首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The newly formed continental crust in southern Kamchatka was created as a result of the Eocene collision of the Cretaceous-Paleocene Achaivayam-Valagin island arc and the northeastern Asian margin. Widespread migmatization and granite formation accompanied this process in the Sredinny Range of Kamchatka. The tectonic setting and composition of granitic rocks in the Malka Uplift of the Sredinny Range are characterized in detail, and the U-Pb (SHRIMP) zircon ages are discussed. Two main stages of granite formation—Campanian (80–78 Ma ago) and Eocene (52 ± 2 Ma ago) have been established. It may be suggested that granite formation in the Campanian was related to the partial melting of the accretionary wedge due to its under-plating by mafic material or to plunging of the oceanic ridge beneath the accretionary wedge. The Eocene granitic rocks were formed owing to the collision of the Achaivayam-Valagin ensimatic island arc with the Kamchatka margin of Eurasia. In southern Kamchatka (Malka Uplift of the Sredinny Range), the arc-continent collision started 55–53 Ma ago. As a result, the island-arc complexes were thrust over terrigenous sequences of the continental margin. The thickness of the allochthon was sufficient to plunge the autochthon to a considerable depth. The autochthon and the lower portion of the allochthon underwent high-grade metamorphism followed by partial melting and emplacement of granitic magma 52 ± 2 Ma ago. The anomalously rapid heating of the crust was probably caused by the ascent of asthenospheric magma initiated by slab breakoff, while the Eurasian Plate plunged beneath the Achaivayam-Valagin arc.  相似文献   

2.
The possible scenarios of accretion of ancient ensimatic island arcs in the eastern and western frameworks of the Pacific Ocean are discussed. It is concluded that the accretion of ensimatic island arcs can occur at both the lithospheric and crustal (upper crustal) levels. In the case of lithospheric accretion, the subduction zone is jammed and the island-arc edifice is attached to the continent. During crustal-level accretion, the subduction of the lithosphere that underlies the island arc can develop further, thereby leading to the formation of a suprasubduction volcanic-plutonic belt at the continental margin.  相似文献   

3.
The integral data on structural position, age, and paleo-geodynamic setting of Mesozoic and Cenozoic granitoid complexes in northeast Asia make it possible to divide them into preaccretionary, accretionary, and postaccretionary groups participating in the structure of the accretionary-type continental margin. The preaccretionary granitoids are members of volcanic-plutonic associations of ensimatic island arcs or suprasubduction ophiolitic complexes, which mark the onset of growth of the granitic-metamorphic layer in the future continental crust. The accretionary granitoids emplaced during the accretion of diverse rock complexes to the continental margin and are localized in its frontal zone, where granitic-metamorphic layer grows further. The postaccretionary granitoid plutons of the marginal continental volcanic-plutonic belts seal up fold-nappe structures, determining the upper age limit of accretion and deformation. The origin of postaccretionary granitoids is related to remelting of older heterogeneous accretionary-island arc crust.  相似文献   

4.
The eastern peninsulas of Kamchatka are mostly composed of tectonostratigraphic complexes, which were formed within the Late Cretaceous-Eocene Kronotskii-Kamchatka arc. The accretion of this paleoarc to the Kamchatka margin of northeastern Asia in the terminal Cenozoic represented the last collisional event in the formation of the present-day structure of Kamchatka. The article presents new data on the age, composition, and structure of the tectonostratigraphic complexes constituting the southern segment of the Kronotskii-Kamchatka paleoarc. It is shown that the oldest rocks of these complexes are the Campanian in age and represented by volcano-sedimentary rocks that were formed in different geodynamic environments. The investigated igneous rocks are attributed to two types: (1) the tholeiite series of a mid-oceanic ridge (MOR) (Vetlovaya Complex); (2) tholeiite and calc-alkaline series of island arcs (Shipunskii Sequence of the Kronotskii Group).  相似文献   

