where D0 is in µm2/s, X is mole fraction of H2Ot on a single oxygen basis, T is temperature in K, and P is pressure in GPa.H2Ot diffusivities (DH2Ot, in µm2/s) can be calculated from H2Om diffusivity, or directly from the following expression:
At low H2Ot content (up to 2 wt.% if an error of a factor of 2 is allowed), H2Ot diffusivity is approximately proportional to H2Ot content:
where C is H2Ot content in wt.% and C0 is 1 wt.%. The new expressions for H2O diffusion not only reproduce our own data, but also match data in literature from different laboratories and using different methods, indicating good inter-laboratory and multi-method consistency. The new expressions cover a wide range of geological conditions, and can be applied to H2O diffusion in rhyolitic melts in various volcanic and magmatic processes.  相似文献   

5.
H2O diffusion in dacitic and andesitic melts     
Harald Behrens  Youxue Zhang 《Geochimica et cosmochimica acta》2004,68(24):5139-5150
The diffusion of water in dacitic and andesitic melts was investigated at temperatures of 1458 to 1858 K and pressures between 0.5 and 1.5 GPa using the diffusion couple technique. Pairs of nominally dry glasses and hydrous glasses containing between 1.5 and 6.3 wt.% dissolved H2O were heated for 60 to 480 s in a piston cylinder apparatus. Concentration profiles of hydrous species (OH groups and H2O molecules) and total water (CH2Ot = sum of OH and H2O) were measured along the cylindrical axis of the diffusion sample using IR microspectroscopy. Electron microprobe traverses show no significant change in relative proportions of anhydrous components along H2O profiles, indicating that our data can be treated as effective binary interdiffusion between H2O and the rest of the silicate melt. Bulk water diffusivity (DH2Ot) was derived from profiles of total water using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between DH2Ot and CH2Ot. In dacitic melts DH2Ot is proportional to CH2Ot up to 6 wt.%. In andesitic melts the dependence of DH2Ot on CH2Ot is less pronounced. A pressure effect on water diffusivity could not be resolved for either dacitic or andesitic melt in the range 0.5 to 1.5 GPa. Combining our results with previous studies on water diffusion in rhyolite and basalt show that for a given water content DH2Ot increases monotonically with increasing melt depolymerization at temperatures >1500 K. Assuming an Arrhenian behavior in the whole compositional range, the following formulation was derived to estimate DH2Ot (m2/s) at 1 wt.% H2Ot in melts with rhyolitic to andesitic composition as a function of T (K), P (MPa) and S (wt.% SiO2):
  相似文献   

6.
The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts     
Bjorn O. Mysen 《Geochimica et cosmochimica acta》2007,71(7):1820-1834
Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, , calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, , increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.  相似文献   

7.
A model for the viscosity of rhyolite as a function of H2O-content and pressure: A calibration based on centrifuge piston cylinder experiments     
Paola Ardia  Daniele Giordano 《Geochimica et cosmochimica acta》2008,72(24):6103-6123
The Newtonian viscosity of synthetic rhyolitic liquids with 0.15-5.24 wt% dissolved water was determined in the interval between 580 and 1640 °C and pressures of 1 atm and 5-25 kbar. Measurements were performed by combining static and accelerated (up to 1000g) falling sphere experiments on water-bearing samples, with high temperature concentric cylinder experiments on 0.15 wt% H2O melts. These methods allowed viscosity determinations between 102 and 107 Pa s, and cover the complete range of naturally occurring magmatic temperatures, pressures, and H2O-contents for rhyolites.Our viscosity data, combined with those from previous studies, were modeled by an expression based on the empirical Vogel-Fulcher-Tammann equation, which describes viscosities and derivative properties (glass transition temperature Tg, fragility m, and activation volume of viscous flow Va) of silicic liquids as a function of P-T-X(H2O). The fitted expressions do not account for composition-dependent parameters other than X(H2O) and reproduce the entire viscosity database for silicic liquids to within 3.0% average relative error on log η (i.e. std. error of estimate of 0.26 log units).The results yield the expected strong decrease of viscosity with temperature and water content, but show variable pressure dependencies. Viscosity results to be strongly affected by pressure at low pressures; an effect amplified at low temperatures and water contents. Fragility, as a measure for the deviation from Arrhenian behavior, decreases with H2O-content but is insensitive to pressure. Activation volumes are always largely negative (e.g., less than −10 cm3/mol) and increase strongly with H2O-content. Variations in melt structure that may account for the observed property variations are discussed.  相似文献   

