首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《International Geology Review》2012,54(11):1370-1390
ABSTRACT

To better understand the Neoproterozoic tectonic evolution along the northern margin of Yangtze Block, we have determined the geochronological and geochemical compositions of newly recognized bimodal volcanic suite and coeval granites from the western Dabie terrain. LA-ICP-MS zircon U-Pb dating reveals that the felsic and mafic volcanics from the Hong’an unit have crystallization ages of 730 ± 4Ma and 735 ± 5Ma, respectively, indicating that the bimodal suite was erupted during the Neoproterozoic. The Xuantan, Xiaoluoshan, and Wuchenhe granites yield U-Pb ages of 742 ± 4 Ma, 738 ± 4 Ma, and 736 ± 4 Ma, respectively. The felsic volcanic rocks show peraluminous characteristics, and have a close affinity to S-type granite. The mafic volcanic rocks are basalt in compositions, and are likely generated from a depleted mantle source. The granites belong to high-K calc-alkaline and calc-alkaline series, display metaluminous to peraluminous, and are mainly highly fractionated I-type and A-type granite. The granites and felsic volcanics have zircon εHf(t) values of ?16.4 to + 5.6 and two-stage Hf model ages (TDM2) of 1.28 to 2.40 Ga, suggesting that they were partial melting of varying Mesoproterozoic–early-Neoproterozoic crust. The granites have εNd(t) of -14.7 to -1.5, and the two-stage Nd model ages (TDM2) values of 1.54 to 2.61 Ga, also implying the Yangtze crustal contribution. These Neoproterozoic bimodal suite and coeval granites were most likely generated in a rifting extensional setting, triggered by the mantle upwelling, associated with crust–mantle interaction. Intensive magmatic rocks are widespread throughout the South Qingling, Suizhao, western Dabie and eastern Dabie areas during 810–720 Ma, and show peak ages at ~ 740 Ma. Combining regional geology, we support a continental rifting extensional setting for the north margin of the Yangtze Block during the break-up of the supercontinent Rodinia.  相似文献   

2.
A combined study of zircon U–Pb ages and Lu–Hf isotopes, mineral O isotopes, whole-rock elements and Sr–Nd isotopes was carried out for Mesozoic granitoids from the Shandong Peninsula in east-central China, which tectonically corresponds to the eastern part of the Sulu orogen that formed by the Triassic continental collision between the South and North China Blocks. Four plutons were investigated in this region, with the Linglong and Guojialing plutons from the northwestern part (Jiaobei) and the Kunyushan and Sanfoshan plutons from the southeastern part (Jiaodong). The results show that these granitoids mostly have high Sr, low Yb and Y contents, high (La/Yb)N and Sr/Y ratios with negligible to positive Eu anomalies (Eu/Eu* = 0.69–1.58), which are similar to common adakites. On the other hand, they have relatively low MgO, Cr, Ni contents and thus low Mg#. Zircon U–Pb dating yields Late Jurassic ages of 141 ± 3 to 157 ± 2 Ma for the Linglong and Kunyushan plutons, but Early Cretaceous ages of 111 ± 2 to 133 ± 3 Ma for the Guojialing and Sanfoshan plutons. Some zircon cores from the Linglong and Kunyushan granitoids have Neoproterozoic U–Pb ages. All the granitoids have variably negative zircon εHf(t) values of ?39.6 to ?5.4, with Mesoproterozoic to Paleoproterozoic Hf model ages of 1515 ± 66 to 2511 ± 97 Ma for the Sanfoshan pluton, but Paleoproterozoic to Paleoarchean Hf model ages of 2125 ± 124 to 3310 ± 96 Ma for the other three plutons. These indicate that the Mesozoic granitoids formed in the postcollisional stage and were derived mainly from partial melting of the subducted South China Block that is characterized by Paleoproterozoic juvenile crust and Neoproterozoic magmatic rocks along its northern edge. However, there are some differences between the Jiaobei and Jiaodong plutons. Compared to the Jiaodong granitoids, the Jiaobei granitoids have very old zircon Hf model ages of 3310 ± 96 Ma suggesting the possible involvement of a Paleoarchean crust that may be derived from the North China Block. Therefore, the continental collision between the two blocks would bring crustal materials from both sides into the subduction zone in the Triassic, yielding subduction-thickened crust as the magma source for the adakite-like granitoids. While lithospheric extension and orogenic collapse are considered a major cause for postcollisional magmatism, anatexis of the subducted mafic crust is proposed as a mechanism for chemical differentiation of the continental crust towards felsic composition.  相似文献   

