populations to examine the segregation of photoperiod-independent (smolt) and photoperiod-dependent (parr) phenotypes among progeny. Results of the backcrosses of the hybrid F1 males depended on female type. The backcross to ocean-type females produced progeny that were predominantly smolts, whereas progeny from the backcross to stream-type females segregated into approximately equal numbers of smolts and parr. These results are consistent with Mendelian inheritance of a single major gene with two alleles: a dominant allele for the photoperiod-independent phenotype of ocean-type chinook salmon and a recessive allele for the photoperiod-dependent phenotype of stream-type chinook salmon.  相似文献   

15.
Coastal ecosystems are characterized by relatively deep, plankton-based estuaries and much shallower systems where light reaches the bottom. These latter systems, including lagoons, bar-built estuaries, the fringing regions of deeper systems, and other systems of only a few meters deep, are characterized by a variety of benthic primary producers that augment and, in many cases, dominate the production supplied by phytoplankton. These “shallow coastal photic systems” are subject to a wide variety of both natural and anthropogenic drivers and possess numerous natural “filters” that modulate their response to these drivers; in many cases, the responses are much different from those in deeper estuaries. Natural drivers include meteorological forcing, freshwater inflow, episodic events such as storms, wet/dry periods, and background loading of optically active constituents. Anthropogenic drivers include accelerated inputs of nutrients and sediments, chemical contaminants, physical alteration and hydrodynamic manipulation, climate change, the presence of intensive aquaculture, fishery harvests, and introduction of exotic species. The response of these systems is modulated by a number of factors, notably bathymetry, physical flushing, fetch, sediment type, background light attenuation, and the presence of benthic autotrophs, suspension feeding bivalves, and fringing tidal wetlands. Finally, responses to stressors in these systems, particularly anthropogenic nutrient enrichment, consist of blooms of phytoplankton, macroalgae, and epiphytic algae, including harmful algal blooms, subsequent declines in submerged aquatic vegetation and loss of critical habitat, development of hypoxia/anoxia particularly on short time scales (i.e., “diel-cycling”), fish kills, and loss of secondary production. This special issue of Estuaries and Coasts serves to integrate current understanding of the structure and function of shallow coastal photic systems, illustrate the many drivers that cause change in these systems, and synthesize their varied responses.  相似文献   

16.
Use of estuaries and oceans by salmonids varies greatly, from no use in nonanadromous species, to movement toward the sea soon after hatching and emergence in some Pacific salmon. This variation is accompanied by large differences in the ontogeny of salinity tolerance among salmonids. Some species acquire increased salinity tolerance early in development, whereas others develop this characteristic much later, indicating there is a heterochrony (change in timing) in the development of salinity tolerance in salmonids. The basic physiological mechanisms for ion regulation in seawater (such as increased gill chloride cells, gill Na+,K+-ATPase activity, membrane permeability, and drinking rate) are common to all salmonids. What determines the differences in salinity tolerance among the salmonids is not the basic mechanisms for salt secretion but the environmental and ontogenetic control of these mechanisms. In salmonids such as pink and chum salmon that enter seawater soon after emergence, acclimation to seawater may be controlled largely by internal (ontogenetic) information. In smolting salmonids that acquire increased salinity tolerance 1–2 yr after hatching, photoperiod is the dominant environmental cue. In nonsmolting species that migrate 2–3 yr after hatching, salinity itself may be the primary stimulus for salt secretory mechanisms. Physiological changes triggered by developmental and environmental cues are mediated by endocrine factors. Treatments with cortisol, growth hormone, and insulin-like growth factor I have been shown to increase seawater tolerance of salmonids, whereas prolactin is inhibitory. Differences in developmental patterns of endocrine activity (such as secretion, binding proteins, and receptors) are hypothesized to be responsible for the differences in timing (heterochrony) of increased salinity tolerance among and within salmonid species.  相似文献   

17.
Using litter bag experiments in the Fraser River estuary in British Columbia, we tested for differences in the relative decomposition rates between leaves of purple loosestrife (Lythrum salicaria), an introduced exotic and a native sedge (Carex lyngbyei). The difference in the mean decay rate coefficient for the two species was significantly defferent (p<0.01) and the coefficient for purple loosestrife (0.0110 d?1) was nearly four times higher than for Lyngbyei's sedge (0.0028 d?1). This is the first estimate of the decay rate coefficient for purple loosestrife from an estuary. The rapid decay rate of loosestrife leaves suggests that they supply detritus to the ecosystem in autumn whereas the much slower decay rate of sedge implies that it supplies detritus throughout the winter and early spring. Consumer organisms important in juvenile salmon food webs appear to be adapted to take advantage of the detritus provided in these seasons. The findings have implications for habitat management because purple loosestrife has recently invaded estuaries of the northeast Pacific and may be outcompeting native sedges important in detrital-based food webs.  相似文献   