8.
Vesiculation of hydrous andesitic melt and transport of alkalies by separated vapor phase     
M. Sakuyama  I. Kushiro 《Contributions to Mineralogy and Petrology》1979,71(1):61-66
Experiments have been carried out on the separation of H2O-rich vapor phase from a hydrous andesite melt at pressures between 5 and 15 kbar at 1,150 ° C. The pressure at which the vapor phase separates from the melt by isothermal decompression depends on the H2O content in the melt; for example, 14 kbar for 12wt.% and 8 kbar for 9wt.% H2O. These values are lower than the solubility of H2O in andesite melt previously estimated. Extensive decompression to near atmospheric pressure resulted in the formation of pumiceous glass.Vapor phase separated from the melt moves upward and transports significant amounts of alkalies (Na2O and K2O), resulting in the depletion of alkalies near the bottom and concentration of alkalies near the top of the container. The maximum concentration observed is 5.0 wt.% for Na2O and 1.7% for K2O, compared to the initial contents 3.3 and 1.3 wt.% respectively. The approximate viscosity of hydrous andesitic melt with 7.5–12 wt.% H2O was roughly estimated to be less than 10 poise. The results of the present experiments imply that when H2O-rich vapor separates from magma in a magma chamber (or in a conduit) and moves upward, the top of the chamber would be enriched in alkalies while the bottom would be depleted.  相似文献   

9.
Concentration dependence of water diffusion in obsidian and dacitic melts at high-pressures     
E. S. Persikov  P. G. Bukhtiyarov  A. N. Nekrasov  G. V. Bondarenko 《Geochemistry International》2014,52(5):365-371
The diffusion of water in natural obsidian and model dacitic melts (Ab90Di8Wo2, mol %) has been studied at water vapor pressure up to 170 MPa, temperatures of 1200°C, H2O contents in melts up to ~6 wt % using a high gas pressure apparatus equipped with a unique internal device. The experiments were carried out by a new low-gradient technique with application of diffusion hydration of a melt from fluid phase. The water solubility in the melts and its concentration along $C_{H_2 O} $ diffusion profiles were determined using IR microspectrometry by application of the modified Bouguer-Beer-Lambert equation. A structural-chemical model was proposed to calculate and predict the concentration dependence of molar absorption coefficients of the hydroxyl groups (OH?) and water molecules (H2O) in acid polymerized glasses (quenched melts) in the obsidian-dacite series. The water diffusion coefficients $D_{H_2 O} $ were obtained by the mathematical analysis of concentration profiles and the analytical solution of the second Fick diffusion law using the Boltzman-Matano method. It was shown experimentally that $D_{H_2 O} $ exponentially increases with a growth of water concentration in the obsidian and dacitic melts within the entire range of diffusion profiles. Based on the established quantitative correlation between $D_{H_2 O} $ and viscosity of such melts, a new method was developed to predict and calculate the concentration, temperature, and pressure dependences of $D_{H_2 O} $ in acid magmatic melts (obsidian, rhyolite, albite, granite, dacite) at crustal T, P parameters and water concentrations up to 6 wt %.  相似文献   

10.
Solubility and solution mechanisms of C-O-H volatiles in silicate melt with variable redox conditions and melt composition at upper mantle temperatures and pressures     
Bjorn O. Mysen  Kathryn Kumamoto  Marilyn L. Fogel 《Geochimica et cosmochimica acta》2011,75(20):6183-6199
Solubility and solution mechanisms in silicate melts of oxidized and reduced C-bearing species in the C-O-H system have been determined experimentally at 1.5 GPa and 1400 °C with mass spectrometric, NMR, and Raman spectroscopic methods. The hydrogen fugacity, fH2, was controlled in the range between that of the iron-wüstite-H2O (IW) and the magnetite-hematite-H2O (MH) buffers. The melt polymerization varied between those typical of tholeiitic and andesitic melts.The solubility of oxidized (on the order of 1-2 wt% as C) and reduced carbon (on the order of 0.15-0.35 wt% as C) is positively correlated with the NBO/Si (nonbridging oxygen per silicon) of the melt. At given NBO/Si-value, the solubility of oxidized carbon is 2-4 times greater than under reducing conditions. Oxidized carbon dioxide is dissolved as complexes, whereas the dominant reduced species in melts are CH3-groups forming bonds with Si4+ together with molecular CH4. Formation of complexes results in silicate melt polymerization (decreasing NBO/Si), whereas solution of reduced carbon results in depolymerization of melts (increasing NBO/Si).Redox melting in the Earth’s interior has been explained with the aid of the different solution mechanisms of oxidized and reduced carbon in silicate melts. Further, effects of oxidized and reduced carbon on melt viscosity and on element partitioning between melts and minerals have been evaluated from relationships between melt polymerization and dissolved carbon combined with existing experimental data that link melt properties and melt polymerization. With total carbon contents in the melts on the order of several mol%, mineral/melt element partition coefficients and melt viscosity can change by several tens to several hundred percent with variable redox conditions in the range of the Earth’s deep crust and upper mantle.  相似文献   

