首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many subtidal predators undertake regular tidal migrations into intertidal areas in order to access abundant prey. One of the most productive habitats in soft bottom intertidal systems is formed by beds of epibenthic bivalves such as blue mussels (Mytilus edulis) and Pacific oysters (Crassostrea gigas). In the Dutch Wadden Sea, these bivalves might face substantial predation pressure by the shore crab (Carcinus maenas), which increased considerably in numbers during the last 20 years. However, the quantification of this species on bivalve beds is challenging, since most methods common for quantifying animal abundance in marine habitats cannot be used. This study investigated the potential of two methods to quantify the abundance of C. maenas on 14 epibenthic bivalve beds across the Dutch Wadden Sea. The use of the number of crabs migrating from subtidal towards intertidal areas as a proxy of abundance on bivalve beds yielded unreliable results. In contrast, crabs caught with traps on the beds were correlated with the abundance assessed on the surrounding bare flats by beam trawl and therefore provided usable results. The estimates, however, were only reliable for crabs exceeding 35 mm in carapace width (CW). The application of these estimates indicated that crab abundances on bivalve beds were influenced by the biogenic structure. Beds dominated by oysters attracted many large crabs (> 50-mm CW), whereas abundances of medium-sized crabs (35–50-mm CW) showed no relationship to the oyster occurrence. The combination of traps and trawls is capable of quantifying crab abundance on bivalve beds, which offers the possibility to study biotic processes such as predator-prey interactions in these complex structures in more detail.  相似文献   

2.
In this study, we explored the extent to which secondary production in a well-mixed estuary reflects local differences in biotic and physical characteristics of habitats, or larger-scale, estuary-wide characteristics governed by a freshwater-marine gradient. We addressed the following questions: To what extent do organic components of seston within habitats in an estuary reflect distributions of local autotrophs and to what extent do estuarine consumers such as sessile filter-feeders, respond to small-scale, local differences in habitat characteristics in a wellmixed estuary? We contrasted habitat quality and consumer growth at four sites within Padilla Bay estuary, Washington, representing the major autotrophic sources of organic carbon in Pacific Northwest estuaries (i.e., phytoplankton, eelgrass (Zostera marina), epibenthic and macro-algal species, and marsh macrophytes.) The natural abundances of stable carbon isotopes {ie898-1} were used to resolve origins of organic carbon in diets of blue mussels (Mytilus edulis), a representative suspension feeder. To assess consumer responses to habitat, quality, we combined measures of sestonic food quantity and quality and physical parameters with in situ determination of mussel growth. We used measures of food quality {ie898-2} and consumer response (growth of transplanted mussels) to integrate the effects of high variability in estuarine physical and biological characteristics on primary and secondary production. Using ANOVA, we detected significant differences in the concentrations of sestonic food, seston composition as indicated by {ie898-3}, and mussel {ie898-4} values and growth rates among the four representative habitats. That significant differences in {ie898-5} values of mussel tissue corresponded to the significant differences in {ie898-6} values of local autotrophs and seston among habitats suggests that mussels in Padilla Bay rely primarily on local sources of carbon for food. Mussel growth throughout, the estuary was significantly correlated with both sestonic {ie898-7} and salinity. We conclude that differences in local seston composition and mussel growth rates reflect in part the heterogeneous, distribution of benthic primary producer habitats in Padilla Bay, despite its well-mixed nature. In addition, local differences in salinity levels, as opposed to the bay-wide freshwater-marine, gradient, explained a significant proportion of the variance in mussel growth within the bay. Our results counter the prediction that seston quality and consumer production are comparable throughout well-mixed estuaries, and suggest that the paradigm of physically and chemically determined gradients in estuarine secondary production needs to be broadened to include local biotic factors as well.  相似文献   

3.
The uptake and release of materials by intertidal mussel beds were directly measured in two cultivated Dutch estuaries. Generally, chlorophylla, seston, and particulate organic carbon were taken up, while ammonium, orthophosphate, and silicate were released. The observed rates were higher than values computed from organismic observations and similar to those observed for intertidal oyster reefs in South Carolina. Specific estuarine material turnover rates varied from 1 week to 38 weeks when calculated with mussel bed fluxes. The fastest turnover rates were for chlorophylla and ammonium. These results support the idea that dense assemblages of bivalves are major components in the recycling of nutrients in estuaries.  相似文献   

