共查询到20条相似文献,搜索用时 13 毫秒
1.
Shi-Hua Sang Rui-Zhi Cui Xue-Ping Zhang Kai-Jie Zhang 《Geochemistry International》2017,55(12):1131-1139
According to the compositions of the underground brine resources in the west of Sichuan Basin, solubilities of the ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were investigated by isothermal method at 348 K. The equilibrium solid phases, solubilities of salts, and densities of the solutions were determined. On the basis of the experimental data, the phase diagrams and the density-composition diagrams were plotted. In the two ternary systems, the phase diagrams consist of two univariant curves, one invariant point and two crystallization fields. Neither solid solution nor double salts were found. The equilibrium solid phases in the ternary system NaBr–Na2SO4–H2O are NaBr and Na2SO4, and those in the ternary system KBr–K2SO4–H2O are KBr and K2SO4. Using the solubilities data of the two ternary subsystems at 348 K, mixing ion-interaction parameters of Pitzer’s equation θxxx, Ψxxx and Ψxxx were fitted by multiple linear regression method. Based on the chemical model of Pitzer’s electrolyte solution theory, the solubilities of phase equilibria in the two ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were calculated with corresponding parameters. The calculation diagrams were plotted. The results showed that the calculated values have a good agreement with experimental data. 相似文献
2.
3.
A new oxygen-deficient perovskite with the composition Ca(Fe0.4Si0.6)O2.8 has been synthesised at high-pressure and -temperature conditions relevant to the Earths transition zone using a multianvil apparatus. In contrast to pure CaSiO3 perovskite, this new phase is quenchable under ambient conditions. The diffraction pattern revealed strong intensities for pseudocubic reflections, but the true lattice is C-centred monoclinic with a=9.2486 Å, b=5.2596 Å, c=21.890 Å and =97.94°. This lattice is only slightly distorted from rhombohedral symmetry. Electron-diffraction and high-resolution TEM images show that a well-ordered ten-layer superstructure is developed along the monoclinic c* direction, which corresponds to the pseudocubic [111] direction. This unique type of superstructure likely consists of an oxygen-deficient double layer with tetrahedrally coordinated silicon, alternating with eight octahedral layers of perovskite structure, which are one half each occupied by silicon and iron as indicated by Mössbauer and Si K electron energy loss spectroscopy. The maximum iron solubility in CaSiO3 perovskite is determined at 16 GPa to be 4 at% on the silicon site and it increases significantly above 20 GPa. The phase relations have been analysed along the join CaSiO3–CaFeO2.5, which revealed that no further defect perovskites are stable. An analogous phase exists in the aluminous system, with Ca(Al0.4Si0.6)O2.8 stoichiometry and diffraction patterns similar to that of Ca(Fe0.4Si0.6)O2.8. In addition, we discovered another defect perovskite with Ca(Al0.5Si0.5)O2.75 stoichiometry and an eight-layer superstructure most likely consisting of a tetrahedral double layer alternating with six octahedral layers. The potential occurrence of all three defect perovskites in the Earths interior is discussed. 相似文献
4.
V. M. Gurevich O. L. Kuskov N. N. Smirnova K. S. Gavrichev A. V. Markin 《Geochemistry International》2009,47(12):1170-1179
The heat capacity of eskolaite Cr2O3(c) was determined by adiabatic vacuum calorimetry at 11.99–355.83 K and by differential calorimetry at 320–480 K. Experimental data of the authors and data compiled from the literature were applied to calculate the heat capacity, entropy, and the enthalpy change of Cr2O3 within the temperature range of 0–1800 K. These functions have the following values at 298.15 K: C p 0 (298.15) = 121.5 ± 0.2 J K−1mol−1, S 0(298.15) = 80.95 ± 0.14 J K−1mol−1, and H 0(298.15)-H 0(0) = 15.30±0.02 kJ mol−1. Data were obtained on the transitions from the antiferromagnetic to paramagnetic states at 228–457 K; it was determined that this transition has the following parameters: Neel temperature T N = 307 K, Δ tr S = 6.11 ± 0.12 J K−1mol−1 and δ tr H = 1.87 ± 0.04 kJ mol−1. 相似文献
5.
6.
7.
8.