11.
Viscosity of albite melt at high pressure and high temperature     
A. Suzuki  E. Ohtani  K. Funakoshi  H. Terasaki  T. Kubo 《Physics and Chemistry of Minerals》2002,29(3):159-165
 The viscosity of albite (NaAlSi3O8) melt was measured at high pressure by the in situ falling-sphere method using a high-resolution X-ray CCD camera and a large-volume multianvil apparatus installed at SPring-8. This system enabled us to conduct in situ viscosity measurements more accurately than that using the conventional technique at pressures of up to several gigapascals and viscosity in the order of 100 Pa s. The viscosity of albite melt is 5.8 Pa s at 2.6 GPa and 2.2 Pa s at 5.3 GPa and 1973 K. Experiments at 1873 and 1973 K show that the decrease in viscosity continues to 5.3 GPa. The activation energy for viscosity is estimated to be 316(8) kJ mol−1 at 3.3 GPa. Molecular dynamics simulations suggest that a gradual decrease in viscosity of albite melt at high pressure may be explained by structural changes such as an increase in the coordination number of aluminum in the melt. Received: 6 January 2001 / Accepted: 27 August 2001  相似文献   

12.
The influence of pressure and composition on the viscosity of andesitic melts     
Christian Liebske  Harald Behrens  Rebecca A. Lange 《Geochimica et cosmochimica acta》2003,67(3):473-485
The effect of pressure and composition on the viscosity of both anhydrous and hydrous andesitic melts was studied in the viscosity range of 108 to 1011.5 Pa · s using parallel plate viscometry. The pressure dependence of the viscosity of three synthetic, iron-free liquids (andesite analogs) containing 0.0, 1.06, and 1.96 wt.% H2O, respectively, was measured from 100 to 300 MPa using a high-P-T viscometer. These results, combined with those from Richet et al. (1996), indicate that viscosities of anhydrous andesitic melts are independent of pressure, whereas viscosities of hydrous melts slightly increase with increasing pressure. This trend is consistent with an increased degree of depolymerization in the hydrous melts. Compositional effects on the viscosity were studied by comparing iron-free and iron-bearing compositions with similar degrees of depolymerization. During experiments at atmospheric and at elevated pressures (100 to 300 MPa), the viscosity of iron-bearing anhydrous melts preequilibrated in air continuously increased, and the samples became paramagnetic. Analysis of these samples by transmission electron microscopy showed a homogeneous distribution of crystals (probably magnetite) with sizes in the range of 10 to 50 nm. No significant difference in the volume fractions of crystals was found in samples after annealing for 170 to 830 min at temperatures ranging from 970 to 1122 K. An iron-bearing andesite containing 1.88 wt.% H2O, which was synthesized at intrinsic fO2 conditions in an internally heated pressure vessel, showed a similar viscosity behavior as the anhydrous melts. The continuous increase in viscosity at a constant temperature is attributed to changes of the melt structure due to exsolution of iron-rich phases. By extrapolating the time evolution of viscosity down to the time at which the run temperature was reached, for both the anhydrous (at 1055 K) and the hydrous (at 860 K) iron-bearing andesite, the viscosity is 0.7 log units lower than predicted by the model of Richet et al. (1996). This may be explained by differences in structural properties of Fe2+ and Fe3+ and their substitutes Mg2+, Ca2+, and Al3+, which were used in the analogue composition.The effect of iron redox state on the viscosity of anhydrous, synthetic andesite melts was studied at ambient pressure using a dilatometer. Reduced iron-bearing samples were produced by annealing melts in graphite crucibles in an Ar/CO atmosphere for different run times. In contrast to the oxidized sample, no variation of viscosity with time and no exsolution of iron oxide phases was observed for the most reduced glasses. This indicates that trivalent iron promotes the exsolution of iron oxide in supercooled melts. With decreasing Fe3+/ΣFe ratio from 0.58 to 0.34, the viscosity decreases by ∼1.6 log units in the investigated temperature range between 964 and 1098 K. A more reduced glass with Fe3+/ΣFe = 0.21 showed no additional decrease in viscosity. Our conclusion from these results is that the viscosity of natural melts may be largely overestimated when using data obtained from samples synthesized in air.  相似文献   

