首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Seaquake is a phenomenon where there are water disturbance at the sea, caused by earthquake or submarine eruption. The scope of this study focuses on tsunami simulation due to Manila Trench and Sulu Trench seaquake which is prone to harm Malaysia offshore areas. Manila Trench is a highly potential earthquake source that can generate tsunami in South China Sea. Meanwhile, Sulu Trench could be a threat to east of Sabah offshore areas. In this study, TUNA-M2 model was utilized to perform tsunami simulation at South China Sea and Sulu Sea. TUNA-M2 model applied Okada source model to create tsunami generation due to earthquake. It utilized linear shallow water equation during tsunami propagation with its radiant boundary condition. Five simulations performed at each study region. Forecast points at South China Sea areas were divided into three separate locations which are at the Peninsular Malaysia, west of Sabah and Sarawak offshore areas. Forecast points at Sulu Sea were focused at the east of Sabah offshore areas. This paper will present the simulation results of tsunami wave height and arrival time at various forecast points. The findings of this study show that the range of tsunami wave height at Sulu Sea is higher than that of South China Sea. The tsunami arrival time at Sulu Sea is less than South China Sea. It can be concluded that Sulu Sea poses worse tsunami threat than South China Sea to the Malaysian offshore areas.  相似文献   

2.
Historical tsunami records in the South China Sea are collected and analyzed in this paper. There have been about 54 tsunamis in the South China Sea since 1076. The impacts of the transoceanic tsunamis on the southeast coast of China are weak. However, the regional tsunamis in the South China Sea bring varying degrees of influence to the south coast of China, which occurred about 18 times. By the analysis of the potential tsunami sources in the South China Sea, numerical simulations of tsunami induced in the Manila Trench are carried out. It is found that the tsunami wave height is small near Haikou if the general earthquake tsunami occurred. But the tsunami wave height is large when a giant earthquake of M9.3 occurred. If this extreme situation arises, the impacts to the coast of Haikou will be serious.  相似文献   

3.
We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment. Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis each resulting from a 1945-type earthquake (M w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern coast of the United Arab Emirates, respectively.  相似文献   

4.
The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.  相似文献   

5.
The Sultanate of Oman is among the Indian Ocean countries that were subjected to at least two confirmed tsunamis during the twentieth and twenty-first centuries: the 1945 tsunami due to an earthquake in the Makran subduction zone in the Sea of Oman (near-regional field tsunami) and the Indian Ocean tsunami in 2004, caused by an earthquake from the Andaman Sumatra subduction zone (far - field tsunami). In this paper, we present a probabilistic tsunami hazard assessment for the entire coast of Oman from tectonic sources generated along the Makran subduction zone. The tsunami hazard is assessed taking into account the contribution of small- and large-event magnitudes. Results of the earthquake recurrence rate studies and the tsunami numerical modeling for different magnitudes were used through a logic-tree to estimate the tsunami hazard probabilities. We derive probability hazard exceedance maps for the Omani coast considering the exposure times of 100, 250, 500, and 1000 years. The hazard maps consist of computing the likelihood that tsunami waves exceed a specific amplitude. We find that the probability that a maximum wave amplitude exceeds 1 m somewhere along the coast of Oman reaches, respectively, 0.7 and 0.85 for 100 and 250 exposure times, and it is up to 1 for 500 and 1000 years of exposure times. These probability values decrease significantly toward the southern coast of Oman where the tsunami impact, from the earthquakes generated at Makran subduction zone, is low.  相似文献   

6.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   

7.
Seismicity of Sinai Peninsula, Egypt   总被引:1,自引:1,他引:0  
The Sinai Peninsula has a triangular shape between the African and Arabian Plates and is bounded from the western and eastern borders by the Gulf of Suez and Gulf of Aqaba–Dead Sea rift systems, respectively. It is affected by strong and destructive earthquakes (e.g., March 31, 1969 and November 22, 1995) and moderate earthquakes (m b?>?5) throughout its history. After the installation of the Egyptian National Seismic Network (ENSN), a great number of earthquakes has been recorded within and around Sinai. Consequently, the seismogenic source zones and seismotectonic behavior can be clearly identified. Available data, including both historical and instrumental (1900–1997), have been collected from national and international data centers. While the data from 1998 till December 2007 are gathered from ENSN bulletins. The seismogenic source zones that might affect Sinai Peninsula are defined more precisely in this work depending on the distribution of earthquakes, seismicity rate (a value), b value, and fault plane solution of the major earthquakes. In addition, the type of faults prevailed and characterized these zones. It is concluded that the Gulf of Aqaba zone–Dead Sea transform zone, Gulf of Suez rift zone, Cairo–Suez District zone, and Eastern Mediterranean dislocation zone represent the major effective zones for Sinai. Furthermore, there are two local seismic zones passing through Sinai contributing to the earthquake activities of Sinai, these are the Negev shear zone and Central Sinai fault (Themed fault) zone. The source parameters, a and b values, and the maximum expected moment magnitude have been determined for each of these zones. These results will contribute to a great extent in the seismic hazard assessment and risk mitigation studies for Sinai Peninsula to protect the developmental projects.  相似文献   

