首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoplankton reference communities for Chesapeake Bay were quantified from least-impaired water quality conditions using commonly measured parameters and indicators derived from measured parameters. A binning approach was developed to classify water quality. Least-impaired conditions had relatively high water column transparency and low concentrations of dissolved inorganic nitrogen and orthophosphate. Reference communities in all seasons and salinity zones are characterized by consistently low values of chlorophylla and pheophytin coupled with relative stable proportions of the phytoplankton taxonomic groups and low biomasses of key bloom-forming species. Chlorophyll cell content was lower and less variable and average cell size and seasonal picophytoplankton biomass tended to be greater in the mesohaline and polyhaline reference communities as compared to the impaired communities. Biomass concentrations of the nano-micro phytoplankton size fractions (2–200 μm) in 12 of the 16 season-specific and salinity-specific reference communities were the same or higher than those in impaired habitat conditions, suggesting that nutrient reductions will not decrease the quantity of edible phytoplankton food available to large consumers. High (bloom) and low (bust) biomass events within the impaired phytoplankton communities showed strikingly different chlorophyll cell content and turnover rates. Freshwater flow had little effect on phytoplankton responses to water quality condition in most of the estuary. Improved water column transparency, or clarity, through the reduction of suspended sediments will be particularly important in attaining the reference communities. Significant nitrogen load reductions are also required.  相似文献   

2.
A comparative study of the standing crop of marsh vegetation was made of the Patuxent River and Parker Creek, two tributaries of Chesapeake Bay. The biomass of marsh vegetation in the tidal freshwater and brackish regions of the Patuxent was relatively uniform with regard to salinity, seasonally high concentrations of dissolved nitrogen, and phosphorus and nutrient gradient. Maximum values of biomass occurred in the tidal freshwater and slightly brackish water region of Parker Creek, a system whose nutrient concentrations approximated 20% of those of Patuxent River. Biomass values for the Patuxent River and Parker Creek averaged about 1417 and 895 g m?2 dry weight, respectively. Estimates of total annual marsh production based on the maximum standing crop was 27×103 and 519 metric tons, respectively, for the Patuxent River and Parker Creek.  相似文献   

3.
A Phytoplankton Index of Biotic Integrity (P-IBI) was developed from data collected during 18 yr 91985–2002) of the Chesapeake Bay Water Quality Monitoring Program. Dissolved inorganic nitrogen (DIN), orthophosphate (PO4), and Secchi depth were used to characterize phytoplankton habitat conditions. Low DIN and PO4 concentrations and high Secchi depths characterized least-impaire conditions. Thirty-eight phytoplankton metrics were tested for their ability to discriminate between impaired and least-impaired habitat conditions. Twelve discriminatory metrics were chosen, and different combinations of these twelve metrics were scored and used to create phytoplankton community indexes for spring and summer in the four salinity regimes in Chesapeake Bay. The scoring criteria for each metric were based on the distribution of the metric’s values in least-impaired conditions relative to the distribution in impaired conditions. An independent data set and jackknife validation procedure were used to examine P-IBI performance. The P-IBI correctly classified 70.0–84.4% of the impaired and least-impaired samples, grouped by season and salinity, in the calibration data set. The P-IBI is a management tool to assess phytoplankton community status relative to estuarine nutrient and light conditions.  相似文献   

4.
Particulate carbon, nitrogen, and phosphorus samples from the water column and surficial sediments of the Maryland portion of Chesapeake Bay were thermally partitioned into their organic and inorganic components. During periods of both high and low fluvial input and high and low phytoplanktonic production, particulate organic carbon accounted for a mean of 99.3% of the total particulate carbon and particulate organic nitrogen accounted for a mean of 99.1% of the total particulate nitrogen. The particulate organic phosphorus contribution was variable both seasonally and spatially, accounting for 14–77% of the total pool of particulate phosphorus. The highest concentrations were found in the surface waters during maximum phytoplanktonic production and low fluvial input. The contribution of particulate inorganic phosphorus to the seston and to total particulate phosphorus decreased as distance from the primary fluvial source increased, reflecting a greater relative inclusion of particulate phosphorus in the biologically bound component in the higher salinity zone seaward of the turbidity maximum. Organic carbon and nitrogen constituted over 99% of the surficial sediment carbon and nitrogen, and organic phosphorus was 10–40% of the surficial sediment phosphorus.  相似文献   