13.
Experimental study of amphibole interaction with H<Subscript>2</Subscript>O–NaCl Fluid at 900°C, 500 MPa: toward granulite facies melting and mass transfer     
L. I. Khodorevskaya  L. Ya. Aranovich 《Petrology》2016,24(3):215-233
Interaction between natural pargasite [Prg, SiO2 = 43.89 wt %, FeO/(FeO + MgO) = 0.35, (Na + K)A = 0.51] and H2O–NaCl fluid, whose composition (NaCl mole fraction) varied within the range X NaCl = NaCl/(NaCl + H2O) = 0–0.45, was experimentally studied in an internally heated apparatus at 900°C and 500 MPa. Natural pargasite begins to melt at a temperature 120–150°C lower than its synthetic analogue. In the presence of pure H2O, the subliquidus mineral assemblage involves amphibole Hbl 1, whose composition is closely similar to the starting Prg, clinopyroxene Cpx, calcic plagioclase Pl, and minor amounts of hercynite-magnetite spinel. With increasing X NaCl, the subliquidus assemblage systematically changed: calcic plagioclase disappeared and more Fe- rich amphibole Hbl 2 appeared at X NaCl = 0.07; Cpx disappeared at X NaCl = 0.14; and appearance of Na-Phl compositionally close to wonesite and almost complete disappearance of Hbl 1 was observed at X NaCl = 0.31. The composition of the melt also changed: its Na2O gradually increased (from 1.5 to 9–10 wt %), and CaO and SiO2 decreased(from 8.6 to 2 wt % and from 64 to 60 wt %, respectively, in recalculation to the anhydrous basis); at X NaCl ≥ 0.35, the melt was transformed from quartz- to nepheline-normative. The maximum Cl concentration of 1.2 wt % was measured in the melt poorest in SiO2. The experimental products contained spherical objects less than 10 μm in diameter that consisted of material that precipitated from the quenched fluid. These particles are richer than the melt in SiO2 (62–80 wt %) and poorer in Al2O3 (11–19 wt %) in experiments with X NaCl ≤ 0.24, but the differences between the compositions of the melt and particles decreased with increasing XNaCl. The relatively high concentrations of aluminosilicate material in the fluid is most likely explained by the high solubility of the melt in the fluid phase, with the formation in the fluid aqueous Si, Al–Si, Na–Al–Si, and other polymeric species. It is suggested that interaction of host rocks with such fluids, rich in granitic components, might be responsible for granitization (charnockitization) of mafic, and, particularly, ultramafic rocks described in the literature.  相似文献   

14.
15.
Olivine/melt transition metal partitioning, melt composition, and melt structure—Influence of Al for Si substitution in the tetrahedral network of silicate melts     
Bjorn O. Mysen 《Geochimica et cosmochimica acta》2007,71(22):5500-5513
The influence on olivine/melt transition metal (Mn, Co, Ni) partitioning of substitution in the tetrahedral network of silicate melt structure has been examined at ambient pressure in the 1450-1550 °C temperature range. Experiments were conducted in the systems NaAlSiO4-Mg2SiO4- SiO2 and CaAl2Si2O8-Mg2SiO4-SiO2 with about 1 wt% each of MnO, CoO, and NiO added. These compositions were used to evaluate how, in silicate melts, substitution and ionization potential of charge-balancing cations affect activity-composition relations in silicate melts and mineral/melt partitioning.The exchange equilibrium coefficient, , is a positive and linear function of melt Al/(Al + Si) at constant degree of melt polymerization, NBO/T. The is negatively correlated with the ionic radius, r, of the M-cation and also with the ionization potential (Z/r2, Z = electrical charge) of the cation that serves to charge-balance Al3+ in tetrahedral coordination in the melts. The activity coefficient ratio, (γM/γMg)melt, is therefore similarly correlated.These melt composition relationships are governed by the distribution of Al3+ among coexisting Q-species in the peralkaline (depolymerized) melts coexisting with olivine. This distribution controls Q-speciation abundance, which, in turn, controls (γM/γMg)melt and . The relations between melt structure and olivine/melt partitioning behavior lead to the suggestion that in natural magmatic systems mineral/melt partition coefficients are more dependent on melt composition and, therefore, melt structure the more alkali-rich and the more felsic the melt. Moreover, mineral/melt partition coefficients are more sensitive to melt composition the more highly charged or the smaller the ionic radius of the cation of interest.  相似文献   