5.
Cenozoic geodynamics of the Bering Sea region   总被引:1,自引:0,他引:1  
In the Early Cenozoic before origination of the Aleutian subduction zone 50–47 Ma ago, the northwestern (Asian) and northeastern (North American) parts of the continental framework of the Pacific Ocean were active continental margins. In the northwestern part, the island-arc situation, which arose in the Coniacian, remained with retention of the normal lateral series: continent-marginal sea-island arc-ocean. In the northeastern part, consumption of the oceanic crust beneath the southern margin of the continental Bering shelf also continued from the Late Cretaceous with the formation of the suprasubduction volcanic belt. The northwestern and northeastern parts of the Paleopacific were probably separated by a continuation of the Kula-Pacific Transform Fracture Zone. Change of the movement of the Pacific oceanic plates from the NNW to NW in the middle Eocene (50–47 Ma ago) was a cause of the origin of the Aleutian subduction zone and related Aleutian island arc. In the captured part of the Paleopacific (proto-Bering Sea), the ongoing displacement of North America relative to Eurasia in the middle-late Eocene gave rise to the formation of internal structural elements of the marginal sea: the imbricate nappe structure of the Shirshov Ridge and the island arc of the Bowers Ridge. The Late Cenozoic evolution was controlled by subduction beneath the Kamchatka margin and its convergence with the Kronotsky Terrane in the south. A similar convergence of the Koryak margin with the Goven Terrane occurred in the north. The Komandorsky minor oceanic basin opened in the back zone of this terrane. Paleotectonic reconstructions for 68–60, 56–52, 50–38, 30–15, and 15–6 Ma are presented.  相似文献   

6.
《Gondwana Research》2013,24(4):1402-1428
The formation of collisional orogens is a prominent feature in convergent plate margins. It is generally a complex process involving multistage tectonism of compression and extension due to continental subduction and collision. The Paleozoic convergence between the South China Block (SCB) and the North China Block (NCB) is associated with a series of tectonic processes such as oceanic subduction, terrane accretion and continental collision, resulting in the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt. While the arc–continent collision orogeny is significant during the Paleozoic in the Qinling–Tongbai–Hong'an orogens of central China, the continent–continent collision orogeny is prominent during the early Mesozoic in the Dabie–Sulu orogens of east-central China. This article presents an overview of regional geology, geochronology and geochemistry for the composite orogenic belt. The Qinling–Tongbai–Hong'an orogens exhibit the early Paleozoic HP–UHP metamorphism, the Carboniferous HP metamorphism and the Paleozoic arc-type magmatism, but the three tectonothermal events are absent in the Dabie–Sulu orogens. The Triassic UHP metamorphism is prominent in the Dabie–Sulu orogens, but it is absent in the Qinling–Tongbai orogens. The Hong'an orogen records both the HP and UHP metamorphism of Triassic age, and collided continental margins contain both the juvenile and ancient crustal rocks. So do in the Qinling and Tongbai orogens. In contrast, only ancient crustal rocks were involved in the UHP metamorphism in the Dabie–Sulu orogenic belt, without involvement of the juvenile arc crust. On the other hand, the deformed and low-grade metamorphosed accretionary wedge was developed on the passive continental margin during subduction in the late Permian to early Triassic along the northern margin of the Dabie–Sulu orogenic belt, and it was developed on the passive oceanic margin during subduction in the early Paleozoic along the northern margin of the Qinling orogen.Three episodes of arc–continent collision are suggested to occur during the Paleozoic continental convergence between the SCB and NCB. The first episode of arc–continent collision is caused by northward subduction of the North Qinling unit beneath the Erlangping unit, resulting in UHP metamorphism at ca. 480–490 Ma and the accretion of the North Qinling unit to the NCB. The second episode of arc–continent collision is caused by northward subduction of the Prototethyan oceanic crust beneath an Andes-type continental arc, leading to granulite-facies metamorphism at ca. 420–430 Ma and the accretion of the Shangdan arc terrane to the NCB and reworking of the North Qinling, Erlangping and Kuanping units. The third episode of arc–continent collision is caused by northward subduction of the Paleotethyan oceanic crust, resulting in the HP eclogite-facies metamorphism at ca. 310 Ma in the Hong'an orogen and low-P metamorphism in the Qinling–Tongbai orogens as well as crustal accretion to the NCB. The closure of backarc basins is also associated with the arc–continent collision processes, with the possible cause for granulite-facies metamorphism. The massive continental subduction of the SCB beneath the NCB took place in the Triassic with the final continent–continent collision and UHP metamorphism at ca. 225–240 Ma. Therefore, the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt records the development of plate tectonics from oceanic subduction and arc-type magmatism to arc–continent and continent–continent collision.  相似文献   

