首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through the investigation of tropical cyclone (TC) characteristics related to climate change, this study found that the frequency of TCs occurring over the Western North Pacific has recently decreased slightly, while their average intensity has increased. The number of overall TCs that passed within the vicinity of South Korea has also been reduced, but the number of strong typhoons in the area, those with maximum wind speeds of more than 44 m/s, has significantly increased. These changes are closely related to the following phenomena. (1) The average genesis region of TCs that influence South Korea has moved eastward. Accordingly, the TCs tend to strengthen as they move westward for long distances along the Intertropical Convergence Zone (ITCZ) trade easterlies and the southern boundary of the North Pacific Subtropical High (NPSH). (2) The NPSH and Asia Monsoon trough, which are known to affect TC tracks, have extended to the northwest and southeast. This has caused TCs that travel to higher latitudes and curve back toward the Korean Peninsula to become more frequent. (3) TCs have approached the Korean Peninsula without hitting land. In addition, the sea surface temperature became higher than it was before. These factors have caused TCs to maintain their strength or become stronger than before.  相似文献   

2.
Differences in atmospheric and oceanic environments which affect the tropical cyclone (TC) activity between the late twenty-first century (2071?C2100, A1B) and the late twentieth century (1971?C2000, 20C3M) are analyzed using multi-model ensemble from 15 general circulation models. Six factors (vertical wind shear, 700?hPa relative humidity, 850?hPa relative vorticity, outgoing longwave radiation, precipitation, and sea surface temperature) related to TC genesis predicts that more TCs in the future will occur than in the present. The result of maximum potential intensity analysis shows the frequency of occurrence and influence of stronger TCs will increase over the western North Pacific in the future. Anomalous northerly in the mid-latitudes of East Asia due to the strengthening of west-high and east-low pressure system pattern in the future plays an important role in blocking TC from moving toward mid-latitudes of East Asia. The multiple linear regression model (MLRM) developed using six predictors (independent variables) analyzed from NCEP-NCAR reanalysis data predicts that total TC genesis frequency during July to October (JASO), which predicted using data of 20C3M, will have more (2?C3) TCs than in the present.  相似文献   

3.
基于1960—2017年2 000多个气象台站逐日降水数据和中国气象局热带气旋(TC)最佳路径资料集,采用客观天气图分析法(OSAT)识别得到TC降水。研究表明,中国TC降水总体呈显著下降趋势,较12年前的研究结果下降趋势变缓;TC盛期(7~9月)降水占到TC总降水的78.5%,TC盛期降水和TC非盛期降水均呈显著下降趋势。TC降水气候趋势在空间分布上以减少为主要特征,并表现出明显的地域差异,自南向北呈"减少—增多—减少"的分布型,减少趋势中心位于广东和海南。按TC影响期最大强度分级(弱TC、中等强度TC和强TC)研究不同强度TC降水的变化,结果显示,强TC降水表现出显著减少趋势,主要决定着TC总降水的影响范围和趋势等主要特征。进一步分析发现,影响TC频数在1960—2017年呈显著减少趋势,并在1995年发生突变;对1995年前后2个时期的对比研究显示,与前一时期(1960—1994年)相比,后一时期(1995—2017年)影响TC活动频次在20°N以南的海域呈现出显著的减少趋势,减少大值中心位于南海北部,而且这一特征也主要由影响TC中的强TC所决定;强TC的这一变化趋势导致了华南地区尤其是广东和海南TC降水日数的减少,进而使得TC降水减少。  相似文献   