5.
The biomass of phytoplankton, microzooplankton, copepods, and gelatinous zooplankton were measured in two tributaries of the Chesapeake Bay during the springs of consecutive dry (below average freshwater flow), wet (above average freshwater flow), and average freshwater flow years. The potential for copepod control of microzooplankton biomass in the dry and wet years was evaluated by comparing the estimated grazing rates of microzooplankton by the dominant copepod species (Acartia spp. andEurytemora affinis) to microzooplankton growth rates and by calculating the percent of daily microzooplanton standing stock removed through copepod grazing. There were significant increases in phytoplankton and copepod biomass, but not for microzooplankton biomass in the wet year as compared to the dry year. The ctenophoreMnemiopsis leidyi was present during the dry year but was absent during the sampling period of the wet and average freshwater flow years. Grazing pressure on microzooplankton was greatest in the wet year, withAcartia spp. andE. affinis ingesting 0.21–2.64 μg of microzooplankton C copepod−1 d−1 and removing up to 60% of the microzooplankton standing stock per day. In the dry year, these copepod species ingested 0.10–0.73 μg of microzooplankton C copepod−1 d−1 with a maximum daily removal of approximately 3% of the microzooplankton standing stock. Potential copepod grazing pressure was significantly less than microzooplankton growth in the dry year, but was equivalent to microzooplankton growth in the wet year, implying strong top-down control of the microzooplankton community in the wet year. These results suggest that increased grazing control of microzooplankton populations by more copepods in the wet year released top-down control of phytoplankton. Reduced microzooplankton grazing, in conjunction with increased nutrient availability, resulted in large increases in phytoplankton biomass in the wet year. Increased freshwater flow has the potential to influence trophic cascades and the partitioning of plankton production in estuarine systems.  相似文献   

6.
Male, ovigerous female and nonovigerous female blue crabs were collected from seven stations in the lower Chesapeake Bay and lower James River, Virginia. The Kepone concentration in muscle, gonad and hepatopancreas was determined by GC analysis. All crabs from the lower Bay contained little Kepone, while many of those from the lower James River were contaminated. Male crabs contained more Kepone in the backfin muscle than females. Female crabs concentrated Kepone into the gonad, and, to a lesser extent, the hepatopancreas whereas the males did not. Ovigerous female crabs with spent ovaries, had less Kepone in the ovary than the corresponding egg masses. Further, ovigerous females, especially those with spent ovaries, had more Kepone in backfin muscle than nonovigerous females. It is concluded that the differences in Kepone partitioning among tissues of male and female crabs may explain the previously reported observation that males contain more Kepone in the backfin muscle than do females.  相似文献   

7.
Salinity is a critical factor in understanding and predicting physical and biogeochemical processes in the coastal ocean where it varies considerably in time and space. In this paper, we introduce a Chesapeake Bay community implementation of the Regional Ocean Modeling System (ChesROMS) and use it to investigate the interannual variability of salinity in Chesapeake Bay. The ChesROMS implementation was evaluated by quantitatively comparing the model solutions with the observed variations in the Bay for a 15-year period (1991 to 2005). Temperature fields were most consistently well predicted, with a correlation of 0.99 and a root mean square error (RMSE) of 1.5°C for the period, with modeled salinity following closely with a correlation of 0.94 and RMSE of 2.5. Variability of salinity anomalies from climatology based on modeled salinity was examined using empirical orthogonal function analysis, which indicates the salinity distribution in the Bay is principally driven by river forcing. Wind forcing and tidal mixing were also important factors in determining the salinity stratification in the water column, especially during low flow conditions. The fairly strong correlation between river discharge anomaly in this region and the Pacific Decadal Oscillation suggests that the long-term salinity variability in the Bay is affected by large-scale climate patterns. The detailed analyses of the role and importance of different forcing, including river runoff, atmospheric fluxes, and open ocean boundary conditions, are discussed in the context of the observed and modeled interannual variability.  相似文献   