7.
An extended Vendian-Cambrian island-arc system similar to the Izu-Bonin-Mariana type is described in the Gorny Altai terrane at the margin of the Siberian continent.

Three different tectonic stages in the terrane are recognized. (1) A set of ensimatic active margins including subducted oceanic crust of the Paleo-Asian ocean, the Uimen-Lebed primitive island arc, oceanic islands and seamounts: the set of rocks is assumed to be formed in the Vendian. (2) A more evolved island arc comprising calc-alkaline volcanics and granites: a fore-arc trough in Middle-late Cambrian time was filled with disrupted products of pre-Middle Cambrian accretionary wedges and island arcs. (3) Collision of the more evolved island arc with the Siberian continent: folding, metamorphism and intrusion of granites occurred in late Cambrian-early Ordovician time.

In the late Paleozoic, the above-mentioned Caledonian accretion-collision structure of the Siberian continent was broken by large-scale strike-slip faults into several segments. This resulted in the formation of a typical mosaic-block structure.  相似文献   


8.
《International Geology Review》2012,54(12):1076-1087
The Yuli belt of eastern Taiwan comprises a Late Cretaceous subduction complex of exotic blocks enclosed within blackschist. The latter yield TDM model ages of 1500 to 1700 Ma identical to Taiwan sediments, indicating a derivation from basement strata of the Eurasian continental margin. Of the three exotic blocks in the Juisui area, the Tamayen and Tsunkuanshan represent fragments of island-arc assemblages. Meta-igneous rocks in these blocks have compositions from basalt to andesite and have εNd(100 Ma) values ranging from +1.0 to +10.4, and in the Tamayen block are associated with a deep-sea sediment assemblage. The latter has the chemical and isotopic characteristics of oceanic red clays and tuffaceous material, and has been metamorphosed to glaucophane schist on accretion of the arc material to the Eurasian continental margin. In the Tsunkuanshan and Wuho blocks, the sediment assemblage is blackschist similar to that in the Yuli belt, suggesting that these blocks either originated close to the continental margin or underwent severe disruption on accretion. Meta-igenous rocks in the Wuho block are tholeiites of probable ocean-island affinity, and have εNd(100 Ma) values of + 5.5 to + 6.0. In contrast to the Sm-Nd system, Rb-Sr isotype systematics have been variably reset in all three blocks and the surrounding Yuli blackschists during crustal accretion and subsequent metamorphism. The volume of juvenile relative to continental-derived sediment in the Yuli belt is consistent with the notion that much young continental crust is recycled material. Of the juvenile material, approximately 75% is derived from island arcs, with the remaining percentage comprising ocean islands and other ocean-floor material.  相似文献   

9.
We suggest a more rigorous approach to paleogeodynamic reconstructions of the Sayan-Baikal folded area proceeding from update views of the origin and evolution of island arcs and back-arc basins. Modern island arcs and attendant back-arc basins form mainly by trench rollback caused by progressive subduction of negatively buoyant thick and cold oceanic slabs. Slab stagnation upsets the dynamic equilibrium in the subduction system, which accelerates the rollback. As a result, a continental volcanic arc transforms into an island arc, with oceanic crust production in the back-arc basin behind it. As subduction progresses, the island arc and the back-arc basin may deform, and fold-thrust structures, with the involved back-arc basin and island arc complexes, may accrete to the continent (accretion and collision) without participation of large colliding blocks. When applied to the Sayan–Baikal area, the model predicts that the Riphean and Vendian–Early Paleozoic back-arc basins were more active agents in the regional geologic history than it was thought before. They were deposition areas of sedimentary and volcanosedimentary complexes and then became the scene of collision and accretion events, including folding, metamorphism, and plutonism.  相似文献   