4.
Based on the daily precipitation data of more than 2 000 meteorological stations from 1960 to 2017 and the tropical cyclone (TC) best-track data of the China Meteorological Administration, the TC precipitation was identified by the Objective Synoptic Analysis Technique (OSAT). The research shows that the TC precipitation in China has a significant downward trend, which is slower than that of the research results 12 years ago. The TC precipitation in the peaking season (July to Sepember) accounted for 78.5% of the total TC precipitation. Both TC precipitation in peaking season and other months showed a significant downward trend. The TC precipitation climate trend is mainly characterized by reduction in spatial distribution, and shows obvious regional differences. From south to north, there is a distribution of “decreasing-increasing-decreasing”, and the decreasing trend centers are located in Guangdong and Hainan. According to the maximum intensity in the TC influence period, we classified TCs into three levels (weak TCs, medium intensity TCs and strong TCs) and studied the variations of TC precipitation in different intensities. The results show that the strong TC precipitation shows a significant decrease trend, which mainly determines the influence range and trend of TC total precipitation. Further analysis found that the frequency of affecting TC showed a significant reduction trend during the time period of 1960-2017 and an abrupt shift occurred in 1995. A comparative study of the two periods before and after 1995 showed that compared with the previous period (1960-1994), the frequency of TCs in the latter period (1995-2017) showed a significant decreasing trend in the south of 20°N. The maximum decreasing center was located in the northern part of the South China Sea, and this feature was mainly affected by the strong TC. It was decided that this trend of strong TC led to a decrease trend in the number of precipitation days in South China, especially in Guangdong and Hainan, which led to a decrease trend in TC precipitation.  相似文献   

5.
Based on the definition of Binary Tropical Cyclones (BTCs), the definition of influencing china binary tropical cyclones (ICBTCs) was proposed. During the BTCs period, if at least one of the two tropical cyclones causes precipitation over the mainland or one of the two largest islands-Hainan and Taiwan of China, the BTC is called ICBTC. Then, based on daily precipitation data and the tropical cyclone best track data during 1960-2017, this study analyzed the climatic characteristics of ICBTCs using the Objective Synoptic Analysis Technique (OSAT) and the above definitions. First, a total of 255 pairs of ICBTCs, which accounted for 60.6% of the total number of BTCs over the Western North Pacific, occurred with an annual average of 4.4. Annual frequency of ICBTCs showed a significant decreasing trend during 1960-2017. The longest duration of ICBTCs was 10 days, while durations concentrated in 1 day, 2 days and 3 days, accounting for 18.8%, 29.4% and 24.3%, respectively. In terms of geographical distribution, the ICBTCs mainly occurred over the range of 112°~138°E, 12°~30°N, with frequent zones in the oceans around the northern Philippines. In addition, both annual mean frequency and precipitation of the ICBTCs decrease from the southeast coast areas to the northwest inland regions, with severely-affected areas being the Taiwan Island, the Southeast Coast and the South Coast, and the most-severely-affected area being the Taiwan Island. Further analyses reveal that the average position of the two TCs on the maximum daily precipitation day during the ICBTCs period show an east-west distribution pattern, with the western TCs and the eastern TCs locating in the southwest wind water vapor channel of the East Asian Summer Monsoon and the warm-wet air flow of the southeast-wind on the southwest side of the subtropical high. This situation is beneficial to the western TCs obtaining water vapor from the southwest wind water vapor channel, and to the eastern TCs conveying water vapor to the western TCs, and then as a result, to the heavy rainfall over the Taiwan Island, the Southeast and the South Coasts of China caused by the western TCs.  相似文献   

6.
While tropical cyclones (TCs) usually decay after landfall, Tropical Storm Fay (2008) initially developed a storm central eye over South Florida by anomalous intensification overland. Unique to the Florida peninsula are Lake Okeechobee and the Everglades, which may have provided a surface feedback as the TC tracked near these features around the time of peak intensity. Analysis is done with the use of an ensemble model-based approach with the Developmental Testbed Center (DTC) version of the Hurricane WRF (HWRF) model using an outer domain and a storm-centered moving nest with 27- and 9-km grid spacing, respectively. Choice of land surface parameterization and small-scale surface features may influence TC structure, dictate the rate of TC decay, and even the anomalous intensification after landfall in model experiments. Results indicate that the HWRF model track and intensity forecasts are sensitive to three features in the model framework: land surface parameterization, initial boundary conditions, and the choice of planetary boundary layer (PBL) scheme. Land surface parameterizations such as the Geophysical Fluid Dynamics Laboratory (GFDL) Slab and Noah land surface models (LSMs) dominate the changes in storm track, while initial conditions and PBL schemes cause the largest changes in the TC intensity overland. Land surface heterogeneity in Florida from removing surface features in model simulations shows a small role in the forecast intensity change with no substantial alterations to TC track.  相似文献   

