首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Qreiya Beds that record the ‘mid-Paleocene event’ at Gabal Nezzazat occur within the Igorina albeari (P3b) Zone and constitute part of a 14-m thick shale succession that ranges in age from Early to Late Paleocene. They are composed of four alternating dark grey and brown shale beds, which are thinly laminated, phosphatic, organic-rich and extremely sulphidic. They are characterized by distinct enrichment and high peak anomalies in chalcophiles (Zn, Co, Ni, Cu and Pb) and organic association elements (V and Cr), especially within the brown organic-rich beds. It is concluded that these elements are incorporated into the phosphatic debris, sulphides and organic matter. In contrast, the grey beds are enriched in clay minerals and quartz. Clay mineral assemblages indicate alternating periods of warm/humid climate (high kaolinite) and dry climate (low kaolinite) during the formation of the grey and brown beds, respectively. The sediments of the Qreiya Beds yield lithological, biotic, geochemical and mineralogical data indicative of suboxic/anoxic marine environments as a result of high productivity and/or upwelling. The top metre of the succession below the Qreiya Beds is characterized by a progressive change from faunas dominated by praemurcurids to faunas dominated by Morozovilids, and by a progressive upward decrease in δ13Ccarb and δ18Ocarb values. The foraminiferal faunal change may reflect shallowing and warming preceding deposition of the Qreiya Beds. The change in isotopic values is inferred to be the result of surface weathering, fluvial input and diagenesis with no evidence of any primary change that could support presence of a hyperthermal event.  相似文献   

2.
尤敏鑫  李厚民  王亚磊 《岩石学报》2018,34(11):3422-3432
黄山南镁铁-超镁铁质岩体位于东天山造山带觉罗塔格构造带内,属于土墩-黄山-图拉尔根镁铁-超镁铁质岩带。本文在前人研究的基础上,从橄榄石、辉石矿物学组成和全岩Sr、Nd同位素等方面对黄山南岩体进行了分析研究,并与黄山、黄山东、香山等典型含矿岩体作了对比,旨在进一步查明黄山南岩体的岩浆源区和母岩浆性质及其岩浆演化过程。Sr-Nd同位素特征表明黄山南岩体来自一个弱亏损的地幔源区,相较黄山、黄山东、香山等岩体的源区具有更加富集的特征。黄山南岩体中的橄榄石属于贵橄榄石,斜方辉石主要为古铜辉石,少数为紫苏辉石,单斜辉石主要为顽透辉石、普通辉石和少数的透辉石。单斜辉石和橄榄石的成分特征表明形成黄山南岩体的母岩浆为演化程度较低的拉斑玄武质岩浆,且母岩浆成分具有高Mg、高Ni的特点。计算得到黄山南岩体母岩浆的Fe O~T=13.20%、MgO=16.96%、Ni=377.2×10~(-6),且母岩浆在结晶分异过程中没有经历充分的硫化物熔离作用,这也是造成母岩浆中Ni含量较高以及岩体含矿性较差的主要因素。  相似文献   

3.
Ore microscopic investigation of the Fe?CTi oxide minerals was carried out on samples from three Oligo-Miocene basaltic occurrences from Sinai, Egypt. These occurrences are Gebel Maghara (north Sinai), Rageibet Naama (central Sinai), and Wadi Matulla (west Sinai). The results and correlations of magnetic parameters such as NRM intensity and susceptibility, coercive force H c, and the ratio M r/M s, H c and Q value, the ratio M r/M s, saturation magnetization M s, and K are discussed in light of opaque mineralogical studies. It has been found that the variations in the magnetic properties of the basaltic occurrences are strongly dependent on the crystallite size and nature and style of exsolution textures and fabrics. The latter are controlled by the cooling conditions, being most sensitive to the partial pressure of oxygen in the melt.  相似文献   