10.
The operation and extent of modern-style plate tectonics in the Archean and Paleoproterozoic are controversial, although subduction and terrane accretion models have been proposed for most Archean cratons in the world, including both the Yilgarn and Pilbara Cratons of Western Australia. The recognition of ancient island arcs can be used to infer convergent plate margin processes, and in this paper we present evidence for the existence of several intraoceanic island arcs now preserved in Australia. Beginning in the Archean, Australia evolved to its present configuration through the accretion and assembly of several continental blocks, by convergent plate margin processes. In Australia, possibly the best example of an Archean island arc (or primitive continental arc) is preserved within the Mesoarchean (ca. 3130–3112 Ma) Whundo Group in the Sholl Terrane of the West Pilbara Superterrane. Two younger, Neoarchean, island arc terranes, and associated accretion, have also been proposed for the Yilgarn Craton: the Saddleback island arc (ca. 2714–2665 Ma) in the southwest Yilgarn Craton and the Kurnalpi island arc (ca. 2719–2672 Ma) in the eastern Yilgarn Craton. In the early Proterozoic, in the Central Zone of the Halls Creek Orogen, northern Western Australia, the Tickalara Metamorphics (ca. 1865–1850 Ma) have been interpreted to represent an island arc. In the southwest Gawler Craton in South Australia, the St Peter Suite (ca. 1631–1608 Ma), of juvenile I-type calcalkaline tonalite to granodiorite, possibly represents an island arc. In the Musgrave Province in central Australia, age and geochemical constraints are poor due to later overprinting tectonic events, but felsic orthogneisses (ca. 1607–1565 Ma) possibly represent juvenile felsic crust which was emplaced though subduction-related processes into an oceanic island arc. The arcs are volumetrically insignificant, but important, in that they separate much larger tracts of, usually older, continental crust, often of different composition and geological history. The arcs were sutured to continental crust during arc–continent collisional events, which eventually resulted in the assembly of much of present-day Australia. The arcs, thus, indicate lost oceanic crust. The recognition of island arcs in the ancient rock record indicates that subduction processes, similar in many ways to modern day processes at convergent plate margins, were operating on Earth by at least 3100 Ma ago.  相似文献   

11.
西北太平洋岛弧系列成因的探讨   总被引:5,自引:0,他引:5  
西北太平洋岛弧系列中的各岛弧(除马里亚纳岛弧为洋壳型弧外)均由陆壳型弧和洋壳型弧组成,并且左端与大陆相连,右端被后形成的岛弧所截。整个岛弧系列,从中生代末期开始发育至今,由北向南依次发展,规律明显。  相似文献   

12.
The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic, and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks.  相似文献   

13.
Mantle peridotites from the Western Pacific   总被引:1,自引:0,他引:1  
We review petrographical and petrological characteristics of mantle peridotite xenoliths from the Western Pacific to construct a petrologic model of the lithospheric mantle beneath the convergent plate boundary. The peridotite varies from highly depleted spinel harzburgite of low-pressure origin at the volcanic front of active arcs (Avacha of Kamchatka arc and Iraya of Luzon–Taiwan arc) to fertile spinel lherzolite of high-pressure origin at the Eurasian continental margin (from Sikhote-Alin through Korea to eastern China) through intermediate lherzolite–harzburgite at backarc side of Japan island arcs. Oxygen fugacity recorded by the peridotite xenoliths decreases from the frontal side of arc to the continental margin. The sub-arc type peridotite is expected to exist beneath the continental margin if accretion of island arc is one of the important processes for continental growth. Its absence suggests replacement by the continental lherzolite at the region of backarc to continental margin. Asthenospheric upwelling beneath the continental region, which has frequently occurred at the Western Pacific, has replaced depleted sub-cratonic peridotite with the fertile spinel lherzolite. Some of these mantle diapirs had opened backarc basins and strongly modified the lithospheric upper mantle by metasomatism and formation of Group II pyroxenites.  相似文献   