7.
The genesis of tropical cyclones (TCs) over Indian seas comprising of Bay of Bengal (BoB) and Arabian Sea (AS) is highly seasonal with primary maximum in postmonsoon season (mid-September to December) and secondary maximum during premonsoon season (April and May). The present study is focused to demonstrate changes in genesis and intensity of TCs over Indian seas in warming environment. For this purpose, observational data of TCs, obtained from the India Meteorological Department (IMD), are analyzed. The sea surface temperature (SST), surface wind speed, and potential evaporation factor (PEF), obtained from the International Comprehensive Ocean Atmosphere Data Set (ICOADS), are also analyzed to examine the possible linkage with variations in TC activities over Indian seas. The study period has been divided into two epochs: past cooling period (PCP, period up to 1950) and current warming period (CWP, period after 1950) based on SST anomaly (became positive from 1950) over the BoB and AS. The study reveals that the number of severe cyclones (SCS) increases significantly (statistically significant at 99% confidence level) by about 41% during CWP though no such significant change is observed in cyclonic disturbances (CDs) and cyclones (CS) over Indian seas. It is also observed that the rate of dissipation of CS and SCS over Indian seas has been decreasing considerably by about 63 and 71%, respectively, during CWP. The analysis shows that the BoB contributes about 75% in each category of TCs and remaining 25% by the AS towards total of Indian seas. A detailed examination on genesis and intensity of TC over both the basins and the seasons illustrates that significant enhancement of SCS by about 65% during CWP is confined to the postmonsoon season of the BoB. Further, the BoB is sub-divided into northern, central, and southern sectors and the AS into western and eastern sectors based on genesis of TCs and SST gradient. Results show that in postmonsoon season during CWP, the number of SCS increases significantly by about 71% in southern BoB and 300% over western AS.  相似文献   

8.
Tropical cyclones (TCs) are large-scale natural disturbances that generate strong winds and heavy rainfall, impacting coastal and inland environments. TCs also influence biogeochemical and hydrological cycles controlling aquatic primary productivity in tropical and subtropical coastal ecosystems. We assessed TC landfall activity and identified sites along the Mexican east and west coasts with high frequency in the period 1970–2010 and evaluated TCs with significant precipitation. Changes in chlorophyll-a (Chl-a) concentrations before and after storm impacts were estimated using remotely sensed ocean color. There were 1,065 named TCs with a wide diversity in tracks. Three states with the highest number of landfalls were identified: Baja California Sur and Sinaloa on the west coast and Quintana Roo on the east coast. While a relative increase in Chl-a values following TC landfalls in the Baja California and Yucatán Peninsula regions appeared to be strongly linked to TC strength, the intensity of precipitation, the spatial scales of the two peninsulas, and the relative movement of TCs appeared to have contributed to Chl-a variability. Satellite estimates of Chl-a in the nearshore coastal waters following TC passage were likely enhanced by coastal morphology and water discharge along with constituents such as suspended particulate, colored dissolved organic matter and nutrients from rivers, tributaries, and groundwater.  相似文献   

9.
热带气旋是危害中国最严重的天气系统,分析和认识中国沿海登陆热带气旋活动的新特征对防灾减灾具有重要意义。依据近70年气象资料,采用统计学方法,对登陆中国沿海的热带气旋特征进行分析,研究发现:在气候变化的背景下,登陆中国的热带气旋发生了明显变化。近年台风登陆频数高于往年平均,其整体强度和最大值均呈增大趋势,年台风强度的不稳定性加剧;研究还发现台风强度越高,其生成地纬度带范围越窄且越靠近赤道;建立了高强度热带气旋(STY和SUPER TY)时间和纬度的关系"φ—m"。检验了台风季长与初旋日呈负相关且不受厄尔尼诺现象影响,台风季长符合正态分布并给出概率密度公式。  相似文献   

10.

Predicting tropical cyclone (TCs) tracks is a primary concern in TC forecasting. Some TCs appear to move in a direction favorable for their development, beyond the influence of the steering flow. Thus, we hypothesize that TCs move toward regions with high water-vapor content in the lower atmosphere. In this study, four numerical experiments, including a control experiment and three sensitivity experiments, were performed using the Weather Research and Forecasting Model, to analyze the relationship between water vapor distribution and the track of Severe Typhoon Hato (2017). Observations validated the features reproduced in the control experiment. The sensitivity experiments were conducted to explore variations in the TC track under different water vapor environments. Results indicate that the horizontal distribution of water-vapor content exerted a greater impact on the TC track than the steering flow when both factors were significant. Further analysis revealed that the TC’s movement vector was between the direction of the steering flow and the direction toward the peak of vorticity increasing area. The peaks of vorticity increasing area were close to the peaks of water vapor increasing area, which also proved the effect of water vapor distribution on the TC track. These results are expected to improve TC track analysis and forecasting.