4.
The Sveconorwegian Augen Orthogneisses of Rogaland — Vest-Agder (SW Norway) were emplaced as amphibole- and biotite-bearing granodiorites at 1040 Ma (concordant Rb/Sr and zircon U/Pb ages). They underwent prograde metamorphism which increased from lower amphibolite-facies in the eastern zone to granulite-facies in the western zone, close to the Rogaland anorthosite complex. K-feldspar megacrysts initially crystallised as phenocrysts and were chemically equilibrated during metamorphism, as shown by the flat Ba concentration profiles and the increase of the anorthite content from An1.1 in the amphibolitefacies to An2.6 in the granulite-facies. This increase of the An content suggests an increase in metamorphic temperature. The REE content of the megacrysts is related to the associated accessory minerals which depend upon the metamorphic grade: sphene + allanite + apatite + zircon and rarely thorite in amphibolite-facies, and apatite + zircon + monazite ± thorite in lower amphibolite-and granulite-facies. Amphibole and biotite inclusions in megacrysts were also equilibrated during metamorphism. Groundmass K-feldspar and plagioclase experienced late-metamorphic changes during uplift. An internal Rb/Sr mineral isochron (plagioclase, apatite, K-feldspar) defines an age of 870 Ma, which represents the closure of the Rb/Sr isotopic system in minerals of the augen gneisses. This age also represents a K-feldspar cooling age in regionally distributed augen gneiss samples. The K-feldspar cooling age appears to be similar to or slightly older than the biotite cooling age.  相似文献   

5.
Major- and trace-element contents and Sr–Nd isotope ratios were determined in albitite, albitized and unaltered late-Variscan granitoid samples from the world-class Na-feldspar deposits of central Sardinia, Italy. The albite deposit of high economic grade has geological, textural, and chemical features typical of metasomatic alteration affecting the host granitoids. Albitization, locally accompanied by chloritization and epidotization, was characterized by strong leaching of Mg, Fe, K, and geochemically similar trace elements, and by a significant increase of Na. Ca, and P were moderately leached in the most metasomatized rocks. Other major (Si, Ti, Ca) and trace elements (U, Th, Y, and Zr), along with light (LREE) and middle (MREE) rare-earth elements, behaved essentially immobile at the deposit scale. The Nd-isotope ratios (0.512098 to 0.512248) do not provide information on the emplacement age of the unaltered late-Variscan granitoids. On the other hand, their Sr-isotope ratios fit an errorchron of 274±29 Ma (1σ error), in fair agreement with all published ages of Sardinian Variscan granitoids. The very low Rb content of albitized rocks precludes application of the Rb–Sr radiometric system to determine the age of albitization. The Sm–Nd system is not applicable either, because the 143Nd/144Nd ratios of albitized rocks and unaltered granitoids overlap. The overlap confirms that Sm and Nd were substantially immobile during albitization. On the other hand, the measured 87Sr/86Sr ratios of the albitized rocks are appreciably lower than those of the unaltered host granitoids, whereas, their initial Sr-isotope ratios are higher. This seems to suggest that a) albitization was induced by non-magmatic fluids rich in radiogenic Sr, and b) albitization occurred shortly after the granitoid emplacement. This conclusion is supported by Nd isotopes, because unaltered granitoids and albitites fit the same reference isochron at 274 Ma. The fluids acquired radiogenic Sr by circulation through the Lower Paleozoic metasedimentary basement. Specifically, it is estimated that Sr supplied by the non-carbonatic basement represents about 22 wt% of total Sr in albitite.  相似文献   