4.
Zebra mussels (Dreissena polymorpha) graze on phytoplankton, and decreased phytoplankton concentrations have been associated with zebra mussels in lakes. It is not known, however, how the zebra mussel will affect phytoplankton in turbid systems such as rivers and the freshwater portions of estuaries. To determine whether zebra mussels can effectively remove phytoplankton in these turbid systems, and to determine what components of the suspended material are removed and at what rates, we conducted a series of grazing and size-selection experiments using ambient Hudson River water and its natural phytoplankton community. Zebra mussels removed both phytoplankton and total suspended weight (TSW) at comparable rates (~115 ml mussel?1 h?1). Variation in filtration rates were not correlated with TSW or chlorophylla (chla) concentration, and did not appear to depend on relative proportions of either component. Mussels removed particles with approximately equal efficiency in all particle size classes measured (0.4 μm to >40 μm). Zebra mussels appear to remove Hudson River phytoplankton effectively in the presence of suspended sediment and do so at rapid rates. Based on our measurements and unpublished estimates of the size of the population, zebra mussels filter a volume equivalent to the entire volume of the tidal freshwater portion of the Hudson River about every 2 d.  相似文献   

5.
The impact of suspended mussel culture (Mytilus edulis, M. trossulus) on the benthos of a small Nova Scotia cove (7 m depth) was assessed using meehods involving both benthic metabolism and community structure. Due to deposition of mussel feces and pseudofeces, sedimentation rate was higher under the mussel culture lines than at an adjacent reference site of similar sediment texture. Porewater profiles of sediment sulfate and sulfide indicated greater anaerobic metabolism at the mussel site than at the reference site, but sulfide was absent from the upper centimeters of sediments under the mussels. Seasonal measures of sediment oxygen demand showed little change between sites, but maximum rates of ammonium release at the mussel site were twice the highest rates measured at the reference site. Abundance of benthic macrofauna was higher at the reference site, but biomass was generally lower. Biomass at the mussel site was dominated by molluscs (Ilyanassa spp. andNucula tenuisulcata), that were attracted to mussels fallen from the culture and/or enriched organic matter due to biodeposition. Species diversity was lower at the reference site due to the dominance of the polychaeteNephtys neotena. Abundance-biomass comparisons (ABC method) of faunal analysis did not indicate any impact of biodeposition at this site: however, disturbance did not result in a typical assemblage of small opportunistic species anticipated with this method. Cluster analysis of macrofauna usually provided a clear separation between the sites. Since the contruction of a causeway (1968), foraminifera species composition showed a temporal response to temperature changes in the cove by shifting toward calcareous species, but assemblages downcore showed little or no relationship to aquaculture impacts. Although there is a shift toward anaerobic metabolism at the mussel lines, the impact of mussels falling to the sediments was more noticeable in benthic community structure than was any impact due to organic sedimentation or hypoxia. In general the impact of aquaculture on the benthos appeared to be minor. Furtyher assesment of these consequences may mandate both taxonomic and energetic approaches to impact assessment.  相似文献   

6.
The ecological impact from the establishment of dense intertidal beds of introduced Asian date mussels (Musculista senhousia) and cordgrass (Spartina alterniflora) in five northern New Zealand estuaries and harbours was documented in 2005–2006, using the fossil record of the shells of foraminifera, ostracods and molluscs in paired sediment cores and surface samples taken from inside and outside selected beds. The most significant changes in faunal composition in all, but the most saline sites, generally occurred in both cores in each pair and could be attributed to the impact of decreased salinity and pH as a result of increased freshwater runoff following clearance of the surrounding forest in the 19th century and urban development in the late 20th century. Establishment of Asian date mussel beds had a greatest impact on the composition of ostracod faunas. At near oceanic salinity, the mussels had completely replaced the native infaunal bivalve fauna, but had little impact on the foraminifera. At more brackish sites, the presence of mussel shells appears to have buffered the calcareous foraminifera from the effects of lowered pH, which had dissolved this component outside the beds. Establishment of cordgrass patches had no impact on ostracod faunas, and little on molluscs except at Kaipara, where introduced Pacific oysters had colonised the cordgrass. Cordgrass had the most impact on the foraminifera. At brackish sites, cordgrass patches had been colonised by agglutinated foraminiferal species different from those that dominate outside. In cordgrass at more saline sites, agglutinated foraminifera have invaded and bloomed at the expense of calcareous Ammonia spp., which dominated outside the patches.  相似文献   