8.
We studied nutrient sources to the Sacramento River and Suisun Bay (northern San Francisco Bay) and the influence which these sources have on the distributions of dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) in the river and bay. We found that agricultural return flow drains and a municipal wastewater treatment plant were the largest sources of nutrients to the river during low river flow. The Sutter and Colusa agricultural drains contributed about 70% of the transport of DIN and DRP by the river above Sacramento (about 20% of the total transport by the river) between August 8 and September 26, 1985. Further downstream, the Sacramento Regional Wastewater Treatment Plant discharged DIN and DRP at rates that were roughly 70% of total DIN and DRP transport by the river at that time. Concentrations at Rio Vista on the tidal river below the Sacramento plant and at the head of the estuary were related to the reciprocals of the river flows, indicating the importance of dilution of the Sacramento waste by river flows. During very dry years, elevated DIN and DRP concentrations were observed in Suisun Bay. We used a steady-state, one-dimensional, single-compartment box model of the bay, incorporating terms for advection, exchange, and waste input, to calculate a residual rate for all processes not included in the model. We found that the residual for DIN was related to concentrations of chlorophylla (Chla). The residual for DRP was also related to Chla at high concentrations of Chla, but showed significant losses of DRP at low Chla concentrations. These losses were typically equivalent to about 80% of the wastewater input rate.  相似文献   

9.
《Applied Geochemistry》2000,15(7):901-915
Stream water samples were collected in the two main free-flowing branches of the Anacostia River watershed above the head of tide over a one year time period. Both the Northeast and Northwest Branches drain large suburban and urban land areas that flow into the more urbanized tidal portion of the Anacostia River within Washington, DC. Large volume (40–75 l) water samples were filtered, and the suspended particulate matter and filtrate were analyzed for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) at sub-nanogram per liter concentrations using ultra-trace analytical methods. Higher amounts of PCBs, PAH, and OCPs in the tidal Anacostia River occurred primarily in the particulate phase during high flow events. Polycyclic aromatic hydrocarbons in the particulate phase within fluvial transport consisted primarily of pyrogenic homologues characteristic of weathered or combusted petroleum products. Fluxes were exceptionally high for PAHs which showed annual fluxes to the tidal Anacostia River comparable to those determined for the much larger mainstem Potomac River. Aromatic hydrocarbons in runoff from urban regions may serve as an important source of PAH fluxes to the tidal waters of Chesapeake Bay.  相似文献   

10.
The spring freshet increases density stratification in Chesapeake Bay and minimizes oxygen transfer from the surface to the deep layer so that waters below 10 m depth experiece oxygen depletion which may lead to anoxia during June to September. Respiration in the water of the deep layer is the major factor contributing to oxygen depletion. Benthic respiration seems secondary. Organic matter from the previous year which has settled into the deep layer during winter provides most of the oxygen demand but some new production in the surface layer may sink and thus supplement the organic matter accumulated in the deep layer.  相似文献   

11.
The causes and consequences of oxygen depletion in Chesapeake Bay have been the focus of research, assessment, and policy action over the past several decades. An ongoing scientific re-evaluation of what nutrient load reductions are necessary to meet the water quality goals is needed. While models can provide insights and advice for public policy on load reduction goals, they are caricatures of nature, and it is wise to use independent modeling approaches. In this paper, we describe our simple, biophysically based model that offers a middle ground between statistical models and complex dynamic models. Our model suggests that the target total nitrogen load reduction of 35% will reduce hypoxic volumes by 36–68%, which, on average (53% or 3.4 km3) is lower than values reported for 1950–1970 (4.2 km3), and roughly half of the values reported for 1980–1990 (7.2 km3). By pursuing a simple model construct, we were able to quantify uncertainty to a greater extent than is possible with the more complex numerical models. Yet, by retaining some mechanistic detail we could validate the model against state variables and process rates, an advantage over simple regressions.  相似文献   