3.
《International Geology Review》2012,54(10):1222-1243
ABSTRACT

Neoproterozoic I-type granites could provide vital insights into the crust–mantle interaction and the crustal evolution along the western Yangtze Block, South China. This paper presents new zircon U–Pb ages, bulk-rock geochemistry, and in situ zircon Lu–Hf isotope on the Dalu I-type granites from the southwestern Yangtze Block. Zircon U–Pb dating show the crystallization ages of 781.1 ± 2.8 Ma for granodiorites and 779.8 ± 2.0 Ma for granites, respectively. The Dalu granodiorites are Na-rich, calc-alkaline, metaluminous to slightly peraluminous (A/CNK = 0.94–1.08). Zircons from granodiorite have positive εHf(t) values (+2.16 to +7.39) with crustal model ages of 1.21–1.54 Ga, indicating juvenile mafic lower crust source. The Dalu granites are high-K calc-alkaline, peraluminous rocks. They have variable zircon εHf(t) values (?4.65 to +5.80) with crustal model ages of 1.31–1.97 Ga, suggesting that they were derived from the mature metasediment-derived melts by the mixing of newly formed mafic lower crust-derived melts. The geochemical variations in Dalu pluton is dominated not only by the different source rocks but also by the different melting temperatures. Combining with the geochemistry and isotopic compositions of I-type granitoids and tectonic setting in the western Yangtze Block, we propose that the Dalu I-type granodiorites–granites associations are the magmatic response from different crustal levels, which were induced by the heat anomaly due to the asthenosphere upwelling in the subduction-related setting.  相似文献   

4.
杨阳  孙国超  赵子福 《地球科学》2021,46(6):1993-2015
对华北东南缘荆山花岗岩进行了锆石U-Pb定年、微量元素和Hf同位素分析,全岩主微量元素和Sr-Nd同位素分析.LA-ICP-MS锆石U-Pb定年结果表明,荆山花岗岩形成于晚侏罗世(160.9±0.8~161.6±1.5 Ma).残留锆石的U-Pb年龄主要为三叠纪和新元古代,分别与大别-苏鲁造山带超高压变火成岩的变质年龄和原岩年龄一致.这些花岗岩为钙碱性-高钾钙碱性,具有弧型的微量元素分布特征和富集的Sr-Nd-Hf同位素组成,即高的全岩(87Sr/86Sr)i比值(0.708 0~0.709 1),低的εNd(t)值(-15.6~-13.5)和锆石εHf(t)值(-23.1~-9.5),对应的两阶段Nd-Hf模式年龄主要为古元古代.这些锆石U-Pb同位素年代学和地球化学特征与大别-苏鲁造山带超高压变火成岩一致,表明它们之间存在成因联系.特别地,残留锆石新元古代和三叠纪U-Pb年龄是俯冲华南陆壳的标志性特征.因此,荆山花岗岩是俯冲华南陆壳部分熔融的产物,华南陆壳是三叠纪大陆碰撞过程中进入华北地壳之中的.这些花岗岩具有低的Rb含量、高的Sr和Ba含量,低的Rb/Sr比值以及低的全岩锆饱和温度和锆石Ti温度(~700℃),表明它们源于俯冲华南陆壳低温加水部分熔融,可能与侏罗纪古太平洋板块俯冲于中国东部之下有关.   相似文献   