7.
Phytoplankton plays a dominant role in shelf biogeochemistry by producing the major part of organic matter. Part of the organic matter will reach the sediment where diagenetic processes like denitrification, apatite formation or burial will remove nutrients from the biogeochemical cycle. In this article current knowledge on the decadal plankton variability in the North Sea is summarized and possible implications of these changes for the biogeochemistry of the North Sea are discussed. Most of the observed interdecadal dynamics seem to be linked to large-scale oceanographic and atmospheric processes. Prominent changes in the North Sea ecosystem have taken place around 1979 and 1988. In general, the phytoplankton color (CPRS indicator of phytoplankton biomass) reached minimum values during the end of the 1970s and has increased especially since the mid 1980s. Changes with a similar timing have been identified in many time series from the North Sea through the entire ecosystem and are sometimes referred to as regime shifts. It is suggested that the impact of global change on the local biogeochemistry is largely driven by the phyto- and zooplankton dynamics during spring and early summer. At that time the extent of zooplankton–phytoplankton interaction either allows that a large part of the new production is settling to the sediment, or that a significant part of the new production including the fixed nutrients is kept within the pelagic system. The origin of the extent of the phytoplankton–zooplankton interaction in spring is probably set in the previous autumn and winter. In coastal areas, both large-scale atmospheric and oceanographic changes as well as anthropogenic factors influence the long-term dynamics. Due to eutrophication, local primary production nowadays still is up to five times higher than during pre-industrial conditions, despite a decreasing trend. Recently, introduced species have strengthened the filter feeder component of coastal ecosystems. Especially in shallow coastal seas like the Wadden Sea, this will enhance particle retention, shift organic matter degradation to the benthic compartment and enhance nutrient removal from the biogeochemical cycle by denitrification or apatite formation.  相似文献   

8.
Analyses of long-term field observations (1974–2007) on chlorophyll-a concentrations in the western Wadden Sea showed no long-term trends in the timing of the wax and wane of phytoplankton spring blooms. There is weak evidence, however, that the height of the autumn bloom has decreased since the early 1990s. This fading of the autumn bloom may have had consequences for the carbon transfer to higher trophic levels, currently hampering primary consumer species that mostly rely on food supply during late summer. Current and other findings suggest a shortening of the growing season due to the fading of the autumn bloom in the Wadden Sea and a lengthening of the growing season due to an advancement of the spring bloom in the North Sea. These regionally different changes in seasonality may have contributed to the coinciding decrease in bivalve filtering capacity in the western Wadden Sea and the large-scale offshore shift of juvenile plaice from the Wadden Sea to the adjacent North Sea.  相似文献   

9.
There is mounting speculation that overharvesting of oyster stocks (Crassostrea virginica) in Chesapeake Bay may be a factor contributing to the decline in water quality and shifts in the dominance of species inhabiting the estuary. The trophic consequences of increasing the oyster population may be addressed using a simple quasi-equilibrium, mass action model of the exchanges transpiring in the Chesapeake mesohaline ecosystem. According to output from the model, increasing oyster abundance would decrease phytoplankton productivity as well as stocks of pelagic microbes, ctenophores, medusae, and particulate organic carbon. Recently acquired field data on phytoplankton productivity, bacterioplankton, and labile organic carbon in the vicinity of rafted oyster aquaculture support model predictions. The model also indicates that more oysters should increase benthic primary production, fish stocks, and mesozooplankton densities. Hence, augmenting the oyster community by restoring beds or introducing raft culture represents a potentially significant adjunct to the goal of mitigating eutrophication through curtailment of nutrient inputs. *** DIRECT SUPPORT *** A01BY059 00005  相似文献   

10.
Quantitative suction sampling was used to characterize and compare the species composition, abundance, biomass, and secondary production of macrofauna inhabiting intertidal mud-flat and sand-flat, eelgrass meadow, and salt-marsh-pool habitats in the Nauset Marsh complex, Cape Cod, Massachusetts (USA). Species richness and abundance were often greatest in eelgrass habitat, as was macroinvertebrate biomass and production. Most striking was the five to fifteen times greater rate of annual macrofaunal production in eelgrass habitat than elsewhere, with values ranging from approximately 23–139 g AFDW m2 yr?1. The marsh pool containing widgeon grass (Ruppia maritima) supported surprisingly low numbers of macroinvertebrates, probably due to stressfully low dissolved oxygen levels at night during the summer. Two species of macroinvertebrates, blue mussels (Mytilus edulis) and to a lesser extent bay scallops (Argopecten irradians), used eelgrass as “nursery habitat.” Calculations showed that macroinvertebrate production is proportionally much greater than the amount of primary production attributable to eelgrass in the Nauset Marsh system, and that dramatic changes at all trophic levels could be expected if large changes in seagrass abundance should occur. This work further underscores the extraordinarily large impact that seagrass can have on both the structure and function of estuarine ecosystems. *** DIRECT SUPPORT *** A01BY070 00006  相似文献   