6.
Nd and Sr isotopic compositions and Rb, Sr, Sm and Nd concentrations are reported for madupites, wyomingites and orendites from the Pleistocene volcanic field of the Leucite Hills, Wyoming. All Leucite Hills rocks have negative εNd signatures, indicating derivation or contribution from an old light rare earth element (LREE) enriched source. In this respect they are similar to all occurrences of high potassium magmas so far investigated. But Sr isotopic variations are comparatively small and 87Sr/ 86Sr ratios are unusually low for high-K magmas (0.7053–0.7061, one sample excluded). These values suggest that the light REE enrichment of the source was not accompanied by a strong increase in Rb/Sr. Wyomingites and orendites are isotopically indistinguishable which is consistent with chemical and petrographic evidence for their derivation from a common magma series depending on emplacement conditions. Basic to ultrabasic madupites and more silicic wyomingites/orendites are distinct in their Nd isotopic variations (madupites: εNd= ?10.5 to ?12.3; wyomingites/orendites: εNd= ?13.7 to ?17.0) despite similar Sm/Nd ratios and complete overlap in 87Sr/86Sr. Selective or bulk assimilation of crustal material is unlikely to have significantly affected the Nd and Sr isotopic compositions of the magmas. The measured isotopic ratios are considered to reflect source values. The distinct isotopic characteristics of madupite and wyomingite/orendite magmas preclude their derivation by fractional crystallization, from a common primary magma, by liquid immiscibility or by partial melting of a homogeneous source. Two isotopically distinct, LREE enriched and slightly heterogeneous sources are required. Heterogeneities were most pronounced between magma sources from each volcanic centre (butte or mesa). The relationship between the madupite and wyomingite/orendite sources and their evolution is discussed on the basis of two simple alternative sets of models:
  1. a two-stage evolution model with an old enrichment event (a metasomatic event?) perhaps taking place during the stabilization of the Wyoming Craton 3.2 to 2.5 Gyr ago but not later than 1.2 Gyr ago or
  2. a mixing model involving mixing between one endmember with εNd near zero and another end-member with a strong negative εNd signature.
  相似文献   

7.
锡矿往往与长英质岩浆岩伴生,然而锡矿形成的热能源区尚不清楚,其可能与地幔物质相关。我国云南锡矿带中出露的中-酸性岩石及碱性岩杂岩体为研究锡矿及其周围岩浆成因提供了良好的物质条件。本文报道了云南个旧地区代表性的花岗岩、辉长-闪长岩和碱性岩类新的全岩地球化学、锆石U-Pb年代学和Hf同位素数据。LA-ICP-MS锆石U-Pb定年表明上述岩石分别形成于81.43±0.46Ma(82.89±0.58M)、81.35±0.22Ma和80.35±0.72Ma,指示它们为晚白垩世近同期岩浆活动的产物。其中闪长岩、碱性岩和花岗岩中锆石的Hf同位素组成不均一,ε_(Hf)(t)分别为-4.2~+0.8、-7.5~-1.9和-8.4~+0.4。尽管这些岩体的侵入时代一致,但它们的地球化学特征和同位素特征存在差异,表明这三类火成岩来自不同的岩浆源区,三者不是同一母岩浆相互演化的关系。个旧杂岩体中花岗岩为弱过铝质岩石,SiO_2与P_2O_5含量呈负相关的关系,排除S型花岗岩的可能。亏损Zr、Nb、Sr、Eu等大离子亲石元素的特征可能为锆石、磷灰石、长石类造岩矿物分离结晶作用的结果;Zr、Nb、Ce和Y总量较低,低的FeOT/MgO比值和低的锆石饱和温度表明,指示出个旧地区的花岗岩应为高分异I型花岗质岩石而非A型花岗岩。个旧地区形成于晚白垩世时期的中基性、碱性岩石可能为不同的幔源岩浆近同时侵入的产物,底侵的幔源熔体带来热量诱发中、下地壳岩石发生部分熔融形成含矿的花岗岩,幔源岩浆对于成矿至少在能量也可能在成矿物质上有重要的贡献。  相似文献   