The phase state of the fluid in the H2O–KF ± KCl ± NaF system is studied in the presence of quartz for an experimental assay of the mutual influence of various salts of the fluid-forming mixture on heterogeneous fluid equilibria. The fluid inclusions were synthesized in quartz by the fracture healing method from solutions with KF + KCl and KF + NaF mixtures at 1 or 2 kbar and 700, 750, or 800°C. The results of the fluid inclusion study indicate a heterogeneous state of the fluid and variation in the fluid composition during experiments as a result of its interaction with quartz. The increase in temperature and pressure, as well as variation in the proportions of the salt contents in the fluid-forming mixture, changed the course of chemical reactions. After all the experiments, a glassy phase was observed in some types of inclusions. It is known that aqueous KF or KCl solutions, the solubility of which increases during heating, are characterized by phase equilibria of systems of the first type (Valyashko, 1990), when liquid and vapor are equilibrated for a heterogeneous state of the fluid. In this case, some inclusions should homogenize to vapor. However, no similar inclusions were observed in contrast to denser fluid phases (liquids), which are typical of the upper heterogeneous area of systems of the second (P–Q) type. Some inclusions host solid phases, the solubility of which decreases as the temperature increases. The results of experiments in the presence of KF + NaF solutions showed that the amount of inclusions of heterogeneous entrapment increases at higher temperatures simultaneously with a decrease in the H2O content of the glassy phase. 相似文献
9.
The NaF effect on microlite solubility at 800°C and 170, 200, and 230 MPa is studied experimentally. The immiscibility boundaries and compositions of fluid phases L1 and L2 are defined in the system NaF–H2O at 800°C. It is established that microlite solubility increase in the L1 phase, as compared with a homogeneous solution, is explained by the appearance in the L1 phase of “free” HF in an amount of 0.025 ± 0.003 mol kg–1 H2O. The model of “acidification” L1 and “alkalizing” L2 is supposed. 相似文献
10.
We have experimentally investigated the kinetics of melting of an aplitic leucogranite (quartz+sodic plagioclase of ≈Ab90+K-feldspar+traces of biotite) at 690, 740, and 800°C, all at 200 MPa H2O. Leucogranite cylinders, 3.5 mm in diameter and 7 mm in length, were run in the presence of excess H2O using cold-seal pressure vessels for 11–2,925 h. At 690 and 740°C and any experimental time, and 800°C and short run times, silicate glass (melt at run conditions) occurs as interconnected films along most of the mineral boundaries and in fractures, with the predominant volume occurring along quartz/feldspars boundaries and quartz/plagioclase/K-feldspar triple junctions. Glass film thickness is roughly constant throughout a given experimental charge and increases with experimental temperature and run duration. The results indicate that H2O-saturated partial melting of a quartzo-feldspathic protolith will produce an interconnected melt phase even at very low degrees (<5 vol%) of partial melting. Crystal grain boundaries are therefore completely occluded with melt films even at the lowest degrees of partial melting, resulting in a change in the mechanism of mass transport through the rock from advection of aqueous vapor to diffusion through silicate melt. At 690 and 740°C the compositions of glasses are homogeneous and (at both temperatures) close to, but not on, the H2O-saturated 200 MPa haplogranite eutectic; glass compositions do not change with run duration. At 800°C glasses are heterogeneous and plot away from the minimum, although their molar ratios ASI (=mol Al2O3/CaO+Na2O+K2O) and Al/Na are constant throughout the entire charge at any experimental time. Glass compositions within individual 800°C experiments form linear trends in (wt%) normative quartz–albite–orthoclase space. The linear trends are oriented perpendicular to the 200 MPa H2O haplogranite cotectic line, reflecting nearly constant albite/orthoclase ratio versus variable quartz/feldspar ratio, and have endpoints between the 800°C isotherms on the quartz and feldspar liquidus surfaces. With increasing experimental duration the trends migrate from the potassic side of the minimum toward the bulk rock composition located on the sodic side, due to more rapid (and complete) dissolution of K-feldspar relative to plagioclase. The results indicate that partial melting at or slightly above the solidus (690–740°C) is interface reaction-controlled, and produces disequilibrium melts of near-minimum composition that persist metastably for up to at least 3 months. Relict feldspars show no change in composition or texture, and equilibration between melt and feldspars might take from a few to tens of millions of years. Partial melting at temperatures well above the solidus (800°C) produces heterogeneous, disequilibrium liquids whose compositions are determined by the diffusive transport properties of the melt and local equilibrium with neighboring mineral phases. Feldspars recrystallize and change composition rapidly. Partial melting and equilibration between liquids and feldspars might take from a few to tens of years (H2O-saturated conditions) at these temperatures well above the solidus. 相似文献
11.