11.
The nitrogen and carbon stable isotope ratios (δ15N and δ13C) of the pygmy mussel,Xenostrobus securis, were determined for three estuaries with varying levels of catchment disturbance in northern New South Wales, Australia. The lower Manning River catchment supported the highest human population densities with 3% residential development and some livestock agriculture (41%); the Wallamba River catchment was mostly livestock agriculture (56%) while the Wallingat River catchment was mostly vegetated (79%). Mussels, estuarine particulate organic matter (POM), and livestock and human-derived waste were collected in two stages during the austral summers of 2001–2002 and 2002–2003 for dual carbon-nitrogen stable isotope analysis. The disturbed Manning and Wallamba River catchment mussels were enriched in15N by an average of 3.2‰ and 1.5‰, respectively, compared to the vegetated Wallingat River mussels. Mussel δ13C values ranged from −24.8‰ to −30.3‰ and showed an estuarine gradient becoming enriched with distance downstream within estuaries, but were unable to distinguish patterns in catchment disturbance between estuaries. The δ15N and δ13C values of POM showed a similar pattern to mussels, indicating a direct link between them within each estuary. A multiple regression model of mussel δ15N using the fractions of land used for livestock agriculture and residential development within 5 km zones from river networks to a distance equivalent to a tidal ellipse from sites explained 67% of the variation in mussel δ15N with 95% of the differences lying within 1.6‰ of observed values. Increasing fractions of land used for livestock agriculture depleted mussel δ15N values estimated by the regression equation, indicating the use of cow manure as a nutrient source with a value of 2.0‰. Increasing fractions of land used for residential development enriched estimated mussel δ15N, indicating the use of human-derived waste with a value of 20.8‰. Pygmy mussels are a useful long-term bio-indicator for the effects of anthropogenic catchment disturbance and nutrient enrichment in estuaries.  相似文献   

12.
The Atlantic ribbed mussel, Geukensia demissa, is found in salt marshes along the North American Atlantic Coast. As a first step to study the possibility of future cultivation and harvest of ribbed mussels for nutrient removal from eutrophic urban environments, the feeding behavior of ribbed mussels in situ was studied from July to October 2011. Two locations approximately 80 km apart were used as study sites: Milford Harbor (Connecticut; 41°12′42.46″N, 73°3′7.75″W) and Hunts Point (Bronx, New York; 40°48′5.99″N, 73°52′17.76″W). Total particulate matter was higher at Hunts Point than at Milford Harbor, but the organic content was higher at Milford than at Hunts Point. The relatively low quantity of organic content in Hunts Point seston resulted in a much higher production of pseudofeces by mussels. Mussel clearance and absorption rates were higher at Milford Harbor than at Hunts Point. Nevertheless, mussels at both sites had the same absorption efficiency, suggesting that mussels are able to adapt to conditions at both locations. Ribbed mussels decreased clearance rate when the seston quantity was high at both sites. At Hunts Point, ribbed mussels increased the gut transit time of ingested particles when the amount of inorganic particulates in the water increased. This study does not quantify nutrient removal capacity of G. demissa; however, the environmental tolerance demonstrated here, and current lack of commercial harvest, suggests that this species may be a good candidate for nutrient bioextraction in highly impacted urban environments.  相似文献   

13.
Southwestern Atlantic estuaries (Southern Brazil to Northern Patagonia, Argentina) are characterized by the presence of an intertidal burrowing crab Chasmagnathus granulata. This crab species is an important bioturbator which lives in large assemblages and excavates semi-permanent burrows that affect sediment characteristics. Our observations showed that distribution of the crabs in the Mar Chiquita coastal lagoon, Argentina (37°45′S, 57°26′W) affected habitat use and feeding success of migratory shorebirds. During the migratory season the two-banded plover (Charadrius falklandicus) foraged more frequently inside crab beds, and yellowlegs (Tringa flavipes and T. melanoleuca) fed more freqeuntly outside crab beds. Focal observations on the feeding behavior of the white-rumped sandpiper (Calidris fuscicollis) and the two-banded plover inside and outside crab beds showed that the plover was a visual searcher and captured more prey inside crab beds, and the white-rumped sandpiper was a tactile feeder. Although consumption rates (prey min?1) did not differ between sites, their efficiency (prey probe?1) inside crab beds was less. These differences were probably related to changes in sediment characteristics and prey behavior, which vary with crab activity. Burrowing crabs alter the suitability of intertidal habitats used by shorebirds in southwestern Atlantic estuaries. We believe that the same process could be occurring with other burrowing curstaceans such as thalassinidean shrimps in other estuaries of the world and could have important implications for management of flats for shorebirds. *** DIRECT SUPPORT *** A01BY090 00007  相似文献   