8.
Prasetya  G. S.  De Lange  W. P.  Healy  T. R. 《Natural Hazards》2001,24(3):295-307
The Makassar Strait region has had the highest frequency of historical tsunamievents for Indonesia. The strait has a seismic activity due to the convergenceof four tectonic plates that produces a complex mixture of structures. The maintsunamigenic features in the Makassar Strait are the Palu-Koro and Pasternostertransform fault zones, which form the boundaries of the Makassar trough.Analysis of the seismicity, tectonics and historic tsunami events indicatesthat the two fault zones have different tsunami generating characteristics.The Palu-Koro fault zone involves shallow thrust earthquakes that generatetsunami that have magnitudes that are consistent with the earthquakemagnitudes. The Pasternoster fault zone involves shallower strike-slipearthquakes that produce tsunami magnitudes larger than would normallybe expected for the earthquake magnitude. The most likely cause for theincreased tsunami energy is considered to be submarine landslidesassociated with the earthquakes. Earthquakes from both fault zonesappear to cause subsidence of the west coast of Sulawesi Island.The available data were used to construct a tsunami hazard map whichidentifies the highest risk along the west coast of Sulawesi Island.The opposite side of the Makassar Strait has a lower risk because it isfurther from the historic tsunami source regions along the Sulawesicoast, and because the continental shelf dissipates tsunami wave energy.The greatest tsunami risk for the Makassar Strait is attributed tolocally generated tsunami due to the very short travel times.  相似文献   

9.
浊流是远距离沉积物运输的一种重要方式,海底浊流广泛存在于海底峡谷或海沟。马尼拉海沟位于南海东北部,是一条正在活动的板块汇聚边界。独特的地理位置(亚热带—热带)和气候条件(台风频发),使得马尼拉海沟浊流频发,然而,现今对马尼拉海沟的浊流研究甚少。本研究通过对马尼拉海沟北部水深3747 m处重力柱岩心(GEO6)进行高精度的粒度及沉积学特征分析,探讨马尼拉海沟浊流沉积规律。GEO6岩心底部细颗粒沉积物中浮游有孔虫的14C的AMS年龄为1405 a B.P.。高精度的粒度分析(0.25 cm)和沉积学特征显示: GEO6岩心记录有至少11次浊流沉积(T1-T11),且这些浊流都有明显的底部粒度最粗(砂质粉砂或砂)、向上粒度逐渐变细的正粒序特征,只有T8沉积体为反粒序特征,可能为异重流沉积。结合区域地质资料,本研究认为1.4 ka B.P.以来,研究区频繁的台风带来了大量陆源松散沉积物堆积在马尼拉海沟上游(高屏峡谷),不稳定的构造环境及地震频发导致这些松散沉积物垮塌并向下游马尼拉海沟输送,在海沟内形成频繁发育的浊流沉积体。  相似文献   

10.
浊流是远距离沉积物运输的一种重要方式,海底浊流广泛存在于海底峡谷或海沟。马尼拉海沟位于南海东北部,是一条正在活动的板块汇聚边界。独特的地理位置(亚热带—热带)和气候条件(台风频发),使得马尼拉海沟浊流频发,然而,现今对马尼拉海沟的浊流研究甚少。本研究通过对马尼拉海沟北部水深3747 m处重力柱岩心(GEO6)进行高精度的粒度及沉积学特征分析,探讨马尼拉海沟浊流沉积规律。GEO6岩心底部细颗粒沉积物中浮游有孔虫的14C的AMS年龄为1405 a B.P.。高精度的粒度分析(0.25 cm)和沉积学特征显示: GEO6岩心记录有至少11次浊流沉积(T1-T11),且这些浊流都有明显的底部粒度最粗(砂质粉砂或砂)、向上粒度逐渐变细的正粒序特征,只有T8沉积体为反粒序特征,可能为异重流沉积。结合区域地质资料,本研究认为1.4 ka B.P.以来,研究区频繁的台风带来了大量陆源松散沉积物堆积在马尼拉海沟上游(高屏峡谷),不稳定的构造环境及地震频发导致这些松散沉积物垮塌并向下游马尼拉海沟输送,在海沟内形成频繁发育的浊流沉积体。  相似文献   