5.
胶北地体中生代花岗岩广泛分布,以晚侏罗世最为发育,花岗岩形成时代、成因和地球动力学背景的深入研究对认识研究区构造演化有重要意义。本文选取胶北地体东部和北部侏罗纪花岗岩进行全岩主微量元素、锆石U-Pb年龄和O同位素研究,结果表明,花岗岩样品锆石U-Pb年龄主要分布在166~156 Ma之间,代表岩体的结晶年龄。此外,含有大量3 650~3 294 Ma、2 660~2 445 Ma、770~600 Ma和245~197 Ma的继承锆石。这些花岗岩具有埃达克岩的地球化学特征[高Sr/Y和(La/Yb)_N值,低Y和Yb含量]。本次报道的侏罗纪花岗岩的锆石年龄和地球化学特征与前人报道的玲珑、栾家河花岗岩一致,表明胶北不同地区侏罗纪花岗岩的形成时代和成因没有明显的区别,胶北侏罗纪花岗岩可能由加厚地壳物质部分熔融而成。不同样品的继承锆石年龄分布特征和氧同位素组成具有明显的差异,结合前人资料,认为胶北侏罗纪花岗岩源区的物质来源存在差异,部分花岗岩的源区主要为胶北古老的基底,另一部分源区主要为深俯冲的扬子板块地壳岩石。古太平洋板块或Izanagi板块的俯冲作用可能直接或间接地诱发了加厚地壳的熔融。  相似文献   

6.
Neoproterozoic magmatism in the Yangtze Block of South China produced voluminous S- and I-type granites, and sparse A-type granites. The Daxiangling A-type granitic pluton is spatially associated with the Shimian I-type pluton at the western margin of the Yangtze Block. Both plutons have similar SHRIMP zircon U-Pb ages of~800 Ma and are slightly younger than the tonalite-trondhjemite-granodiorite (TTG) gneisses in the area.  相似文献   

7.
We studied geology and main rock assemblages of the Precambrian Kan, Arzybei, and Derba terranes of the Central Asian Fold Belt which border the Siberian craton in the southwest. The Precambrian terranes include three isotopic provinces (Paleoproterozoic, Mesoproterozoic, and Neoproterozoic) distinguished from the Sm-Nd isotope compositions of granitoids, felsic metavolcanics, and metasediments. The terranes formed in three stages of crustal evolution: 2.3–2.5, 0.9–1.1, and 0.8–0.9 Ga. Proterozoic juvenile crust was produced by subduction-related magmatism; it was originally of transitional composition and transformed into continental crust by potassic plutonism as late as the Late Vendian-Cambrian. Terrigenous sediments in the Arzybei and Derba terranes vary in T(DM) Nd model ages from 1.0 to 2.0 Ga. The Nd ages of the underlying metavolcanics and lowest T(DM) of metasediments indicate that terrigenous sedimentation started in the Neoproterozoic. It was maintained by erosion of Mesoproterozoic-Neoproterozoic crust and, to a lesser extent, of Early Precambrian rocks on the craton margin or in Paleoproterozoic terranes. Ar-Ar dating of amphiboles and biotites from metamorphic rocks and U-Pb dating of zircons from granitoids yielded 600–555 and 500–440 Ma, respectively, corresponding to the Vendian and Early Paleozoic stages of nearly synchronous metamorphism and plutonism. Accretion and collision events caused amalgamation of the Paleoproterozoic, Mesoproterozoic, and Neoproterozoic terranes in the Vendian and their collision with the Siberian craton. The lateral growth of the paleocontinent completed in the Late Ordovician.  相似文献   