16.
Solution behavior of C-O-H volatiles in FeO-Na2O-Al2O3-SiO2 melts in equilibrium with liquid iron alloy and graphite at 4 GPa and 1550°C     
A. A. Kadik  V. V. Koltashev  E. B. Kryukova  V. G. Plotnichenko  T. I. Tsekhonya  N. N. Kononkova 《Geochemistry International》2014,52(9):707-725
In order to elucidate the solution behavior of carbon and hydrogen in iron-bearing magmatic melts in equilibrium with a metallic iron phase and graphite at oxygen fugacity (fO2) values 2–5 orders of magnitude below the iron-wustite buffer equilibrium, fO2 (IW), experiments were carried out at 4 GPa and 1550°C with melts of FeO-Na2O-SiO2-Al2O3 compositions. Melt reduction in response to an fO2 decrease was accompanied by a decrease in FeO content. The values of fO2 in the experiments were determined on the basis of equilibrium between Fe-C-Si alloy and silicate liquid. Infrared and Raman spectroscopy showed that carbon compounds are formed in FeO-Na2O-SiO2-Al2O3 melts: CH4 molecules, CH3 complexes (Si-O-CH3), and complexes with double C=O bonds. The content of CO2 molecules and carbonate ions (CO 3 2? ) is very low. In addition to carbon-bearing compounds, dissolved hydrogen occurs in melt as H2 and H2O molecules and OH? groups. The spectral characteristics of FeO-Na2O-SiO2-Al2O3 glasses indicate the occurrence of redox reactions in the melt, which are accompanied at decreasing fO2 by a significant decrease in H2O and OH?, a slight decrease in H2, and a significant concomitant increase in CH4 content. The content of species with the double C=O bond increases considerably at decreasing fO2 and reaches a maximum at ΔlogfO2(IW) = ?3. According to the obtained IR spectra, the total water content (OH? + H2O) in the glasses is 1.2–5.8 wt % and decreases with decreasing fO2. The high H2O contents are due largely to oxygen release related to FeO reduction in the melt. The total carbon content at high H2O (4.9–5.8 wt %) is approximately 0.4 wt %. The carbon content in liquid iron alloys depends on silicon content and, probably, oxygen solubility and ranges from 0.3 to 3.65 wt %. Low carbon contents were observed at a significant increase in Si content in liquid iron alloy, which may be as high as ~13 wt % at fO2 values 4–5 orders of magnitude below fO2(IW).  相似文献   

17.
Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt     
Bastian?JoachimEmail author  André?Stechern  Thomas?Ludwig  Jürgen?Konzett  Alison?Pawley  Lorraine?Ruzié-Hamilton  Patricia?L.?Clay  Ray?Burgess  Christopher?J.?Ballentine 《Contributions to Mineralogy and Petrology》2017,172(4):15
Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth’s mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280?°C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F–Cl–Br–I–H2O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H2O (DCl ol/melt = 1.6?±?0.9 × 10?4) to 0.33 (6) wt% H2O (DCl ol/melt = 2.2?±?1.1 × 10?4). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65–78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F–Cl–Br–I–H2O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280?°C and 0.3 GPa with (R 2?=?0.99): \(D_{F}^{\text{ol/melt}}\ =\ 3.6\pm 0.4\ \times \ {{10}^{-3}}\ \times \ {{X}_{{{\text{H}}_{\text{2}}}\text{O}}}\left( \text{wt }\!\!\%\!\!\text{ } \right)\ +\ 6\ \pm \ 0.4\times \,{{10}^{-4}}\). The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287–295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65–78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth’s mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.  相似文献   