12.
It has been observed that storms in early fall can result in top-to-bottom mixing of Chesapeake Bay. A three-dimensional, time-dependent circulation model is used to examine this destratification process for September 1983, when extensive current and hydrographic data were available. The model bay is forced at the surface by observed hourly winds, at the ocean boundary by observed hourly surface and bottom salinities and sea level fluctuations, and at the head by observed daily discharges for a 28-d period. A second-moment, turbulence-closure submodel, with no adjustments from previous applications to its requisite coefficients, is used to calculate the vertical turbulence mixing coefficients. Comparisons with data inside the model domain indicate relative errors of 7% to 14% for sea level, 7% to 35% for current, and 11% to 21% for salinity. The tidal portion of the spectrum is modeled better than the subtidal portion. The model is used to examine both the mechanisms of wind mixing and the temporal and spatial distribution of vertical mixing within the estuary. Wind-driven internal shear is shown to be a more effective mechanism of inducing destratification than turbulence generated at the surface. The model is also used to show that the vertical temperature inversion which occurs in the fall does not affect the timing of the destratification as much as its completeness. The distribution of mid-depth vertical mixing shows highly variable values in the mid-bay region, where wind-induced mixing is dominant. This suggests that the source of oxygen to mid-bay bottom waters is similarly variable. Vertical turbulence mixing coefficients of 10?2 cm2 s?1 (background) to 103 cm2 s?1 were needed to simulate the September period, indicating the need for time-variable mixing in models of dissolved and suspended estuarine constituents.  相似文献   

13.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

14.
Present day anthropogenic fluxes of some heavy metals to central Chesapeake Bay appear to be intermediate to those of the southern California coastal region and those of Narragansett Bay. The natural fluxes, however, are in general higher. On the bases of Pb-210 and Pu-239 + 240 geochronologies and of the time changes in interstitial water compositions, there is a mixing of the upper 30 or so centimeters of the sediments in the mid-Chesapeake Bay area through bioturbation by burrowing mollusks and polychaetes. Coal, coke and charcoal levels reach one percent or more by dry weight in the deposits, primarily as a consequence of coal mining operations.  相似文献   

15.
Fish biomass size spectra in Chesapeake Bay   总被引:1,自引:0,他引:1  
Biomass size spectra of pelagic fish were modeled to describe community structure, estimate potential fish production, and delineate trophic relationships in Chesapeake Bay. Spectra were constructed from midwater trawl collections each year in April, June–August, and October 1995–2000. The size spectra were bimodal: the first spectral dome corresponded to small zooplanktivorous fish, primarily bay anchovyAnchoa mitchilli; the second dome consisted of larger fish from several feeding guilds that are supported by multiple prey-predator linkages. Annual production estimates of pelagic fish, derived from a mean production to biomass ratio, varied nearly three-fold, ranging from 162 × 109 kcal (125 × 103 tons) in 1996 to 457 × 109 kcal (352 × 103 tons) in 2000. Seasonally, the biomass level and mean individual sizes of fish in the first dome increased from April to October, while the biomass level of the second dome was relatively stable. Regionally, biomass levels in the second dome were higher than biomasses in the first dome for the upper and lower Bay, but were minimal in the middle Bay where seasonal and episodic hypoxia occurs. To test a benthic-pelagic coupling hypothesis that could explain the higher biomass in the second domes for the lower and upper Bay, a cyclic size-spectrum model was fit that included only species in the zooplanktivorous-piscivorous fish guilds. The mean, normalized slope equaled ?1, indicating that zooplanktivorous fish may support piscivore production, but that a benthic-pelagic linkage is required to fully support fish production in the second dome. Interannual variability in slopes and intercepts of modeled size spectra was related to salinity, recruitment level of bay anchovy, and the primary axis of a correspondence analysis (salinity effect) on fish community structure. The spectral slope and intercept of normalized spectra were lowest in 1996, a near-record wet year. Results suggest that fish size spectra can be developed as useful indicators of ecosystem state and response to perturbations, especially if prey-predator relationships are explicitly represented.  相似文献   