  相似文献   

11.
Ke  Qian  Yin  Jiangshan  Bricker  Jeremy D.  Savage  Nicholas  Buonomo  Erasmo  Ye  Qinghua  Visser  Paul  Dong  Guangtao  Wang  Shuai  Tian  Zhan  Sun  Laixiang  Toumi  Ralf  Jonkman  Sebastiaan N. 《Natural Hazards》2021,109(1):671-703
Natural Hazards - Climate change leads to sea level rise worldwide, as well as increases in the intensity and frequency of tropical cyclones (TCs). Storm surge induced by TC’s, together with...  相似文献   

12.
This study investigates the effects of various combinations of the planetary boundary layer (PBL) schemes and the microphysics schemes on the numerical forecasting of tropical cyclones (TCs). Using different combinations of three PBL schemes (YSU, MYJ and MYNN2) and four microphysics schemes (Ferrier, Goddard, WSM6 and Lin), a number of experiments are carried out for five landed TCs in the South China Sea during 2012. Results show that the combination of the YSU and Ferrier schemes performs the best for the TC track forecasting, although it does not perform the best for the forecast of precipitation. Further analysis reveals that the best performance of the track forecast by the combination of the YSU and Ferrier schemes mainly attributes to a more accurate steering flow as well as TC wind structure produced by this combination. These results provide a valuable reference to the operational numerical forecasting of TC tracks in the future.  相似文献   

13.
Characteristics of tropical cyclones in China and their impacts analysis   总被引:5,自引:3,他引:2  
This paper discusses the characteristics of tropical cyclones (TCs) based on available data from 1951 to 2008, including the frequency of TC generation in the Western North Pacific (WNP) and those which make landfall in China. The impacts of TCs on both human and economic losses for the period 1983–2008 are also discussed. Examination of the frequency indicates a decreasing trend in the generation of TCs in the WNP since the 1980s, but the number of TCs making landfall has remained constant or shown only a slight decreasing trend. The number of casualties caused by TCs in China appears to show a slight decreasing trend while the value of economic loss is increasing significantly. These results can be attributed to increased natural disaster prevention and mitigation efforts by the Chinese government in recent years, and also reflect the rapid economic development in China particularly in TC-prone areas.  相似文献   

14.
India Meteorological Department has the responsibility of monitoring and prediction of cyclonic disturbances (CDs) including tropical cyclone (TC) and depression, collection, processing and archival of all data pertaining to CDs and preparation of best track data over the North Indian Ocean (NIO). The process of post-season analysis of CDs to determine the best estimate of a CD??s position and intensity along with other characteristics during its lifetime is described as ??best tracking??. The best tracking procedure has undergone several changes world-over including NIO due to change in definition and classification of TCs, monitoring and analysis tools and procedure and physical understanding of TCs. There have been a few attempts to document the temporal changes in the best track procedure including changes in observational network, monitoring technique, area of responsibility for monitoring, terminology and classification of the TCs over the NIO. Hence, a study has been undertaken to review the temporal variations in all the above aspects of best tracking procedure and its impact on quality of best track parameters over the NIO. The problems and prospective with the best track data over the (NIO) have been presented and discussed. Based on quality and availability, the whole period of best track information may be broadly classified into four phases, viz. (i) pre-1877, (ii) 1877?C1890, (iii) 1891?C1960 and (iv) 1961?C2010. The period of 1961?C2010 may be further classified into (a) 1961?C1973, (b) 1974?C1990 and (c) 1991?C2010. As optimum observational network including satellite leading to better estimation of location and intensity without missing of CDs was available since 1961, the climatology of genesis, location, intensity, movement (track) and landfall can be best represented based on the data set of 1961?C2010. The best track parameters need to be reanalysed since 1891, based on the present criteria/classification of CDs to develop a digital data set of every six hourly position, intensity and other characteristics throughout the life period of each recorded CD over the NIO to meet the world standard. At least attempt should be made from 1974 when all types of major data including satellite, radar, surface and upper air observations are available for best track analysis. The reanalysis of best track parameters can help in better understanding and prediction of CDs and address the issues related to climate change aspects over the NIO region.  相似文献   