8.
云山岩体位于赣北的江南造山带东段九岭隆起带东北端,主要由二云母二长花岗岩组成。本文对该岩体进行了详细的锆石U-Pb年代学、主量元素、微量元素以及Nd-Hf同位素研究。LA-ICP-MS锆石U-Pb定年表明云山二云母二长花岗岩的形成年龄为125.6±1.1Ma,为燕山晚期早阶段岩浆活动的产物。岩相学和岩石地球化学研究表明云山岩体属于高分异的S型花岗岩,具高硅、富碱、过铝质,锆饱和温度低、轻重稀土分馏明显、富集Rb、Th、U、K、Pb等元素而亏损Ba、Nb、Sr和Ti等元素、铕负异常显著(Eu/Eu~*=0.13~0.20)的特点。云山岩体的全岩ε_(Nd)(t)值与锆石ε_(Hf)(t)值分别变化于-3.9~-5.1和-1.0~-8.8,两阶段Nd和Hf同位素模式年龄分别为T_(DM2)(Nd)=1.35~1.44 Ga和T_(DM2)(Hf)=1.25~1.75 Ga,Nd同位素的模式年龄重叠于Hf同位素模式年龄。结合其CaO/Na_2O值均小于0.3,本次研究认为云山岩体的源区很可能是来自于双桥山群中的富泥质变质沉积岩及少量火成岩,形成于早白垩世古太平洋板块俯冲之后的弧后伸展的构造环境。  相似文献   

9.
The widespread Mesozoic granitoids in South China (∼135,300 km2) were emplaced in three main periods: Triassic (16% of the total surface area of Mesozoic granitoids), Jurassic (47%), and Cretaceous (37%). Though much study has been conducted on the most abundant Jurassic Nanling Mountains (NLM) granites, their rock affinities relative to the Triassic Darongshan (DRS) and Cretaceous Fuzhou–Zhangzhou Complex (FZC) granites which are typical S- and I-type, respectively, and the issue of their petrogenetic evolution is still the subject of much debate. In this study, we discuss the petrogenesis of NLM granites using apatite geochemistry combined with whole-rock geochemical and Sr–Nd isotope compositions. Sixteen apatite samples from six granite batholiths, one gabbro, and three syenite bodies in the NLM area were analyzed for their major and trace element abundances and compared with those collected from DRS (n = 7) and FZC (n = 6) granites. The apatite geochemistry reveals that Na, Si, S, Mn, Sr, U, Th concentrations and REE distribution patterns for apatites from DRS and FZC granites basically are similar to the S and I granite types of the Lachlan Fold Belt (Australia), whereas those from NLM granites have intermediate properties and cannot be correlated directly with these granite types. According to some indications set by the apatite geochemistry (e.g., lower U and higher Eu abundances), NLM apatites appear to have formed under oxidizing conditions. In addition, we further found that their REE distribution patterns are closely related to aluminum saturation index (ASI) and Nd isotope composition, rather than SiO2 content or degree of differentiation, of the host rock. The majority of apatites from NLM granites (ASI = 0.97–1.08 and εNd(T) = −8.8 to −11.6) display slightly right-inclined apatite REE patterns distinguishable from the typical S- and I-type. However, those from few granites with ASI > 1.1 and εNd(T) < −11.6 have REE distribution patterns (near-flat) similar to DRS apatites whereas those from granites with ASI < 1.0 and εNd(T) > −6.6 and gabbro and syenite are similar to FZC apatites (strongly right-inclined). In light of Sr and Nd isotope compositions, magmas of NLM intrusives, except gabbro and syenite, and few granites with εNd(T) > −8, generally do not involve a mantle component. Instead, they fit with a melt derived largely from in situ melting or anatexis of the pre-Mesozoic (mainly Caledonian) granitic crust with subordinate pre-Yanshanian (mainly Indosinian) granitic crust. We suggest that an application, using combined whole-rock ASI and εNd(T) values, is as useful as the apatite geochemistry for recognizing possible sources for the NLM granites.  相似文献   