18.
H<Subscript>2</Subscript>O diffusion in peralkaline to peraluminous rhyolitic melts     
Harald Behrens  Youxue Zhang 《Contributions to Mineralogy and Petrology》2009,157(6):765-780
The diffusion of water in a peralkaline and a peraluminous rhyolitic melt was investigated at temperatures of 714–1,493 K and pressures of 100 and 500 MPa. At temperatures below 923 K dehydration experiments were performed on glasses containing about 2 wt% H2O t in cold seal pressure vessels. At high temperatures diffusion couples of water-poor (<0.5 wt% H2O t ) and water-rich (~2 wt% H2O t ) melts were run in an internally heated gas pressure vessel. Argon was the pressure medium in both cases. Concentration profiles of hydrous species (OH groups and H2O molecules) were measured along the diffusion direction using near-infrared (NIR) microspectroscopy. The bulk water diffusivity () was derived from profiles of total water () using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between and Both methods consistently indicate that is proportional to in this range of water contents for both bulk compositions, in agreement with previous work on metaluminous rhyolite. The water diffusivity in the peraluminous melts agrees very well with data for metaluminous rhyolites implying that an excess of Al2O3 with respect to alkalis does not affect water diffusion. On the other hand, water diffusion is faster by roughly a factor of two in the peralkaline melt compared to the metaluminous melt. The following expression for the water diffusivity in the peralkaline rhyolite as a function of temperature and pressure was obtained by least-squares fitting:
  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Water is an important volatile component in andesitic eruptions and deep-seated andesitic magma chambers. We report an investigation of H2O speciation and diffusion by dehydrating haploandesitic melts containing ?2.5 wt.% water at 743-873 K and 100 MPa in cold-seal pressure vessels. FTIR microspectroscopy was utilized to measure species [molecular H2O (H2Om) and hydroxyl group (OH)] and total H2O (H2Ot) concentration profiles on the quenched glasses from the dehydration experiments. The equilibrium constant of the H2O speciation reaction H2Om+O?2OH, K = (XOH)2/(XH2OmXO) where X means mole fraction on a single oxygen basis, in this Fe-free andesite varies with temperature as ln K = 1.547-2453/T where T is in K. Comparison with previous speciation data on rhyolitic and dacitic melts indicates that, for a given water concentration, Fe-free andesitic melt contains more hydroxyl groups. Water diffusivity at the experimental conditions increases rapidly with H2O concentration, contrary to previous H2O diffusion data in an andesitic melt at 1608-1848 K. The diffusion profiles are consistent with the model that molecular H2O is the diffusion species. Based on the above speciation model, H2Om and H2Ot diffusivity (in m2/s) in haploandesite at 743-873 K, 100 MPa, and H2Ot ? 2.5 wt.% can be formulated as
  相似文献   

3.
H2O diffusion in dacitic melt was investigated at 0.48-0.95 GPa and 786-893 K in a piston-cylinder apparatus. The diffusion couple design was used, in which a nominally dry dacitic glass makes one half and is juxtaposed with a hydrous dacitic glass containing up to ∼8 wt.% total water (H2Ot). H2O concentration profiles were measured on quenched glasses with infrared microspectroscopy. The H2O diffusivity in dacite increases rapidly with water content under experimental conditions, similar to previous measurements at the same temperature but at pressure <0.15 GPa. However, compared with the low-pressure data, H2O diffusion at high pressure is systematically slower. H2O diffusion profiles in dacite can be modeled by assuming molecular H2O (H2Om) is the diffusing species. Total H2O diffusivity DH2Ot within 786-1798 K, 0-1 GPa, and 0-8 wt.% H2Ot can be expressed as: where DH2Ot is in m2/s, T is temperature in K, P is pressure in GPa, K = exp(1.49 − 2634/T) is the equilibrium constant of speciation reaction (H2Om+O?2OH) in the melt, X = C/18.015/[C/18.015 + (100 − C)/33.82], C is wt.% of H2Ot, and 18.015 and 33.82 g/mol correspond to the molar masses of H2O and anhydrous dacite on a single oxygen basis. Compared to H2O diffusion in rhyolite, diffusivity in dacite is lower at intermediate temperatures but higher at superliquidus temperatures. This general H2O diffusivity expression can be applied to a broad range of geological conditions, including both magma chamber processes and volcanic eruption dynamics from conduit to the surface.  相似文献   