16.
A previously observed shift in the relationship between Chesapeake Bay hypoxia and nitrogen loading has pressing implications on the efficacy of nutrient management. Detailed temporal analyses of long-term hypoxia, nitrogen loads, and stratification were conducted to reveal different within-summer trends and understand more clearly the relative role of physical conditions. Evaluation of a 60-year record of hypoxic volumes demonstrated significant increases in early summer hypoxia, but a slight decrease in late summer hypoxia. The early summer hypoxia trend is related to an increase in Bay stratification strength during June from 1985 to 2009, while the late summer hypoxia trend matches the recently decreasing nitrogen loads. Additional results show how the duration of summertime hypoxia is significantly related to nitrogen loading, and how large-scale climatic forces may be responsible for the early summer increases. Thus, despite intra-summer differences in primary controls on hypoxia, continuing nutrient reduction remains critically important for achieving improvements in Bay water quality.  相似文献   

17.
Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate?+?nitrate—NO2?+?NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2?+?NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (K D (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2?+?NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2?+?NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource.  相似文献   

18.
Wind Modulation of Dissolved Oxygen in Chesapeake Bay   总被引:1,自引:0,他引:1  
A numerical circulation model with a simplified dissolved oxygen module is used to examine the importance of wind-driven ventilation of hypoxic waters in Chesapeake Bay. The model demonstrates that the interaction between wind-driven lateral circulation and enhanced vertical mixing over shoal regions is the dominant mechanism for providing oxygen to hypoxic sub-pycnocline waters. The effectiveness of this mechanism is strongly influenced by the direction of the wind forcing. Winds from the south are most effective at supplying oxygen to hypoxic regions, and winds from the west are shown to be least effective. Simple numerical simulations demonstrate that the volume of hypoxia in the bay is nearly 2.5 times bigger when the mean wind is from the southwest as compared to the southeast. These results provide support for a recent analysis that suggests much of the long-term variability of hypoxia in Chesapeake Bay can be explained by variations in the summertime wind direction.  相似文献   

19.
Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay   总被引:1,自引:0,他引:1  
The scales on which phytoplankton biomass vary in response to variable nutrient inputs depend on the nutrient status of the plankton community and on the capacity of consumers to respond to increases in phytoplankton productivity. Overenrichment and associated declines in water quality occur when phytoplankton growth rate becomes nutrient-saturated, the production and consumption of phytoplankton biomass become uncoupled in time and space, and phytoplankton biomass becomes high and varies on scales longer than phytoplankton generation times. In Chesapeake Bay, phytoplankton growth rates appear to be limited by dissolved inorganic phosphorus (DIP) during spring when biomass reaches its annual maximum and by dissolved inorganic nitrogen (DIN) during summer when phytoplankton growth rates are highest. However, despite high inputs of DIN and dissolved silicate (DSi) relative to DIP (molar ratios of N∶P and Si∶P>100), seasonal accumulations of phytoplankton biomass within the salt-intruded-reach of the bay appear to be limited by riverine DIN supply while the magnitude of the spring diatom bloom is governed by DSi supply. Seasonal imbalances between biomass production and consumption lead to massive accumulations of phytoplankton biomass (often>1,000 mg Chl-a m?2) during spring, to spring-summer oxygen depletion (summer bottom water <20% saturation), and to exceptionally high levels of annual phytoplankton production (>400 g m?2 yr?1). Nitrogen-dependent seasonal accumulations of phytoplankton biomass and annual production occur as a consequence of differences in the rates and pathways of nitrogen and phosphorus cycling within the bay and underscore the importance of controlling nitrogen inputs to the mesohaline and lower reaches of the bay.  相似文献   

20.
This paper presents combined conductivity-temperature-depth (CTD), thermistor chain, current meter, and acoustic backscatter observations of a tidal front observed in the Chesapeake Bay. The data were obtained from a moored platform as the front migrated past the platform. The thermistor chain and CTD data show an interface that slopes steeply down from the surface to an asymptotic depth of 6 m, marking the bottom of the light-water pool. The thermistor chain data show much higher activity levels within the light-water pool as compared to the dense-water pool. Current meter data taken at 3 m show a pronounced shear in the currents upon crossing the frontal boundary. The acoustic backscatter from a layer of copepods positioned on the interface shows episodic occurrences of overturning at the interface. This observation is borne out by the concurrent thermistor chain data, which also show the overturning events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号