10.
The Hongshan quartz monzonite porphyry is one of the Yanshanian intrusions in the southern part of the Yudun Arc. Detailed zircon U–Pb data of four samples yielded ages of 78.8–80.7 Ma, indicating that the Hongshan intrusion was emplaced during the late stage of Late Cretaceous. The Hongshan intrusion shows shoshonitic and high‐K calc‐alkaline, with A/CNK = 0.64–1.14. The rocks show an obvious fractionation between light and heavy rare‐earth elements (average [La/Yb]N = 38.85), with negative Eu anomalies (Eu/Eu* = 0.60–0.87), enrichment in large‐ion lithophile elements (Rb, Th, U and K) and depletion in high field‐strength elements (Nb, Ta and P). Rocks have high Sr and low Y content which are characteristics of adakitic rocks, suggesting magma derivation from thickened lower crust. In order to evaluate the nature of the source region, Hf isotope data of zircons were acquired through LA‐MC‐ICPMS. The negative and variable εHf(t) values demonstrate that the Hongshan intrusion was derived from ancient crust, without mantle‐derived components and is significantly different from the Triassic intrusions in the southern part of the Yudun Arc. The three Yanshanian intrusions in Hongshan, Relin and Tongchangou are remarkably similar in terms of geochronology, geochemistry and Hf isotopes. We therefore infer that these intrusions had the same magmatic source and we correlate the tectonics with northward subduction of Tethys underneath the Asian continent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.

福州复式岩体I-A型复合花岗岩的岩石成因与源区性质目前尚未得到很好认识。本文对福州复式岩体花岗岩进行了岩石学、锆石U-Pb年代学、主量和微量元素地球化学及锆石Hf同位素研究。该复式岩体花岗岩可分为钙碱性和碱性系列。LA-ICP-MS锆石U-Pb定年结果表明,钙碱性系列花岗岩形成年龄为111~101Ma,是早白垩世多期次岩浆活动作用的产物;碱性系列花岗岩形成的年龄为95~93Ma,是晚白垩世岩浆活动的产物。两类岩石均具有Eu负异常、LREE富集和HREE亏损的特征,并且Rb、Th、U、K、Pb等大离子亲石元素相对富集,Ba、Sr以及高场强元素Nb、Ta、P、Ti相对亏损。其中,钙碱性系列花岗岩的轻重稀土分馏程度较之碱性系列花岗岩明显,而碱性系列花岗岩的负铕异常比钙碱性系列花岗岩明显。锆石Hf同位素组成表明,钙碱性系列花岗岩的εHft)值为-3.9~0.2,地壳模式年龄表明花岗质岩浆源岩来自于新元古代古老地壳的部分熔融,并有少量的地幔组分卷入。碱性系列花岗岩的εHft)值为0.04~4.8,地壳模式年龄指示花岗质岩浆源岩来自于新元古代古老地壳的部分熔融,并有大量幔源组分的混入。综合分析表明,福州复式岩体I-A型复合花岗岩具有相同的源区,其形成的差异主要是构造环境的变迁、幔源岩浆的加入以及岩浆分异演化等多种因素综合作用的结果。