8.
In the western Yangtze Block, widespread Mesoproterozoic to Neoproterozoic rocks are the key to understanding the Precambrian tectonic-magmatic evolution of the region. However, their petrogenesis and tectonic setting are still controversial. In this paper, zircon U-Pb ages, Sm-Nd isotopic and whole-rock geochemical data are reported from selected fresh samples in the southern Dechang county, southwestern China, in order to constrain their emplacement age and magma source, as well as their petrogenesis and tectonic setting. They are mainly composed of biotite monzogranite, monzonitic granite, biotite granodiorites, and quartz diorite. Two ages of 1055 ± 43 Ma and 837.6 ± 3.8 Ma were obtained through zircon U-Pb dating by LA-ICP-MS and LA-MC-ICP-MS, respectively. According to their major element compositions, the Grenville-age granites are peraluminous calc-alkaline series calcic S-type granite. In contrast, the mid-Neoproterozoic granites are metaluminous calc-alkaline series alkalic I-type granite. Furthermore, the S-type granites are enriched in LREEs relative to HREEs with(La/Yb)_N ratios of 3.85–18.56 and underwent major fractionation with strongly negative Eu anomalies(Eu/Eu~* = 0.38–0.66). In the MORB-normalized trace element variation diagram, all the samples are enriched in Ce and large ion lithophile elements such as Rb, Th, and K, and depleted in high field strength elements such as Nb, and Ti, with negative Sr and Ti anomalies. The I-type granites are enriched in LREEs with slight negative Eu anomalies(Eu/Eu~* = 0.83–0.93). They are characterized by the enrichment of highly incompatible elements(such as K, Rb, Ba, Th) and LREEs, relative to MORB. Neodymium isotopic data show that the S-type granites display ~(143)Nd/(~(144) Nd) values of 0.51241–0.51256, and have ε_(Nd)(t = 1055 Ma) values of(-3.29) to(-3.81). Calculated t_(DM) ages yield values from 1.87 to 1.91 Ga with the t_(DM).2 stg ages of 1.86 to 1.9 Ga. The I-type granites have ~(143)Nd/(~(144) Nd) ratios between 0.51192 and 0.51195, corresponding to initial ε_(Nd)(t = 837 Ma) values of 1.22 to 5.63. Calculated t_(DM) ages yield values from 1.0 to 1.38 Ga and the t_(DM).2 stg ages yield values from 0.99 to 1.06 Ga. The S-type granites are distinguished as syn-collision granite, whereas the I-type granites were formed as arc magmas according to the Rb-(Yb+Ta) and R_1-R_2 tectonic discrimination diagrams. To conclude, there are two types of spatially associated granite, the Mesoproterozoic S-type granite which were derived from remelting of upper crustal mudstone and/or clastics and resulted from the convergence of two continental plates, and the mid-Neoproterozoic I-type granite which formed in continental arc and resulted from mantle-derived magma mixed crust material, in the western Yangtze Block. Furthermore, we suggest that collision between the Yangtze and Cathaysia blocks occurred at about 1055 Ma, and caused the Stype granite. The I-type granite related to the subduction of oceanic lithosphere eastward underneath the Yangtze Block in the mid-Neoproterozoic.  相似文献   

9.
S-type granites are typical features of collisional orogenic belts and could provide insights into the tectonic process associated with the final phase of orogeny. The East Qinling Orogen, one of significant segments in the Central China Orogen, witnessed complex tectonic evolution during the Late Mesozoic. The rare S-type granites in this orogen can be used as important proxies to understand the Late Mesozoic tectonic processes. Although a few previous studies suggested that the Huangbeiling pluton in the East Qinling Orogen might be S-type granite, detailed studies are lacking. Thus, we report the results from a systematic petrological, whole-rock geochemical and zircon U-Pb-Lu-Hf isotopic studies on the Huangbeiling pluton, with a view to constrain the timing of magmatism, petrogenetic evolution and genetic type, and to evaluate the implications for Late Mesozoic tectonic evolution of the East Qinling Orogen. Zircon U-Pb analysis yield 206Pb/238U spot ages in the range of 156.7–132.2 Ma, with weighted 206Pb/238U mean ages varying from 146.8 to 141.9 Ma, suggesting the Huangbeiling pluton formed during the Late Jurassic to Early Cretaceous. Zircon Lu-Hf isotopic data show negative εHf(t) values of ?21.5 to ?14.9 and two-stage Hf model ages of 2546–2131 Ma, which are correlated with the Neoarchean to Paleoproterozoic (3.0–2.1 Ga) meta-sedimentary rocks from nearby Taihua Group, indicating that the magma was sourced from reworked ancient crustal components involving meta-sedimentary rocks. Whole-rock geochemical data display enrichment of LREEs, Pb, Hf and Y as well as depletion in HREEs, Ba and HFSEs (e.g., Ta, P, Ti), with weakly negative Eu anomalies. The Huangbeiling granitoids are identified as S-type granites, which generated through partial melting of lower-middle crust and upper crustal fractional crystallization in syn-collisional settings. In conjunction with published information related to the tectonic evolution of the East Qinling Orogen, we propose that the Late Mesozoic Huangbeiling S-type granites might response to the complex tectonic evolution related to extensional tectonics induced by multi-directional (intra-continental) subductions from the Yangtze and North China Cratons as well as the Paleo-Pacific Plate during the Late Mesozoic.  相似文献   