4.
Huaiwei Ni  Youxue Zhang   《Chemical Geology》2008,250(1-4):68-78
Water diffusion in silicate melts is important for understanding bubble growth in magma, magma degassing and eruption dynamics of volcanos. Previous studies have made significant progress on water diffusion in silicate melts, especially rhyolitic melt. However, the pressure dependence of H2O diffusion is not constrained satisfactorily. We investigated H2O diffusion in rhyolitic melt at 0.95–1.9 GPa and 407–1629 °C, and 0.2–5.2 wt.% total water (H2Ot) content with the diffusion-couple method in a piston-cylinder apparatus. Compared to previous data at 0.1–500 MPa, H2O diffusivity is smaller at higher pressures, indicating a negative pressure effect. This pressure effect is more pronounced at low temperatures. Assuming H2O diffusion in rhyolitic melt is controlled by the mobility of molecular H2O (H2Om), the diffusivity of H2Om (DH2Om) at H2Ot ≤ 7.7 wt.%, 403–1629 °C, and ≤ 1.9 GPa is given by
DH2Om=D0exp(aX),
where is the water diffusivity at 1 wt% H2O t in m2/s, T is the temperature in K and P is the pressure in MPa. The above equation reproduces the experimental data (14 runs in total) with a standard fit error of 0.15 log units. It can be employed to model degassing of peralkaline melts at water contents up to 2 wt%.  相似文献   

19.
Thermodynamic settings of melting and melt ascent from magmatic chambers using the example of Klyuchevskoi Volcano     
N. V. Chertkova  A. E. Tsai  N. L. Mironov  V. D. Shcherbakov 《Moscow University Geology Bulletin》2010,65(1):39-48
Theoretical models and experimental data on the thermodynamic and rheological properties of basalts from the Apakhonchich lava flow (Klyuchevskoi Volcano, Kamchatka) were invoked for plotting projections of water-containing and dry liquidus and solidus curves on the P s -T plane. The P-T-X H 2O conditions for the formation of basaltic magma and the degree of its differentiation were determined from data on melt inclusions. The calculated apparent viscosity of the melt containing 10% crystals at 1100°C, 1 GPa, and 3 wt % water is 1.1 × 103 Pa s, and the density is 2.5 g/cm3.  相似文献   

20.
Solvation processes in steam: Ab initio calculations of ion-solvent structures and clustering equilibria     
Kono H. Lemke  Terry M. Seward 《Geochimica et cosmochimica acta》2008,72(14):3293-3310
Reports of the high ion content of steam and low-density supercritical fluids date back to the work of Carlon [Carlon H. R. (1980) Ion content of air humidified by boiling water.J. Appl.Phys.51, 171-173], who invoked ion and neutral-water clustering as mechanism to explain why ions partition into the low-density aqueous phase. Mass spectrometric, vibrational spectroscopic measurements and quantum chemical calculations have refined this concept by proposing strongly bound ion-solvent aggregates and water clusters such as Eigen- and Zundel-type proton clusters H3O+·(H2O)m and the more weakly bound water oligomers (H2O)m. The extent to which these clusters affect fluid chemistry is determined by their abundance, however, little is known regarding the stability of such moieties in natural low-density high-temperature fluids. Here we report results from quantum chemical calculations using chemical-accuracy multi-level G3 (Curtiss-Pople) and CBS-Q theory (Peterson) to address this question. In particular, we have investigated the cluster structures and clustering equilibria for the ions and H3S+·(H2O)m(H2S)n, where m ? 6 and n ? 4, at 300-1000 K and 1 bar as well as under vapor-liquid equilibrium conditions between 300 and 646 K. We find that incremental hydration enthalpies and entropies derived from van’t Hoff analyses for the attachment of H2O and H2S onto H3O+, and H3S+ are in excellent agreement with experimental values and that the addition of water to all three ions is energetically more favorable than solvation by H2S. As clusters grow in size, the energetic trends of cluster hydration begin to reflect those for bulk H2O liquids, i.e. calculated hydration enthalpies and entropies approach values characteristic of the condensation of bulk water (ΔHo = −44.0 kJ mol−1, ΔSo = −118.8 J K mol−1). Water and hydrogen sulfide cluster calculations at higher temperatures indicate that a significant fraction of H3O+, and H3S+ ions exists as solvated moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号