11.
西太平洋边缘构造特征及其演化   总被引:1,自引:1,他引:0       下载免费PDF全文
李学杰  王哲  姚永坚  高红芳  李波 《中国地质》2017,44(6):1102-1114
西太平洋边缘构造带是地球上规模最大最复杂的板块边界,以台湾和马鲁古海为界,自北往南大致可以分为3段。北段是典型的沟-弧-盆体系,千岛海盆、日本海盆及冲绳海槽均为典型的弧后扩张盆地。中段菲律宾岛弧构造带为双向俯冲带,构造复杂,新生代经历大的位移和重组,使得欧亚大陆边缘的南海、苏禄海和苏拉威西海成因存在很大的争议。南段新几内亚—所罗门构造带是太平洋板块、印度—澳大利亚及欧亚板块共同作用的结果,既有不同阶段的俯冲、碰撞,也有大规模的走滑与弧后的扩张,其间既有新扩张的海盆,又有正在俯冲消亡的海盆。台湾岛处于枢纽部位,欧亚板块在此被撕裂,南部欧亚大陆边缘南海洋壳沿马尼拉海沟俯冲于菲律宾岛弧之下,而北部菲律宾海洋壳沿琉球海沟俯冲欧亚大陆之下。马鲁古海是西太平洋板块边界又一转折点,马鲁古海板块往东下插于哈马黑拉之下,往西下插于桑义赫弧,形成反U形双向俯冲汇聚带,其洋壳板块已基本全部消失,致使哈马黑拉弧与桑义赫弧形成弧-弧碰撞。  相似文献   

12.
The 1945 Tsunami generated due to Makran Earthquake in the Arabian Sea was the most devastating tsunami in the history of the Arabian Sea and caused severe damage to property and loss of life. It occurred on 28th November 1945, 21:56 UTC (03:26 IST) with a magnitude of 8.0 (M w), originating off the Makran Coast of Pakistan in the Arabian Sea. It has impacted as far as Mumbai in India and was noticed up to Karvar Coast, Karnataka. More than 4,000 people were killed as a result of the earthquake and the tsunami. In this paper an attempt is made for a numerical simulation of the tsunami generation from the source, its propagation into the Arabian Sea and its effect on the western coast of India through the use of a numerical model, referred to as Tunami-N2. The present simulation is carried out for a duration of 300 min. It is observed from the results that the simulated arrival time of tsunami waves at the western coast of India is in good agreement with the available data sources. The paper also presents run-up elevation maps prepared using Shuttle Radar Topographic Mission (SRTM) data, showing the possible area of inundation due to various wave heights along different parts of the Gujarat Coast. Thus, these results will be useful in planning the protection measures against inundation due to tsunami and in the implementation of a warning system.  相似文献   

13.
中国东海、南海等近海临近琉球海沟、马尼拉海沟等俯冲带,地震频发。过去的海啸研究主要关注历史文献分析、海啸数值模拟等,据此评估中国近岸海啸灾害的历史和风险。历史时期是否引发了海啸,特别是具有特大致灾风险的大海啸记录,目前还不明确。近年来,本课题组通过对海岛、海洋沉积和海岸带及其岛屿的沉积过程、海啸遗迹和历史记录研究,阐述了确定古海啸的系列研究方法。首先通过对南海西沙群岛东岛湖泊沉积序列、大量砗磲和珊瑚块在海岛分布的特征分析,识别出距今千年的一次海啸事件。以此为标志,根据湖泊沉积结构作为识别海岛海啸沉积的特征。同时提出了确定海岛海啸发生时代的样品采集和定年方法,其中包括根据事件沉积层顶部和底部植物残体14C年龄定年和历史文献记录的印证。首次确定在过去1 300年中,南海发生过一次海啸,其发生时间为公元1076年。为了寻找更古老的海啸记录,结合对东海闽浙沿岸过去两千年海洋泥质沉积的分析,发现南海海啸在沉积序列中留下记录,但除此之外沉积记录中并无更强的扰动,因此东海在过去两千年中受到海啸的影响较小。1076年的海啸同时冲击了南海沿岸,通过对广东南澳岛考察发现,岛屿东南海岸保存着距今约1 000年的海啸沉积层,其中夹杂着宋代陶器瓷器残片。对遗迹数量变化的分析显示,岛上的文化受海啸破坏出现了长达500年的文化中断,直至明代中后期设镇之后才逐渐恢复。根据海啸层植物残体、贝壳14C测年、覆盖海啸层的海砂光释光定年以及瓷器碎片的年代鉴定了海啸的发生时代,并据此提出了海岸带古海啸沉积的定年方法。此外,不同环境下海啸沉积的特征也存在较大区别,需要结合地形、沉积物来源以及地球化学特征等多种指标进行识别。有迹象表明海南岛东侧海岸带有海啸破坏的明显证据,需要进行深入的研究。  相似文献   