10.
北天山温泉群的地质特征、时代和构造意义   总被引:1,自引:0,他引:1  
北天山温泉群长期以来被认为是古元古代的变质岩。最新的野外调查和锆石SHRIMP U-Pb 测年结果表明,温泉群可 以划分为三个岩石构造单元:(1)前早新元古代变质火山岩和变质沉积岩,主要包括斜长角闪岩、云母片岩、石英片岩、 黑云母片麻岩、大理岩等;(2)早新元古代混合岩和正片麻岩;(3)早古生代未变质变形的辉长岩和闪长岩。上述三种岩 石组合类型均被后期二云母花岗岩(脉)所侵入。温泉县以南的混合岩和花岗片麻岩中锆石的SHRIMP U-Pb 年龄分别为 926±12 Ma 和907±11 Ma,与天山地区出露的新元古代花岗岩类的时代基本一致。结合前人对花岗片麻岩Nd 同位素组成 的研究,花岗片麻岩应为古老地壳物质部分熔融的产物,而同期的混合岩化作用则是新元古代地壳加厚和部分熔融的直接 地质证据。辉长岩和闪长岩侵入到温泉群花岗片麻岩和斜长角闪岩中,其中闪长岩的锆石SHRIMP U-Pb 年龄为452±7 Ma, 并含有1.1 Ga 和1.4 Ga 的继承锆石。根据前人的研究成果,本区早古生代辉长岩和闪长岩具有岛弧岩浆岩的地球化学特征, 可能与准噶尔-巴尔喀什洋的俯冲作用有关,这一俯冲增生作用最终导致伊犁北部与哈萨克斯坦陆块在志留纪拼贴造山, 并使温泉群前寒武纪变质岩与侵入岩发生变质变形作用。  相似文献   

11.
杨红  刘福来  刘平华  王舫 《岩石学报》2013,29(6):2161-2170
大红山群是扬子地块西南缘出露的古元古代结晶基底,主要经历了绿片岩相-低角闪岩相变质作用.本研究对大红山群老厂河组变质中酸性岩和变质沉积岩——石榴白云母-长石石英片岩中的白云母进行了40Ar-39Ar测年,得到三个样品的坪年龄和40Ar/39Ar等时线年龄结果较统一,坪年龄代表的变质年龄分别为837.7±4.2Ma、839.6±4.2Ma和844.2±4.2Ma.变质沉积岩和变质中酸性岩的变质时代类似,均介于837~845Ma.大红山群变质基性岩中变质锆石的U-Pb定年年龄为849±12Ma(杨红等,2012),40Ar-39Ar测年数据与锆石定年数据相结合,说明大红山群古元古代结晶基底中的火山岩和沉积岩均在新元古代经历了同期变质作用,其主期低角闪岩相变质作用发生于新元古代837~850Ma.结合前人发表的扬子西缘~750Ma的变质年龄,扬子西缘从北向南的区域变质作用时限可扩展到750 ~850Ma.此外,扬子西缘存在750~850Ma的岩浆事件,本文研究结果说明,扬子地块西缘在新元古代不仅发生了大规模岩浆作用,也发生了750~850Ma的区域变质作用,扬子西缘存在新元古代的岩浆-变质事件.岩浆事件与变质事件之间可能存在相关性,即新元古代岩浆作用引起了扬子西缘的区域动力热流变质作用.  相似文献   