  相似文献   

12.
安徽黄山花岗岩岩石学、矿物学及地球化学研究   总被引:10,自引:4,他引:10  
安徽黄山复式岩体位于扬子板块东南缘,江南陆内造山带内。黄山复式岩体由太平花岗闪长岩岩体和黄山花岗岩岩体组成。根据岩体的接触关系和各期次岩石的矿物学及岩石学特征,可以将黄山花岗岩岩体分为4个期次:第一期为中粒二长花岗岩;第二期为粗粒似斑状花岗岩;第三期为中细粒斑状花岗岩;第四期为粗粒含斑花岗岩。从矿物的组成上来看,各期次的岩石均为广义的花岗岩类,主要矿物以石英和长石为主,太平岩体和黄山岩体中的斜长石均表现出钠长石的特点,同时黄山岩体特征的出现条纹长石。各期次岩体均含有少量的铁白云母,显示出过铝质的特点。各期次岩石总体具有高硅(SiO2含量大于75%)、高碱(ALK含量大于7.9%)、低钙(CaO含量小于1%)及高FeOT/MgO比值(13~37)的特点。同时岩石强烈富集稀土元素(除Eu出现明显的负异常)、Zr、Hf、Nb等高场强元素,贫Ba、Sr、Ni,高10000×Ga/Al(比值大于2.6),这些特征均指示黄山复式岩体具有A型花岗岩的特点。通过Eby的判别图解将其进一步划分为A2型花岗岩,代表其形成于拉张的构造背景之下。结合Sm-Nd同位素特征(εNd(t)= -4. 2 ~ -5.6),确定黄山复式岩体的源区物质可能为一套元古宙的火山岩。同时稀土模拟结果表明,黄山岩体的原始岩浆是这种源区大约20%部分熔融的产物。岩体形成于斜向俯冲引发的陆内剪张环境内。  相似文献   

13.
萨吾尔地区位于西准噶尔东北缘,广泛发育晚古生代中酸性侵入岩和火山岩以及少量基性侵入岩,这些岩浆岩的年代学研究对于限制西准噶尔地区石炭纪构造环境具有重要的意义。本文通过研究萨吾尔地区科克托别岩体的岩相学特征、锆石SHRIMP U-Pb年龄以及地球化学特征,探讨该岩体构造背景以及成因机制,为进一步论证西准噶尔地区石炭纪构造环境提供佐证。科克托别岩体包括中粗粒辉长岩、细粒辉长岩和闪长岩,在野外露头显示细粒辉长岩以脉状侵入中粗粒辉长岩中,细粒辉长岩中包裹有中粗粒辉长岩包体,中粗粒辉长岩与闪长岩之间呈渐变过渡接触关系,说明科克托别岩体是不同期次岩浆侵位形成的杂岩体,早期岩浆侵入形成中粗粒辉长岩和闪长岩,晚期岩浆上侵就位于中粗粒辉长岩构造裂隙中形成细粒辉长岩。科克托别岩体中细粒辉长岩锆石SHRIMP U-Pb年龄为323.2±6.2Ma,表明岩体形成于早石炭世晚期。该岩体成岩年龄晚于该地区蛇绿岩套岩石年龄,也晚于岛弧火山岩年龄以及含斑岩矿床侵入岩年龄,与该地区I型花岗岩年龄相似,而明显早于碰撞后A型花岗岩和双峰式火山岩的形成年龄,说明科克托别岩体可能形成于同碰撞构造环境中。不同岩相的岩石主量元素之间的相关关系以及微量元素配分型式相似性说明它们为同源岩浆结晶分异的产物。岩相学和地球化学特征表明岩体初始岩浆可能为软流圈地幔与上覆交代地幔相互作用形成,板片断离可能为软流圈地幔的上涌起到重要作用。  相似文献   

14.
对湖南桃江地区江石桥辉绿岩进行了LA-ICP-MS锆石U-Pb定年,获得的岩浆侵位年龄为229±2.3Ma(n=8,MSWD=1.8,2σ)。其低钾(K_2O/Na_2O=0.14~0.16),贫碱(K_2O+Na_2O=2.89%~2.96%),富集大离子亲石元素(Rb、Ba、Th、U),亏损高场强元素(Nb、Ta、Ti),呈轻稀土元素弱富集,无Eu、Ce异常,富集放射性成因Pb,低(~(87)Sr/~(86)Sr)_i(0.706052~0.706437),较低正ε_(Nd)(t)(1.54~1.86)的特征,表明岩石来源于下地壳物质和亏损地幔的混合源区。综合前人的研究结果认为,在印支运动造山后的伸展背景下,软流圈上涌导致区域下地壳及部分地幔物质发生熔融,形成辉绿岩岩浆并向上侵位而成。  相似文献   