14.
15.
To clarify the generating mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and the induced tsunami, we determined high-resolution tomographic images of the Northeast Japan forearc. Significant lateral variations of seismic velocity are visible in the megathrust zone, and most large interplate thrust earthquakes are found to occur in high-velocity (high-V) areas. These high-V zones may represent high-strength asperities at the plate interface where the subducting Pacific plate and the overriding Okhotsk plate are coupled strongly. A shallow high-V zone with large coseismic slip near the Japan Trench may account for the mainshock asperity of the 2011 Tohoku-oki earthquake. Because it is an isolated asperity surrounded by low-velocity patches, most stress on it was released in a short time and the plate interface became decoupled after the Mw 9.0 earthquake. Thus the overriding Okhotsk plate there was shot out toward the Japan Trench and caused the huge tsunami.  相似文献   

16.
Geodynamic status, seismo-tectonic environment, and geophysical signatures of the Bay of Bengal do not support the occurrence of seismogenic tsunami. Since thrust fault and its intensity and magnitude of rupture are the key tectonic elements of tsunamigenic seismic sources, the study reveals that such characteristics of fault-rupture and seismic sources do not occur in most of the Bay of Bengal except a small segment in the Andaman–Nicobar subduction zone. The inferred segment of the Andaman–Nicobar subduction zone is considered for generating a model of the deformation field arising from fluid-driven source. The model suggests local tsunami with insignificant inundation potential along the coast of northern Bay of Bengal. The bathymetric profile and the sea floor configuration of the northern Bay of Bengal play an important role in flattening the waveform through defocusing process. The direction of motion of the Indian plate makes an angle of about 30° with the direction of the opening of Andaman Sea. The opening of Andaman Sea and the direction of plate motion of the Indian plate results in the formation of Andaman trench where the subducting plate dives more obliquely than that in the Sunda trench in the south. The oblique subduction reduces significantly the possibilities of dominant thrust faulting in the Andaman subduction zone. Further, north of Andaman subduction in the Bengal–Arakan coast, there is no active subduction. On the otherhand, much greater volume of sediments (in excess of 20 km) in the Bengal–Arakan segment reduces the possibilities of mega rupture of the ocean floor. The water depth (≈1,000 m) along most of the northern Bay of Bengal plate margin is not optimum for any significant tsunami generation. Hence, very weak possibility of any significant tsunami is suggested that based on the interpretation of geodynamic status, seismo-tectonic environment, and geophysical signatures of the Andaman subduction zone and the Bengal–Arakan coast.  相似文献   

17.
A suite of tsunami spaced evenly along the subduction zone to the south of Indonesia (the Sunda Arc) were numerically modelled in order to make a preliminary estimate of the level of threat faced by Western Australia from tsunami generated along the Arc. Offshore wave heights from these tsunami were predicted to be significantly higher along the northern part of the west Australian coast than for the rest of the coast south of the town of Exmouth. In particular, the area around Exmouth may face a higher tsunami hazard than other areas of the West Australian coast nearby. Large earthquakes offshore of Java and Sumbawa are likely to be a greater hazard to WA than those offshore of Sumatra. Our numerical models indicate that a magnitude 9 or above earthquake along the eastern part of the Sunda Arc has the potential to significantly impact a large part of the West Australian coastline. The Australian government reserves the right to retain a non-exclusive, royalty free license in and to any copyright.  相似文献   