12.
Comprehensive geochemical and geochronological studies were carried out for two-mica granites of the Biryusa block of the Siberian craton basement. U-Pb zircon dating of the granites yielded an age of 1874 ± 14 Ma. The rocks of the Biryusa massif correspond in chemical composition to normally alkaline and moderately alkaline high-alumina leucogranites. By mineral and petrogeochemical compositions, they are assigned to S-type granites. The low CaO/Na2O ratios (< 0.3), K2O - 5 wt.%, CaO < 1 wt.%, and high Rb/Ba (0.7-1.9) and Rb/Sr (3.9-6.8) ratios indicate that the two-mica granites resulted from the melting of a metapelitic source (possibly, the Archean metasedimentary rocks of the Biryusa block, similar to the granites in £Nd(t) value) in the absence of an additional fluid phase. The granite formation proceeded at 740-800 °C (zircon saturation temperature). The age of the S-type two-mica granites agrees with the estimated ages of I- and A-type granitoids present in the Biryusa block. Altogether, these granitoids form a magmatic belt stretching along the zone of junction of the Biryusa block with the Paleoproterozoic Urik-Iya terrane and Tunguska superterrane. The granitoids are high-temperature rocks, which evidences that they formed within a high-temperature collision structure. It is admitted that the intrusion of granitoids took place within the thickened crust in collision setting at the stage of postcollisional extension in the Paleoproterozoic. This geodynamic setting was the result of the unification of the Neoarchean Biryusa continental block, Paleoproterozoic Urik-Iya terrane, and Archean Tunguska superterrane into the Siberian craton.  相似文献   

13.
对小兴安岭北部孙吴-嘉荫地区早中生代花岗岩进行了年代学和地球化学研究,据此探讨其成因及形成的构造背景。锆石U-Pb同位素定年结果表明,研究区早中生代花岗岩分为晚三叠世和早侏罗世两期,形成时代分别为210 Ma和187~181 Ma。晚三叠世碱长花岗岩属铝质A型花岗岩,岩浆源区为新元古代从亏损地幔中增生的基性火成岩地壳。早侏罗世英云闪长岩-花岗闪长岩和二长花岗岩属埃达克岩,是由加厚下地壳物质部分熔融形成的;正长花岗岩-碱长花岗岩与同期埃达克岩具明显不同的地球化学特征,岩浆源区为中元古代从亏损地幔中增生的基性地壳物质。结合区域地质构造演化特征,认为晚三叠世花岗岩是华北板块和西伯利亚板块碰撞造山后伸展构造环境下的产物,早侏罗世花岗岩的形成与古太平洋板块俯冲产生的挤压构造环境有关。  相似文献   

14.
采用LA-ICP-MS方法,对四川盆地南部会理地区古近纪雷打树组碎屑锆石进行了U-Th-Pb同位素测定,获得了72组单颗粒锆石的U-Pb年龄,建立了碎屑锆石的U-Pb年龄谱。结果表明,雷打树组碎屑锆石U-Pb年龄区间为2465~204Ma,地质时代为古元古代最早期成铁纪至晚三叠世最晚期瑞替阶,年龄分布具有清晰的幕式分布特征,集中分布于5个区间,出现了5个明显的峰值,物源区主要为扬子陆块西缘及其西侧的“三江”造山带。雷打树组碎屑锆石U-Pb年龄谱显示,扬子陆块西缘经历了古元古代陆壳增生、中元古代Rodinia超大陆汇聚、新元古代晚期Rodinia超大陆裂解、二叠纪玄武岩喷溢及中-晚三叠世印支运动5次重要的构造热事件,与扬子陆块西缘形成演化进程完全吻合。与四川盆地古近纪柳嘉组碎屑锆石的U-Pb年龄谱相比,雷打树组碎屑锆石U-Pb年龄谱缺失侏罗纪、白垩纪信号,增加了早奥陶世和早泥盆世信号,说明四川盆地北部与南部的物源存在一定的区别。碎屑锆石U-Pb年龄谱对比结果显示,雷打树组碎屑锆石U-Pb年龄谱具有较高的精确度,扬子陆块与华夏陆块自1000Ma汇聚以来具有很好的亲缘性,而与华北克拉通之间直至400Ma才开始建立亲缘关系。  相似文献   