K. S. Gavrichev M. A. Ryumin A. V. Tyurin V. M. Gurevich L. N. Komissarova 《Geochemistry International》2010,48(4):390-397
The heat capacity of synthetic pretulite ScPO4(c) was measured by adiabatic calorimetry within a temperature range of 12.13–345.31 K, and the temperature dependence of
the pretulite heat capacity at 0–1600 K was derived from experimental and literature data on H
0(T)-H
0(298.15 K) for Sc orthophosphate. This dependence was used to calculate the values of the following thermodynamic functions:
entropy, enthalpy change, and reduced Gibbs energy. They have the following values at 298.15 K: C
p
0 (298.15 K) = 97.45 ± 0.06 J K−1 mol−1, S
0(298.15 K) = 84.82 ± 0.18 J K−1 mol−1, H
0(298.15 K)-H
0(0) = 14.934 ± 0.016 kJ mol−1, and Φ
0(298.15 K) = 34.73 ± 0.19 J K−1mol−1. The enthalpy of formation Δ
f
H
0(ScPO4, 298.15 K) = − 1893.6 ± 8.4 kJ mol−1. 相似文献
12.
K. S. Gavrichev M. A. Ryumin A. V. Tyurin V. M. Gurevich L. N. Komissarova 《Geochemistry International》2010,48(9):932-939
The heat capacity of xenotime YPO4(c) was measured by adiabatic calorimetry at 4.78–348.07 K. Our experimental and literature data on H
0(T)-H
0(298.15 K) of Y orthophosphate were utilized to derive the C
p
0(T) function of xenotime at 0–1600 K, which was then used to calculate the values of thermodynamic functions: entropy, enthalpy
change, and reduced Gibbs energy. These functions assume the following values at 298.15 K: C
p
0 (298.15 K) = 99.27 ± 0.02 J K−1 mol−1, S
0(298.15 K) = 93.86 ± 0.08 J K−1 mol−1, H
0(298.15 K) − H
0(0) = 15.944 ± 0.005 kJ mol−1, Φ0(298.15 K) = 40.38 ± 0.08 J K−1 mol−1. The value of the free energy of formation Δ
f
G
0(YPO4, 298.15 K) is −1867.9 ± 1.7 kJ mol−1. 相似文献
13.
We carried out reversed piston-cylinder experiments on the equilibrium paragonite = jadeite + kyanite + H2O at 700°C, 1.5–2.5 GPa, in the presence of H2O-NaCl fluids. Synthetic paragonite and jadeite and natural kyanite were used as starting materials. The experiments were performed on four different nominal starting compositions: X(H2O)=1.0, 0.90, 0.75 and 0.62. Reaction direction and extent were determined from the weight change in H2O in the capsule, as well as by optical and scanning electron microscopy (SEM). At X(H2O)=1.0, the equilibrium lies between 2.25 and 2.30 GPa, in good agreement with the 2.30–2.45 GPa reversal of Holland (Contrib Miner Petrol 68:293–301, 1979). Lowering X(H2O) decreases the pressure of paragonite breakdown to 2.10–2.20 GPa at X(H2O)=0.90 and 1.85–1.90 GPa at X(H2O)=0.75. The experiments at X(H2O) = 0.62 yielded the assemblage albite + corundum at 1.60 GPa, and jadeite + kyanite at 1.70 GPa. This constrains the position of the isothermal paragonite–jadeite–kyanite–albite–corundum–H2O invariant point in the system Na2O–Al2O3–SiO2–H2O to be at 1.6–1.7 GPa and X(H2O)~0.65±0.05. The data indicate that H2O activity, a(H2O), is 0.75–0.86, 0.55–0.58, and <0.42 at X(H2O)=0.90, 0.75, and 0.62, respectively. These values approach X(H2O)2, and agree well with the a(H2O) model of Aranovich and Newton (Contrib Miner Petrol 125:200–212, 1996). Our results demonstrate that the presence or absence of paragonite can be used to place limits on a(H2O) in high-pressure metamorphic environments. For example, nearly pure jadeite and kyanite from a metapelite from the Sesia Lanzo Zone formed during the Eo-Alpine metamorphic event at 1.7–2.0 GPa, 550–650°C. The absence of paragonite requires a fluid with low a(H2O) of 0.3–0.6, which could be due to the presence of saline brines. 相似文献
14.