14.
A scenario for the future development of the Dutch Wadden Sea is derived from an evolutionary model for tidal basins during a rise in sea level. The model is based on the evolution of the Atlantic/Subboreal Holland tidal basin, between 7000 BP and 3500 BP. It emphasizes the balance between the storage capacity created by a sea-level rise and the amount of sediment available.

If the rate of relative sea-level rise exceeds the rate of sediment supply, the innermost (central) portions of the basin will not receive sufficient sediment for an intertidal morphology to be preserved. Eventually, sand will be deposited only in tidal channels and in the flood-tidal delta through which the sediment is supplied, mud deposition will occur in the interchannel areas and salt marshes will disappear.  相似文献   


15.
Spartina alterniflora was first introduced into south San Francisco Bay in the 1970’s. Since that time it has spread to new areas within the south bay and is especially well established at four sites. The spread of this introduced species was evaluated by comparing its vegetative and reproductive characteristics to the native cordgrass, Spartina foliosa. The characters studied were intertidal distribution, phenology, aboveground and belowground biomass, growth rates, seed production, and germination rates. Spartina alterniflora has a wider intertidal distribution than S. foliosa and outproduced the native cordgrass in all aspects that were studied. These results indicate that the introduced species has a much better chance of becoming established in new areas than the native species, and once established, it spreads more rapidly vegetatively than the native species. Spartina alterniflora is likely to continue to spread to new areas in the bay and displace the native plant. In addition, this introduced species may effect sedimentation dynamics, available detritus, benthic algal production, wrack deposition and disturbance, habitat structure for native wetland animals, benthic invertebrate populations, and shorebird and wading bird foraging areas. *** DIRECT SUPPORT *** A01BY058 00013  相似文献   

16.
Coastal ecosystems are exposed to changes in physical-chemical properties, such as those occurring in upwelling and freshwater-influenced areas. In these areas, inorganic carbon can influence seawater properties that may affect organisms and populations inhabiting benthic habitats such as the intertidal mussel Perumytilus purpuratus. Feeding and metabolic responses were measured in adult mussels from two geographic regions (central and southern Chile) and two local habitats (river-influenced and non-river-influenced) and three pCO2 levels (380, 750, and 1200 μatm pCO2 in seawater). The feeding rates of mussels tend to increase at high pCO2 levels in seawater; however this response was variable across regions and local habitats. In contrast, there was no difference in the respiratory rate of mussels between geographic areas, but there was a significant reduction of oxygen consumption at intermediate and high levels of pCO2. The results indicate that river-influenced organisms compensate for reductions in metabolic cost at elevated pCO2 levels by having their energy demands met, in contrast with non-river-influenced organisms. The lack of regional-scale variability in the physiological performance of mussels may indicate physiological homogeneity across populations and thus potential for local adaptation. However, the local-scale influences of river- and non-river-influenced habitats may counterbalance this regional response promoting intra-population variability and phenotypic plasticity in P. purpuratus. The plasticity may be an important mechanism that allows mussels to confront the challenges of projected ocean acidification scenarios.  相似文献   

17.
Filtration rates and oxygen consumption rates were measured in mussels (Mytilus edulis) with and without pea crabs (Pinnotheres maculatus). Noninfested mussels had a significantly higher rate of oxygen consumption per hour (0.578 ml±0.012) than did infested mussels (0.352 ml±0.012). There was no significant effect of pea crab size on mussel respiration. Filtration rates of infested mussels were significantly lower than those of uninfested mussels. Assimilation efficiency was not significantly affected by pea crab infestation. The relationship between body size and oxygen consumption inP. maculatus is given by the following equation: {ie264-1} W0.626, where {ie264-2} is oxygen uptake (ml h?1), and W is dry weight (g). There was no difference between the sexes. It is concluded that the decreased oxygen consumption observed in infested mussels is not due to limitation of oxygen availability, but rather reflects a real metabolic response to the presence of the symbiont and the concomittant deprivation of food to the host. The effect is probably reversible, that is, damage can be compensated for after the symbiont has vacated the mussel, depending upon the period of infestation. Our results indicate that the mussels infested by pea crabs may be at an energetic disadvantage relative to mussels without pea crabs.  相似文献   