18.
Macroalgal biomass and competitive interactions among primary producers in coastal ecosystems may be controlled by bottom-up processes such as nutrient supply and top-down processes such as grazing, as well as other environmental factors. To determine the relative importance of bottom-up and top-down processes under different nutrient loading conditions, we estimated potential amphipod and isopod grazer impact on a dominant macroalgal species in three estuaries in Waquoit Bay, Cape Cod, Massachusetts, that are subject to different nitrogen loading rates. We calculated growth increases and grazing losses in each estuary based on monthly benthic survey data of macrophyte biomass and herbivore abundance, field grazing rates of amphipods (Microdeutopus gryllotalpa andCymadusa compta) and an isopod (Idotea baltica) on the preferred and most abundant macroalga (Cladophora vagabunda) and laboratory grazing rates for the remaining species, and in situ macroalgal growth rates. As nitrogen loading rates increased, macroalgal biomass increased (3×), eelgrass (Zostera marina) was lost, and herbivore abundance decreased (1/4×). Grazing rates increased with relative size of grazer (I. baltica > C. compta > M. gryllotalpa) and, for two of the three species investigated, were faster on algae from the high-nitrogen estuary in comparison to the low-nitrogen estuary, paralleting the increased macroalgal tissue percent nitrogen with nitrogen load. Macroalgal growth rates increased (2×) with increasing nitrogen loading rate. The comparison between estimated growth increases versus losses ofC. vagabunda biomass to grazing suggested first, that grazers could lower macroalgal biomass in midsummer, but only in estuaries subject to lower nitrogen loads. Second, the impact of grazing decreased as nitrogen loading rate increased as a result of the increased macroalgal growth rates and biomass, plus the diminished abundance of grazers. This study suggests the relative impact of top-down and bottom-up controls on primary producers varies depending on rate of nitrogen loading, and specifically, that the impact of herbivory on macroalgal biomass decreases with increasing nitrogen load to estuaries.  相似文献   

19.
Biostromes and low-relief bioherms, some of which are characterized by exceptionally large, flat specimens of larger benthic foraminifera, are common in Palaeogene and Miocene carbonates, most notably those deposited along the Neotethys Seaway and tropical Pacific islands. By incorporating insights from palaeoceanographic research and the biology of living larger benthic foraminifera, a scenario is proposed that can account for palaeontological and sedimentological features while augmenting previous interpretations. Sexual reproduction by gamete broadcasting is common in foraminiferal taxa, including extant Nummulitidae and Amphisteginidae. Resultant zygotes can develop into tiny, resistant, easily dispersed propagules that recruit in suitable benthic-environmental conditions. The role of algal symbiosis in the biology of larger benthic foraminifera is well-documented. Palaeoceanographically, such taxa proliferated during times of reduced thermal stratification of the oceans. In regions with exceptionally clear, nutrient-depleted waters, ‘twilight-zone’ light penetration was sufficient, at least intermittently, to support some photosynthesis. On outer-shelf or promontory sites at depths of ca 100 to 200 m, the tiny propagules of larger benthic foraminiferal species, incorporating algal symbionts with the lowest light requirements, could have settled and recruited, growing very slowly, nourished by feeding on bacteria and the limited photosynthate produced by their algal symbionts. Under such conditions, thin microspheric individuals of one or two larger benthic foraminiferal taxa could have survived and grown slowly over several years to very large shell diameters, seldom reproducing asexually. Resulting carbonate accumulation rates would have been very slow, such that even rare disturbances by currents, major storms or internal waves could have produced evidence of winnowing and sedimentary structures. The fossil evidence of such habitats should include biostromes or possibly low-relief bioherms of low diversity assemblages characterized by abundant, exceptionally large, flat, microspheric larger benthic foraminifera.  相似文献   

20.
Watershed landscape indicators of estuarine benthic condition   总被引:1,自引:0,他引:1  
Do land use and cover characteristics of watersheds associated with small estuaries exhibit a strong enough signal to make landscape metrics useful for identifying degraded bottom communities? We tested this idea with 58 pairs of small estuaries (<260 km2) and watersheds in the U.S. Mid-Atlantic coastal plain (Delaware Bay to Chesapeake Bay). We considered 34 landscape metrics as potential explanatory variables and seven estuarine parameters as response variables. We developed three logistic regression models: one to calculate the probability of degraded benthic environmental quality (BEQ), as defined by chemical parameters, and two for the probability of degraded estuarine bottom communities, one using a benthic index (BI) and a second using the total number of bottom-dwelling species (TNBS, consisting of benthic macroinvertebrates and fishes). We evaluated the discriminatory power of the models with ROC (receiver operating characteristic) curves of sensitivity and specificity. All three models showed excellent discrimination of high and low values. A model using the sum of all human land uses and percent wetlands correctly classified BEQ in 86% of the cases; low benthic index and low total number of bottom species were each associated with degraded BEQ (p<0.01). The BI model used percent riparian urban, riparian wetlands, and agriculture on steep slopes (76% correct classification) and correctly predicted high-low benthic index of an independent data set 79% of the time (p<0.05). The TNBS model used percent wetlands, riparian wetlands, and riparian agriculture (74% correct classification). Watersheds with higher percentages of urban and agricultural land uses were associated with lower benthic environmental quality, benthic index, and biodiversity, whereas those with higher percentages of wetlands were associated with higher numbers. As human development of watersheds increases, statistical prediction rules developed from landscape metrics could be a cost-effective method to identify potentially threatened estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号