15.
纳如松多矿区石英闪长岩具有低SiO_2、富MgO、CaO的特征,含10%~15%的角闪石,为准铝质、分异程度较低的高钾钙碱性-钾玄岩系列I型花岗岩。岩体发育较弱的Eu负异常,富集强不相容元素Rb、Th、U,而亏损Nb、Ta、Ti等高场强元素。同位素测试结果显示,纳如松多石英闪长岩具有相对较高的~(87)Sr/~(86)Sr初始比值(0.709 13~0.709 68)与负的ε_(Nd)(t)值(-5.8~-5.2),Pb同位素的~(206)Pb/~(204)Pb为18.6091~18.6438,~(207)Pb/~(204)Pb为15.6900~15.6986,~(208)Pb/~(204)Pb为39.2116~39.2225,指示岩浆可能为特提斯洋俯冲消减阶段产生的岛弧地幔楔部分熔融的产物。一种可能的成因模式为:晚白垩世,随着雅鲁藏布江板块向拉萨地块之下俯冲,俯冲板片流体交代上覆地幔楔,形成幔源基性岩浆,上侵到地壳后,诱发了岛弧基底物质的部分熔融,形成了中基性的纳如松多石英闪长岩,其形成可能是晚白垩世北向俯冲的新特提斯洋板块在回转初期的岩浆活动响应。  相似文献   

16.
兴蒙造山带北缘断续分布的早古生代岩浆岩带,对古生代构造格局恢复及造山带演化研究具有重要意义。阿巴嘎旗北部吉尔嘎郎图岩体位于该岩浆岩带中段,为带内最大的早古生代复式侵入体。LA-ICP-MS锆石U-Pb定年表明,吉尔嘎郎图岩体早期花岗闪长岩单元成岩年龄为455.0~495.6Ma。在主量元素组成上,岩体SiO_2含量中等(59.49%~68.22%),贫铁、镁,K_2O/Na_2O值(0.64~0.85)小于1,A/CNK=0.96~1.09,整体具有亚碱、弱过铝特征。稀土及微量元素方面,岩体富Cs、Rb、Th、U、Pb,亏损Ba、Sr、P及高场强元素Nb、Ta等,稀土元素总量中等,具有弱负Eu异常(δEu=0.52~0.82)。Sr-Nd-Hf同位素分析结果显示,岩体具有亏损的同位素组成,(~(87)Sr/~(86)Sr)i=0.7053~0.7034,ε_(Nd)(t)=0.39~4.29,2件Hf同位素样品ε_(Hf)(t)均为正值,分别为ε_(Hf)(t)=7.6~10.8和ε_(Hf)(t)=3.7~7.9。岩石地球化学、年代学及Sr-Nd-Hf同位素综合分析表明,吉尔嘎郎图岩体是早古生代古亚洲洋沿苏左旗—锡林浩特一线向北俯冲背景下,遭受了俯冲板片析出流体交代作用影响的新生下地壳部分熔融的产物,后期由于弧后拉张、贺根山洋盆打开与主体岛弧带分离,最终随着古亚洲洋的整体闭合,形成了与俯冲带彼此分隔的格局。  相似文献   