Julien Gasc Fabrice Brunet Nikolai Bagdassarov Victor Morales-Flórez 《Physics and Chemistry of Minerals》2011,38(7):543-556
The effect of intergranular water on the conductivity of polycrystalline brucite, Mg(OH)2, was investigated using impedance spectroscopy at 2 GPa, during consecutive heating–cooling cycles in the 298–980 K range.
The grain boundary hydration levels tested here span water activities from around unity (wet conditions) down to 10−4 (dry conditions) depending on temperature. Four orders of magnitude in water activity result in electrical conductivity variations
for about 6–7 orders of magnitude at 2 GPa and room temperature. Wet brucite samples containing, initially, about 18 wt% of
evaporable water (i.e. totally removed at temperatures below 393 K in air), display electrical conductivity values above 10−2–10−3 S/m. A.C. electrical conductivity as a function of temperature follows an Arrhenius behaviour with an activation energy of
0.11 eV. The electrical conductivity of the same polycrystalline brucite material dried beforehand at 393 K (dry conditions)
is lower by about 5–6 orders of magnitude at room temperature and possesses an activation energy of 0.8–0.9 eV which is close
to that of protonic diffusion in (001) brucitic planes. Above ca. 873 K, a non-reversible conductivity jump is observed which
is interpreted as a water transfer from mineral bulk to grain boundaries (i.e. partial dehydration). Cooling of such partially
dehydrated sample shows electrical conductivities much higher than those of the initially dry sample by 4 orders of magnitude
at 500 K. Furthermore, the corresponding activation energy is decreased by a factor of about four (i.e. 0.21 eV). Buffering
of the sample at low water activity has been achieved by adding CaO or MgO, two hygroscopic compounds, to the starting material.
Then, sample conductivities reached the lowest values encountered in this study with the activation energy of 1.1 eV. The
strong dependency of the electrical conductivity with water activity highlights the importance of the latter parameter as
a controlling factor of diffusion rates in natural processes where water availability and activity may vary grandly. Water
exchange between mineral bulk and mineral boundary suggests that grain boundary can be treated as an independent phase in
dehydroxylation reactions. 相似文献
15.
This paper reports experimental data on columbite solubility in model water-saturated Li- and F-rich silicic melts with different
contents of alumina and alkalis. It was found that the columbite solubility is strongly affected by melt composition and is
maximal in peralkaline melt. The maximum contents of Ta and Nb in subaluminous and peraluminous melts at the contact with
columbite are lower by at least an order of magnitude. The peralkaline melt is relatively enriched in Nb, and the peraluminous
melt is enriched in Ta. The temperature dependence of solubility is positive but less pronounced than the effect of melt composition.
It is most distinct in the subaluminous melts. The Nb/Ta ratio of melt usually decreases with decreasing temperature. The
effect of pressure is relatively small. It was shown that columbite cannot crystallize on the liquidus of both peralkaline
and peraluminous magmas. Perhaps, columbite crystallization from a melt is possible only at final near-solidus stages at the
high degrees of crystallization of strongly evolved low-temperature melts. 相似文献
16.
17.
18.