18.
We performed a probabilistic analysis of earthquake hazard input parameters, NW Turkey covers Gelibolu and Biga Peninsulas, and its vicinity based on four seismic sub-zones. The number of earthquakes with magnitude M ≥ 3.0 occurred in this region for the period between 1912 and 2007 is around 5130. Four seismic source sub-zones were defined with respect to seismotectonic framework, seismicity and fault geometry. The hazard perceptibility characterization was examined for each seismic source zone and for the whole region. The probabilities of earthquake recurrences were obtained by using Poisson statistical distribution models. In order to determine the source zones where strong and destructive earthquakes may occur, distribution maps for a, b and a/b values were calculated. The hazard scaling parameters (generally known as a and b values) in the computed magnitude–frequency relations vary in the intervals 4.28–6.58 and 0.59–1.13, respectively, with a RMS error percentage below 10 %. The lowest b value is computed for sub-zone three indicating the predominance of large earthquakes mostly at Gelibolu (Gallipoli) and north of Biga Peninsula (southern Marmara region), and the highest b value is computed for sub-zone two Edremit Bay (SW Marmara region). According to the analysis of each seismic sub-zone, the greatest risk of earthquake occurrence is determined for the triangle of Gelibolu–Tekirda? western part of Marmara Sea. Earthquake occurrence of the largest magnitude with 7.3 within a 100-year period was determined to be 46 % according to the Poisson distribution, and the estimated recurrence period of years for this region is 50 ± 12. The seismic hazard is pronounced high in the region extending in a NW–SE direction, north of Edremit Bay, west of Saros Bay and Yenice Gönen (southern Marmara region) in the south. High b values are generally calculated at depths of 5–20 km that can be expressed as low seismic energy release and evaluated as the seismogenic zone.  相似文献   

19.
Coastal communities in the western United States face risks of inundation by distant tsunamis that propagate across the Pacific Ocean as well as local tsunamis produced by great (Mw?>?8) earthquakes on the Cascadia subduction zone. In 1964, the Mw 9.2 Alaska earthquake launched a Pacific-wide tsunami that flooded Cannon Beach, a small community (population 1640) in northwestern Oregon, causing over $230,000 in damages. However, since the giant 2004 Indian Ocean tsunami, the 2010 Chile tsunami and the recent 2011 Tohoku-Oki tsunami, renewed concern over potential impacts of a Cascadia tsunami on the western US has motivated closer examination of the local hazard. This study applies a simple sediment transport model to reconstruct the flow speed of the most recent Cascadia tsunami that flooded the region in 1700 using the thickness and grain size of sand layers deposited by the waves. Sedimentary properties of sand from the 1700 tsunami deposit provide model inputs. The sediment transport model calculates tsunami flow speed from the shear velocity required to suspend the quantity and grain size distribution of the observed sand layers. The model assumes a steady, spatially uniform tsunami flow and that sand settles out of suspension forming a deposit when the flow velocity decreases to zero. Using flow depths constrained by numerical tsunami simulations for Cannon Beach, the sediment transport model calculated flow speeds of 6.5?C7.6?m/s for sites within 0.6?km of the beach and higher flow speeds (~8.8?m/s) for sites 0.8?C1.2?km inland. Flow speed calculated for sites within 0.6?km of the beach compare well with maximum velocities estimated for the largest tsunami simulation. The higher flow speeds calculated for the two sites furthest landward contrast with much lower maximum velocities (<3.8?m/s) predicted by numerical simulations. Grain size distributions of sand layers from the most distal sites are inconsistent with deposition from sediment falling out of suspension. We infer that rapid deceleration in tsunami flow and convergences in sediment transport formed unusually thick deposits. Consequently, higher flow speeds calculated by the sediment model probably overestimate the actual wave speed at sites furthest inland.  相似文献   

20.
The Pacific coast, including the Kamchatka Peninsula, the Kuriles, the Sea of Japan, the Sea of Okhotsk, and the Bering Sea, is the main tsunami-prone area in Russia. The Far East tsunamis are much more frequent, extensive, and devastating than those in the Black, Caspian, Baltic, and White Sea coasts, as well as in major inland lakes of Baikal, Ladoga, etc. The tsunami catalog of the Russian Far East from 1737 to present lists 110 events with mainly near-field and few far-field sources (105 and 5 events, respectively). Most of the catalogued tsunamis (95 cases) were induced by earthquakes, and few events had volcanic (3), landsliding (2), meteorological (3), and unknown (2) triggers. Altogether there were eleven devastating tsunamis for the period of observations, with > 10 m heights, two of which were great events in 1737 and 1952, when the waves exceeded 20 m. The wave heights were in the range 2.5-10 m in fifteen hazardous tsunami events and within the tidal range (~ 1-2 m) in thirteen cases; the other events were small and detectable only instrumentally. Thus, the average recurrence times for tsunamis of different magnitudes in the Russian Pacific coast are 25 years for devastating events and 10-15 years for hazardous tsunamis; small tsunamis occur almost every year, according to statistics for the last sixty years collected at the regional network of tide stations. The topics discussed in the paper concern the completeness and reliability of the Far East catalog; distribution of tsunami events in space and time; correlation between the intensity of tsunami and the magnitude of the causative undersea earthquake; tsunami recurrence; tsunami warning; and long-term hazard assessment and mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号