14.
Abstract: Age of magmatism and tin mineralization in the Khingan‐Okhotsk volcano–plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote‐Alin volcano–plutonic belt dominated by oxidized‐type rocks and gold mineralization. The northern end of the Khingan‐Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote‐Alin belt. Tin–associated magmatism in the Khingan‐Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka‐Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan‐Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous‐Paleogene long–lasted magmatism in Sikhote–Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin‐associated magmatism may have been caused by the subduction of a young and hot back‐arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre‐tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced‐type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back‐arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote–Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo‐Pacific plates under Eurasian continent.  相似文献   

15.
The Western Cordillera of Colombia (WCC) is part of the Basic Igneous Complex (BIC), which is one of the world's largest ophiolitic complexes, extending from Costa Rica through Panama and Colombia to Ecuador. Major and trace element data on 32 volcanic rocks from the central and northern parts of the Western Cordillera are presented; no data have been available to date for volcanic rocks from the northern parts of the Western Cordillera. Petrographical and geochemical investigations show that the rocks are altered and have undergone low-grade metamorphism. The subalkaline rocks are represented by tholeiitic basalts, calc-alkaline basic andesites, andesites, and one dacite. It is concluded that a mature oceanic island arc existed in the Cretaceous, in what is now the northern part of the Western Cordillera. The tectonics of the region, particularly the intensive imbrication of the chain, indicates the presence of a paleo-subduction zone with an oceanic island arc that accreted on the old continental margin. These new data, combined with new and previous data from the central part of the BIC of Colombia, suggest that volcanic rocks of the Western Cordillera can be interpreted as allochthonous slabs. These slabs were imbricated with back-arc and fore-arc sediments and tonalitic bodies during the closing of a back-arc basin in northwestern South America and accretion of an oceanic island arc. Oblique subduction accreted these different areas to the continental margin during Late Cretaceous and early Tertiary times. Two plate-tectonic models are proposed: a) development of the calc-alkaline volcanic rocks in the northern parts of the Western Cordillera, separated by tholeiitic rocks, formed along a transform fault represented by the tholeiitic basalts of the central and southern parts of the Western Cordillera; or b) development of an oceanic island arc along the Cretaceous continental margin of northwestern South America. In the central and southern parts of this island arc, accretion took place early and therefore only an island-arc tholeiitic suite was formed.  相似文献   

16.
A model of the Cambrian evolution of the Paleozoides in Kazakhstan is presented on the basis of consideration of Cambrian rock complexes. The Middle Cambrian collision of an island arc and a passive continental margin was the main event of this evolution. Three stages of the Paleozoides evolution are recognized in the Cambrian. The first, precollision stage embraces a time span from the Early Cambrian to the first half of the Amgian Age of the Middle Cambrian in which the following elements of the continent-ocean transitional zone may be reconstructed: passive continental margin-backarc basin with oceanic crust-island arc-oceanic basin. At the second, collision stage (the second half of the Amgian Age), the backarc basin was closed and the continental margin and island arc collided, forming a suture zone. At the third, postcollision stage (the Mayan Age of the Middle Cambrian-Early Ordovician), the structure of the convergent margin was complicated. The volcanic belt started to develop on the accreted continental margin. A system of ensimatic island arcs originated at the same time and migrated toward the outer basin. The active rifting was typical of the inner part of the continental margin.  相似文献   