15.
《Gondwana Research》2013,24(4):1261-1272
A combined study of Lu–Hf isotopes and U–Pb ages for detrital zircons from sedimentary rocks can provide information on the crustal evolution of sedimentary provenances, and comparisons with potential source regions can constrain interpretations of paleogeographic settings. Detailed isotopic data on detrital zircons from Neoproterozoic sedimentary rocks in the northern part of the Yangtze Block suggest that these rocks have the maximum depositional ages of ~ 750 Ma, and share a similar provenance. In their source area, units of late Archean (2.45 to 2.55 Ga) to Paleoproterozoic (1.9 to 2.0 Ga) U–Pb ages made up the basement, and were overlain or intruded by magmatic rocks of Neoproterozoic U–Pb ages (740 to 900 Ma). Hf isotopic signatures of the detrital zircons indicate that a little juvenile crust formed in the Neoarchean; reworking of old crust dominates the magmatic activity during the Archean to Paleoproterozoic, while the most significant juvenile addition to the crust occurred in the Neoproterozoic. Only the Neoproterozoic zircon U–Pb ages can be matched with known magmatism in the northern Yangtze Block, while other age peaks cannot be correlated with known provenance areas. Similar zircon U–Pb ages have been obtained previously from sediments along the southeastern and western margins of the Yangtze Block. Thus, it is suggested that an unexposed old basement is widespread beneath the Yangtze Block and was the major contributor to the Neoproterozoic sediments. This basement had a magmatic activity at ~ 2.5 Ga, similar to that in North China; but zircon Hf isotopes suggest significant differences in the overall evolutionary histories between the Yangtze and North China.  相似文献   

16.
《China Geology》2022,5(3):457-474
The A-type granites with highly positive εNd(t) values in the West Junggar, Central Asian Orogenic Belt (CAOB), have long been perceived as a group formed under the same tectonic and geodynamic setting, magmatic sourceq and petrogenetic model. Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate: the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc; whereas the Akebasitao and Miaoergou granites formed in the accretionary prism. Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages and Hf-O isotopes data on these granites. The granites in the Baogutu continental arc and accretionary prism contain similar zircon εHf(t) values (+10.9 to +16.2) and bulk-rock geochemical characteristics (high SiO2 and K2O contents, enriched LILEs (except Sr), depleted Sr, Ta and Ti, and negative anomalies in Ce and Eu). The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages (315–305 Ma) and moderate 18O enrichments (δ18Ozircon=+6.41‰–+7.96‰); whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages (305–301 Ma) with higher 18O enrichments (δ18Ozircon=+8.72‰–+9.89‰). The authors deduce that the elevated 18O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts. The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism. The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt (induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc). On the other hand, the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism, consisting of the low-temperature altered oceanic crust, juvenile oceanic sediments, and mantle basaltic melt. These granites could be related to the asthenosphere’s counterflow and upwelling, caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.©2022 China Geology Editorial Office.  相似文献   

17.
中国东南部花岗岩类Nd—Sr同位素研究   总被引:65,自引:8,他引:57  
根据本文测定的58个数据以已发表的127个数据讨论了中国东南部不同时代花岗岩类的Nd-Sr同位素特征,工通过与基底变质岩Sm-Nd同位素组成的对比,研究了这些花岗岩类的物质来源与成因。仅分布于浙西南的古元古代花岗岩娄是由成分上类似干被其侵入的八都群片麻岩经部分熔融形成的。沿江绍断裂带分布的新元古代花岗岩类是由地幔来源岩浆或初生地壳形成的;浙西-皖南-赣北地区的新元古代花岗岩类可能是由中元古代地层中的低成熟度组分形成的。古生代和大部分中生代花岗岩类主要是由所在区域内出露的中元古代变质沉积岩的相当物衍生的。沿浙闽沿海地区分布的大多数晚中生代花岗岩娄含有较多的地幔组分.两种来诹岩浆混台可能是其一种重要的成岩方式。  相似文献   