15.
In this research, the frequency of dust storms was prepared at 87 synoptic stations for the period of 1987–2013. These data were classified by means of Fuzzy c-means clustering algorithm. Satellite images of MODIS and brightness temperature index were also used for detection and tracking dust storm of 30 Jun 4 July 2008. The results indicated that Iran is classified in five clusters by the dust-storm-frequencies from which, cluster 5 is reclassified in three clusters because of its wide range. The maximum number of days with dust storms was observed in cluster 1 that includes only Zabol station with the frequency of 790 days with the duration 1987–2013. The minimum number of days with dust storms was observed in cluster 5-3 that includes the stations located in portions of North, Northwest, Northeast Iran and the higher elevations of the Zagros in western Iran. A case study about a severe dust storm in Iran using satellite images indicate that brightness temperature index (BTI) is a desired index for detection and monitoring of dust storms. The source of the investigated dust storms is Iraq and South of the Arabian Peninsula that had influenced the western half of Iran in several days. The frequency of dust storms increased markedly in the west, southwest of Iran and Persian Gulf around as main receptors from emerging dusty areas but it increased slightly in the eastern half of Iran.  相似文献   

16.

Tropical cyclones (TCs) affect countries in the Southern Hemisphere (SH) tropics every year causing significant humanitarian impacts and much damage to the natural environment. To reduce TC impacts on societies, early warning systems (EWS) are used to communicate the risk to the public. In 1999, the Climate Change and Southern Hemisphere Tropical Cyclones International Initiative (CCSHTCII) was established to enhance EWS for TCs in SH countries, with particular focus on support for small island developing states and least developed countries to provide effective public early warnings of TC risk. In this paper, recent activities of the CCSHTCII to strengthen TC EWS are presented. Using TC best track data from the SH TC historical data archive, the impact of the El Niño–Southern Oscillation (ENSO) on inter-annual and spatial variability of TC activity is examined. TC-ENSO relationships in the SH are analysed and used as a scientific basis for the production of TC season outlooks. Communication of TC early warnings through TC season outlooks is described, and recommendations for improving outlooks are provided.

  相似文献   

17.
Li  Yi  Fang  Weihua  Duan  Xiaogang 《Natural Hazards》2019,98(2):507-533

Tropical cyclone (TC) disasters have frequently caused casualties in the coastal areas of China. According to the statistics of dead and missing people due to TCs from 1951 to 2014, the number of fatalities has been significantly decreasing over time. However, deadly TC events have still caused great losses of life in recent years, which are characterized as significant abrupt fluctuations superimposed along the downward trend of the long-term fatality time series. The numbers of fatalities caused by TC disasters are influenced by variables such as the intensity of TC hazards, the population exposed to TCs and the vulnerability of people to TC hazards. It is thus of great significance to analyze their temporal characteristics and understand the forces driving these changes. First, the time series of the TC wind, precipitation, spatial distribution of population, fatality and disaster risk reduction (DRR) measures of China from 1951 to 2014 are reconstructed. Second, the improved power dissipation index, total precipitation, integrated intensity and index of exposed population are calculated, and the population vulnerability indices, including mean and relative fatality rates, are derived. Third, the change trend of each index is detected using the Mann–Kendall test. Finally, the main driving factors of the long-term change trend and fluctuations of the TC fatalities are analyzed by a negative binomial regression model and standard deviation statistics. It is found that the decrease in vulnerability based on the improvement in structural and non-structural measures is the main driving force of the decreases in fatalities over the past six decades. Although the total population and exposure have increased dramatically in the coastal areas of China, their contributions to the increase in the fatality risk were counteracted by the decrease in vulnerability. Abrupt and catastrophic disasters were mostly caused by TCs with hazards of high intensity that surpassed the capacity of structural measures; the lack of forecasting or early warning, as well as improper emergency response actions, may also have triggered the great loss of lives. To reduce the fatalities of future TCs, especially those that may exceed the capacity of structural measures, the enhancement of non-structural measures and the adaptation of resilience strategies should be priorities for future people-centered disaster management.