Interaction between natural pargasite [Prg, SiO2 = 43.89 wt %, FeO/(FeO + MgO) = 0.35, (Na + K)A = 0.51] and H2O–NaCl fluid, whose composition (NaCl mole fraction) varied within the range X NaCl = NaCl/(NaCl + H2O) = 0–0.45, was experimentally studied in an internally heated apparatus at 900°C and 500 MPa. Natural pargasite begins to melt at a temperature 120–150°C lower than its synthetic analogue. In the presence of pure H2O, the subliquidus mineral assemblage involves amphibole Hbl 1, whose composition is closely similar to the starting Prg, clinopyroxene Cpx, calcic plagioclase Pl, and minor amounts of hercynite-magnetite spinel. With increasing X NaCl, the subliquidus assemblage systematically changed: calcic plagioclase disappeared and more Fe- rich amphibole Hbl 2 appeared at X NaCl = 0.07; Cpx disappeared at X NaCl = 0.14; and appearance of Na-Phl compositionally close to wonesite and almost complete disappearance of Hbl 1 was observed at X NaCl = 0.31. The composition of the melt also changed: its Na2O gradually increased (from 1.5 to 9–10 wt %), and CaO and SiO2 decreased(from 8.6 to 2 wt % and from 64 to 60 wt %, respectively, in recalculation to the anhydrous basis); at X NaCl ≥ 0.35, the melt was transformed from quartz- to nepheline-normative. The maximum Cl concentration of 1.2 wt % was measured in the melt poorest in SiO2. The experimental products contained spherical objects less than 10 μm in diameter that consisted of material that precipitated from the quenched fluid. These particles are richer than the melt in SiO2 (62–80 wt %) and poorer in Al2O3 (11–19 wt %) in experiments with X NaCl ≤ 0.24, but the differences between the compositions of the melt and particles decreased with increasing XNaCl. The relatively high concentrations of aluminosilicate material in the fluid is most likely explained by the high solubility of the melt in the fluid phase, with the formation in the fluid aqueous Si, Al–Si, Na–Al–Si, and other polymeric species. It is suggested that interaction of host rocks with such fluids, rich in granitic components, might be responsible for granitization (charnockitization) of mafic, and, particularly, ultramafic rocks described in the literature. 相似文献
19.
The multi-pulse shoshonitic Predazzo intrusive complex represents an ideal igneous laboratory for investigating the chemical and physical conditions of magma emplacement in a crustal context, since numerical models can be constrained by field evidence. It constitutes the most intriguing remnant of the Middle Triassic magmatic systems of the Dolomitic Area (Southern Alps), preserved by the Alpine tectonics. Predazzo Intrusive Complex comprises silica saturated (pyroxenites/gabbros to syenites), silica undersaturated (gabbros to syenites), and silica oversaturated (granites and syenogranites) rock suites. In this paper, we modeled its emplacement and evolution with a multiple thermo-/oxy-barometric, hygrometric, and EC-AFC approach. At odds with what proposed in literature but according to the field evidence, the emplacement of the Predazzo Intrusive Complex occurred at shallow depth (<?6 km). In this context, the different pulses differed slightly in bulk water content, but shared a common thermal regime, with temperatures between 1000 and 1100 °C and ~?600 °C at low-to-moderate oxidizing conditions (? 0.1 to +?0.7 ΔFMQ). The interaction between the intrusion and the shallow crustal rocks was minimal, with Sr and Nd isotopic compositions indicating an average of 5–6% assimilation of crust. A thermo- and oxy-barometric comparison with the nearby Mt. Monzoni also enabled to speculate about the solidification time of the intrusion, which we infer took place over about 700 ka. 相似文献
20.
M. V. Charykova A. V. Vishnevsky V. G. Krivovichev E. L. Fokina N. M. Ivanova N. V. Platonova V. V. Semenova 《Geology of Ore Deposits》2016,58(8):636-645
Understanding the mechanisms of cadmium and selenium behavior under near-surface conditions is very important for solving certain environmental problems. The principal aim of this study is physicochemical analysis of the formation conditions of synthetic cadmium selenite CdSeO3 · H2O and experimental investigation of its thermal stability and dehydration and dissociation mechanisms. The synthesis was performed by boiling-dry aqueous solutions of cadmium nitrate and sodium selenite. The obtained samples were identified with electron microprobe and powder X-ray diffraction. Complex thermal analysis (thermogravimetry and differential scanning calorimetry) have shown that CdSeO3 · H2O is dehydrated at 177–241°C in two stages, apparently corresponding to the formation of CdSeO3 · 2/3H2O. The Eh–pH diagrams were calculated using the Geochemist’s Workbench (GWB 9.0) software package. The Eh–pH diagrams have been calculated for the Cd–Se–Н2О and Cd–Se–CO2–H2O systems for the average content of these elements in underground waters. The formation of cadmium selenite, CdSeO3 · H2O in the oxidation medium is quite possible. The existence of CdSeO3 is possible at high temperature. 相似文献