18.
A population of the invasive musselMusculista senhousia was monitored bimonthly from May 1999 through April 2000 in the Sacca di Goro, a brackish lagoon of the Po River Delta, Northern Adriatic Sea, in order to give information on the gametogenic cycle, population dynamics, and secondary production of this successful invader. The gonad underwent 4 different stages: spent (December to February), developing (March to May), ripe (June to August), and spawning (September to November). The population was numerically dominated by a single cohort of individuals for most of the year. The mean size of this cohort rapidly increased to 24–25 mm shell length, after which growth slowed and mussels rarely grew larger than 30–32 mm. Summer anoxia may have greatly reduced mussel abundance; annual cohort mortality was 95%. No recruitment was registered on the bed until February 2000, and there was a large pulse of new recruits in April when two cohorts were clearly recognizable. The established bed was the primary site for new recruitment. Secondary production, calculated with two different methods, gave comparable estimates; P:B ratios were 1.5 and 1.7.M. senhousia beds seemed to facilitate the presence of other macrofaunal taxa: abundance of some species (a small gastropod, amphipods, and tube-building polychaetes) were significantly higher within mussel mats at two sites sampled in May 2000 than they were in soft-sediments ∼100 m away.  相似文献   

19.
The initial flooding waters from twenty-four consecutive tides were examined for changes in water properties as the flood-front traversed the intertidal zone. The flood-front water temperature depended on the time of flooding as well as the sun’s insolation. On warm sunny days, the water temperature at the leading edge of the tide successively increased as the water flooded the tidal flat. In contrast, during cloudy days, and early morning and evening samplings, the flood-front water decreased during flooding. Flood-front water temperatures on warm days exceeded 34°C, some 15°C higher than the water observed in the deeper tidal channels. Flood-front salinities increased progressively across the intertidal zone regardless of local weather conditions, and were primarily controlled by mixing of surface waters with interstitial waters during the flooding process. Particulate matter concentrations were dependent on the interaction between small amplitude waves and varying intertidal bottom slope. Extreme variability in the particulate matter concentration across the tidal flat was in part caused by alternate resuspension and settling of fecal pellets composed of silty-clay aggregates which partly form the bottom sediment of the test area. The texture of the suspended particulate matter coarsens near shore, where wave resuspension became more effective on a steeper portion of the intertidal zone. *** DIRECT SUPPORT *** A01BY009 00003  相似文献   

20.
Mussel shells have been used in a number of paleoecological and environmental studies. The interpretation of stable carbon isotopic composition of shell material is still controversial. The carbon for shell carbonate precipitation can either be derived from ambient dissolved inorganic carbon (DIC), with shells recording environmental signals, or from metabolic CO2, with the potential to disguise environmental signals. To gain insight into this question, we investigated four nearly 100-yr long-term records of aragonite shells from an extant freshwater bivalve species, the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Single growth increments of the outer prismatic and the inner nacreous zones were successfully and easily separated with a simple heat treatment for chronological analyses of δ13C in single layers of each zone. Autocorrelation and semivariance statistical methods reveal that mussels show distinct individual signal patterns, which extend up to 25 yr. Signal patterns are reliably reproduced with replicate samples from defined layers within one shell and show similar patterns with a slight offset for inner nacreous and outer prismatic layers for individual animals. Mussels exposed to the same environmental conditions exhibit distinct and contradictory signature patterns, which do not match between individuals. This observation can only be explained by strong metabolic influences on shell precipitation. Environmental changes in pH, temperature, electric conductivity and atmospheric carbon signature had no or little (<5%) influence, whereas body tissue protein and body tissue δ13C signatures negatively correlated with the youngest produced shell δ13C signatures, indicating that respiration causes a preferential loss of light isotopes from body mass and an inverse enrichment in shell aragonite. Hence, the shells of the freshwater pearl mussel yield a long-term record of metabolic activity, whereas the use of δ13C in these shells as recorder for environmental signals is questionable. This may also be true for shells from other species, for which metabolic carbon incorporation has been acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号