17.
The volcano-sedimentary succession around Wadi Zaghra in Sinai, at the northernmost segment of the Arabian Nubian Shield, comprises volcanic rocks interbedded with rather immature sediments. The succession is dominated by intermediate to silicic volcanics of medium-to high-K calc-alkaline affinity. It is divided into two units, the lower unit includes intermediate rocks and dacites interbedded with graywackes, semi-pelites and pelites and topped by polymict conglomerates. This unit is subjected to folding and regional metamorphism(up to garnet zone) and is intruded by quartz diorite-granodiorite inducing, locally, low-pressure contact thermal metamorphism. The unmetamorphosed upper unit encompasses acid volcanics intercalated with litharenite, sublitharenite and minor arenite. The rhyolites of this unit pertain to the highly fractionated granites and are characterized by an agpaitic index(NK/A) ranging from 0.87 to 0.96. They may reflect either extensive interaction of subduction-related magmas with the continental crust or a change in the tectonic regime. The present lithological and geochemical characteristics of the studied sediments together with available zircon ages indicate rather distal provenance of their detritus. This detritus comprises fluvial-alluvial sediments accumulated in the intermontane basins, which are half-grabens or tilted fault blocks. The tectonic setting of the depositional basins is active continental margin and continental island arcs. Geochemical patterns of the Zaghra volcano-sedimentary succession indicate their correlation with the Dokhan Volcanics-Hammamat Clastics sequence of the Eastern Desert of Egypt. Also, the Zaghra volcanics display geochemical similarities with those exposed in Sinai, at the Rutig, Ferani and Iqna Shar'a areas. The Zaghra succession is dated as Ediacaran but is not related either to the ensimatic island arc assemblage or to the rift-related assemblage formed during the early stages of the break-up of Rodinia as previously thought.  相似文献   

18.
It has been established that volcanic rocks of the Schmidt, Rymnik, and Terpeniya terranes are fragments of the compound Early to Late Cretaceous-Paleogene East Sakhalin island arc system of the Sea of Okhotsk region. This island arc paleosystem was composed of back-arc volcano-plutonic belt, frontal volcanic island arc, fore-arc, inter-arc, and back-arc basins, and the Sakhalin marginal paleobasin. The continental volcanic rocks dominate in the back-arc volcano-plutonic belt and frontal volcanic island arc. The petrochemical composition of basalts, basaltic andesites, andesites, and trachytes from the frontal island arc formed in submarine conditions are typical of oceanic island arc or marginal sea rocks (IAB). The petrochemical composition of volcanic rocks from the island arc structures indicates its formation on the heterogeneous basement including the continental and oceanic blocks.  相似文献   

19.
The Aleutian island arc collides with the Kuril–Kamchatka arc in the area of the Cape Kamchatka peninsula. Field studies of neotectonic structures and apatite fission track analysis provide evidence for crustal plate shortening onshore the Cape Kamchatka peninsula. Tectonic blocks show differential mean exhumation rates varying from 0.18 ± 0.04 mm yr−1 in the north up to 1.2 ± 0.18 mm yr−1 in the south of the peninsula. A few of the fission track length data point to an unsteady exhumation rate. The blocks are separated by major dextral fault zones splaying off from Aleutian island arc fault zones. Across the western segment of the North American–Pacific Plate boundary the strain is partitioned along the fault zones and increases from north to south. Results from this study suggest that indentation and accretion of island arc fragments has recently occurred in the southeastern part of the Cape Kamchatka peninsula.  相似文献   

20.
The paper presents the results of reconstruction of Middle Eocene provenances for the West Kamchatka sedimentary basin (WKSB) corresponding to the Tigil area. It has been established that the early (Eocene) evolution stage of WKSB was marked by the deposition of terrigenous sediments in intermontane depressions followed by the accumulation of shallow-marine sediments after transgression. In terms of the composition, sandstones of the Middle Eocene Snatol Formation correspond to graywackes. With respect to the geochemistry of sandstones, their provenances were confined to an active continental margin and island arc. The mineral composition of the heavy fraction suggests an alternating dominance of felsic and mafic rocks in the provenances. Dating of the clastic zircon from sandstones of the Snatol Formation by the LA-ICP-MS method revealed a wide variation range of their age. The most significant peak is close to the age of calc-alkaline magmatism in the Okhotsk–Chukotka volcanic belt. This fact provides insight into the Eocene paleogeography: the major rock provenances were located in the Okhotsk–Chukotka volcanic belt and the eastern Achaivayam–Valagin island arc. Local sources of clastic material were represented by the Utkholok and Kinkil volcanic belts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号