  相似文献   

18.
面向灾害风险评估的热带气旋路径及强度随机模拟综述   总被引:1,自引:0,他引:1  
历史热带气旋记录时间序列较短空间差异大,热带气旋灾害风险评估经常面临样本不足,特别是超强台风及巨灾记录历史样本的问题,从而导致传统概率统计方法失效。过去20多年来,逐渐发展出一套完整的方法体系进行热带气旋路径及强度随机模拟,其特点是充分利用历史总体样本信息,生成大量符合历史样本特征的热带气旋路径及强度随机事件样本集,从而有效地解决了局地历史样本不足的问题。在回顾热带气旋的年频次、季节分布、路径分布、强度及影响范围时空规律研究进展基础上,系统综述了用于热带气旋路径及随机模拟的起始点模型、行进模型、终止点模型、洋面强度模型、陆地衰减模型及结果检验方法等领域的进展及不足,然后对其在世界各地的应用进行了概述,并对未来研究改进方向及应用领域进行了展望。  相似文献   

19.
India Meteorological Department (IMD) introduced the objective tropical cyclone (TC) intensity forecast valid for next 24 h over the north Indian Ocean (NIO) in 2003 and extended up to 72 h in 2009. In this study, an attempt is made to evaluate the TC intensity forecast issued by IMD during 2005–2011 (7 years) by calculating the absolute error (AE), root mean square error (RMSE) and skill in intensity forecast in terms of maximum sustained surface wind (MSW). The accuracy of TC intensity forecast has been analysed with respect to basin of formation (Bay of Bengal, Arabian Sea and NIO as whole), season of formation (pre-monsoon and post-monsoon seasons), intensity of TCs (cyclonic storm and severe cyclonic storm or higher intensities) and type of track of TCs (climatological/straight moving and recurving/looping type). The study shows that the average AE (RMSE) in intensity forecast is about 11(14), 14(19) and 20(26) knots, respectively, for 24-, 48- and 72-h forecasts over the NIO as a whole during 2009–2011. The skill of intensity forecast is about 44 %(48 %), 60 %(58 %) and 60 %(65 %) for 24-, 48- and 72-h forecasts during 2009–2011 with respect to AE (RMSE). There is no significant improvement in terms of reduction in AE and RMSE of MSW forecast over the NIO like that over the northwest Pacific and northern Atlantic Oceans during 2005–2011. However, the skill in intensity forecast compared to persistence method has significantly improved by about 6 %(10 %) and 9 %(8 %) per year, respectively, for 12- and 24-h forecasts considering the AE (RMSE) during 2005–2011. There is also significant increasing trend in percentage of 24-h intensity forecasts with error of 10 knots or less during 2005–2011.  相似文献   

20.
The convection and planetary boundary layer (PBL) processes play significant role in the genesis and intensification of tropical cyclones (TCs). Several convection and PBL parameterization schemes incorporate these processes in the numerical weather prediction models. Therefore, a systematic intercomparison of performance of parameterization schemes is essential to customize a model. In this context, six combinations of physical parameterization schemes (2 PBL Schemes, YSU and MYJ, and 3 convection schemes, KF, BM, and GD) of WRF-ARW model are employed to obtain the optimum combination for the prediction of TCs over North Indian Ocean. Five cyclones are studied for sensitivity experiments and the out-coming combination is tested on real-time prediction of TCs during 2008. The tracks are also compared with those provided by the operational centers like NCEP, ECMWF, UKMO, NCMRWF, and IMD. It is found that the combination of YSU PBL scheme with KF convection scheme (YKF) provides a better prediction of intensity, track, and rainfall consistently. The average RMSE of intensity (13?hPa in CSLP and 11?m?s?1 in 10-m wind), mean track, and landfall errors is found to be least with YKF combination. The equitable threat score (ETS) of YKF combination is more than 0.2 for the prediction of 24-h accumulated rainfall up to 125?mm. The vertical structural characteristics of cyclone inner core also recommend the YKF combination for Indian seas cyclones. In the real-time prediction of 2008 TCs, the 72-, 48-, and 24-h mean track errors are 172, 129, and 155?km and the mean landfall errors are 125, 73, and 66?km, respectively. Compared with the track of leading operational agencies, the WRF model is competing in 24?h (116?km error) and 72?h (166?km) but superior in 48-h (119?km) track forecast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号