18.
古老锆石和岩石的发现,是探索地球早期地质演化的关键.为进一步揭示扬子陆块基底物质组成和早期地壳形成演化,采用LA-ICP-MS锆石微区U-Pb测年,对扬子陆块西南缘禄丰地区东川群变质砂岩进行了年代学研究,发现3 822±21 Ma的古老碎屑锆石.这是目前在扬子陆块获得的第2颗>3.8 Ga的古老锆石,也是目前在该地区发现的最老锆石.变质砂岩碎屑物质主要包括4个峰值年龄(~2 320 Ma、~2 162 Ma、~2 036 Ma和~1 915 Ma),2颗最年轻的锆石年龄基本限定了东川群早期最大沉积时限,与区域上火山岩时代相吻合.另外还包含少量中-晚太古代(2.6~2.9 Ga)和始太古代(3.7~3.8 Ga)的碎屑物质.Hf同位素组成显示这些碎屑锆石具有不同成因,其中2 674~3 822 Ma的碎屑锆石总体具有正的εHf(t)值和2.9~3.9 Ga的两阶段模式年龄,暗示扬子陆块在冥古宙-古太古代时期就有一定规模的新生陆壳分布.古元古代(1.9~2.4 Ga)的岩浆活动除有少量古元古代(2.3~2.4 Ga)新生地壳组分熔融外,大多为太古宙(2.5~3.7 Ga)古老地壳部分熔融.中元古代更多表现为古老地壳的熔融和物质再循环.研究结果为深化扬子陆块早前寒武纪地质演化认识提供了新资料.   相似文献   

19.
SHRIMP zircon U-Pb dates, combined with in-situ Hf isotopic data, provide new constraints on the petrogenesis and protolith of peralkaline, metaluminous and peraluminous intrusions and rhyolitic tuffs in the Emeishan large igneous province, with significant bearing on crustal melting associated with mantle plumes. Syenite and A-type granitic intrusions from Huili, Miyi and Taihe in the center of this large igneous province yield U-Pb dates at ∼260 Ma, consistent with the ages obtained for mafic layered intrusions in the same province. Zircon from these rocks exhibits a wide range of initial Hf isotope ratios (εHf(t) = −1.4 to +13.4), with corresponding TDM1 of 400-900 Ma. The highest εHf(t) value is only marginally lower than that of depleted mantle reservoir at 260 Ma, suggesting that their source is primarily juvenile crust added during Emeishan volcanism, with incorporation of variable amounts of Neoproterozoic crust. The trigger of crustal melting is most likely related to advective heating associated with magmatic underplating. In contrast, the 255-251 Ma peraluminous granites from Ailanghe and 238 Ma rhyolitic tuff from Binchuan, have negative initial εHf values of −1.3 to −4.4, and of −7.7 to −14, respectively. Hf isotopic model ages and presence of inherited zircons indicate their derivation from Mesoproterozoic and Paleoproterozoic crust, respectively. Given the time lag relative to the plume impact (∼260 Ma) and insignificant mantle contribution to 255-238 Ma magmatism, conductive heating is suggested as the trigger of crustal melting that resulted in formation of delayed felsic magmas. The involvement of older crust in younger felsic magmas is consistent with upward heat transfer to the lithosphere during plume impregnation, if the age of crust is inversely stratified, i.e., changes from Paleoproterozoic to Mesoproterozoic to Neoproterozoic to Permian with increasing depth. Such crust may have resulted from episodic, downward crustal growth during the evolution of the western Yangtze Craton.  相似文献   

20.
杨红  刘福来  杜利林  刘平华  王舫 《岩石学报》2012,28(9):2994-3014
大红山群是扬子地台西缘相对较老的地层单元,普遍经历了绿片岩相-低角闪岩相变质作用。其中部的曼岗河组、红山组已获得古元古代晚期~1.68Ga的成岩年龄,其底部的老厂河组却未有相关年龄的报道。大红山群的变质时代目前也无精确的年龄结果。本文以老厂河组厚层变质沉积岩中的薄层变质火山岩样品为研究对象,在岩相学研究的基础上,运用LA-ICP-MS方法对变质火山岩锆石进行原位U-Pb同位素定年及相关的微量、稀土元素测试,获得变质火山岩的原岩年龄和变质年龄:(1)老厂河组变质中酸性岩和变质基性岩中岩浆锆石微区的207Pb/206Pb加权平均年龄分别为1711±4Ma和1686±4Ma,限定老厂河组的形成年龄范围为1711~1686Ma;(2)变质基性岩(石榴斜长角闪岩)中变质锆石的206Pb/238U年龄为849±12Ma。本文结果表明,大红山群的形成时代可提早至1711±4Ma,又一次证明了扬子地台西缘古老结晶基底的存在;大红山群在~850Ma经历了一期新元古代变质事件,这期变质可能是与扬子地台西缘新元古代岩浆事件有关的区域变质事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号