17.
前人对西藏冈底斯中北部白垩纪岩浆岩的岩石成因和地球动力学背景仍然存在很多解释。本文报道了位于北冈底斯(拉萨地块北部)东段巴尔达地区的岩浆岩锆石U-Pb定年、元素地球化学和Sr-Nd-Hf同位素数据,以对这一问题进行约束。巴尔达岩浆岩包括花岗闪长斑岩和安山玢岩。锆石U-Pb定年结果表明,巴尔达岩浆岩侵位于~114Ma,是北冈底斯早白垩世岩浆岩的典型代表之一。巴尔达岩浆岩两种岩石均为高钾钙碱性系列,其中花岗闪长斑岩的SiO2为64.45%~67.52%,全碱(K2O+Na2O)含量为6.23%~7.47%,铝饱和指数(A/CNK)为0.98~1.22,为兼具I型特点的S型花岗岩;安山玢岩SiO2为57.50%~62.15%,K2O含量为2.30%~3.60%,MgO含量为2.27%~4.40%。两种岩石均富集大离子亲石元素和Pb,亏损高场强元素和Ba等。与冈底斯成熟大陆地壳相比,巴尔达岩浆岩具有更高的εNd(t)值(-7.8~-6.8)和相对低的(87Sr/86Sr)t值(0.7094~0.7105),并且具有不均一的锆石εHf(t)值(-4.2~+3.3)和相对年轻的Hf模式年龄(639~975Ma)。锆石Hf同位素数据和锆石饱和温度(768~818℃)均显示幔源物质在巴尔达岩浆岩形成过程中发挥了重要作用。巴尔达岩浆岩可能是在南向俯冲的班公湖-怒江洋岩石圈断离背景下,由上涌的软流圈提供热量诱发岩石圈地幔熔融产生幔源基性熔体侵位到上部地壳,并引发周围酸性物质的熔融混合,混合过程中幔源组分的输入使S型熔体向I型熔体转化。  相似文献   

18.
贾小辉  王晓地  杨文强  周岱 《岩石学报》2021,37(5):1405-1418

华南早古生代基性岩浆岩出露少而小,对其岩石成因的研究仍存在较大争议,较大地制约了对华南早古生代造山作用的深入理解。横市辉长岩位于赣南地区,有数个小的侵入体组成,SHRIMP锆石U-Pb定年结果显示其形成时代为423.3±4.9Ma。辉长岩具有均一的硅含量(SiO2=49.14%~52.05%),相对高的镁含量(MgO=7.16%~9.43%)和Mg#值(60.7~67.3)。稀土总量(∑REE)为80.6×10-6~131.5×10-6,无-弱的铕正异常(δEu=0.97~1.21)。Sr-Nd-Pb-Hf同位素组成为:ISr=0.7048~0.7060,εNd(423Ma)=-3.11~-1.97;(206Pb/204Pb)i=17.73~18.03,(207Pb/204Pb)i=15.57~15.59,(208Pb/204Pb)i=37.80~38.19;εHft)=-3.71~+1.55。元素及同位素组成表明,横市辉长岩可能源自类似于EMⅠ和EMⅡ混合的富集地幔源区的部分熔融。大规模的岩石圈拆沉作用可能是形成华南早古生代基性岩石的动力学机制。

  相似文献   

19.
Mafic-layered intrusions and sills and spatially associated andesitic basalts are well preserved in the Funing area, SW China. The 258±3 Ma-layered intrusions are composed of fine-grained gabbro, gabbro and diorite. The 260±3 Ma sills consist of undifferentiated diabases. Both the layered intrusions and volcanic rocks belong to a low-Ti group, whereas the diabases belong to a high-Ti group. Rocks of the high-Ti group have FeO, TiO2 and P2O5 higher but MgO and Th/Nb ratios lower than those of the low-Ti group. They have initial 87Sr/86Sr ratios (0.706–0.707) lower and ɛNd (−1.5 to −0.6) higher than the low-Ti equivalents (0.710–0.715 and −9.6 to −4.0, respectively). The high-Ti group was formed from relatively primitive, high-Ti magmas generated by low degrees (7.3 –9.5%) of partial melting of an enriched, OIB-type asthenospheric mantle source. The low-Ti group may have formed from melts derived from an EM2-like, lithospheric mantle source. The mafic rocks at Funing are part of the Emeishan large igneous province formed by a mantle plume at ∼260 Ma.  相似文献   

20.
《Chemical Geology》2007,236(3-4):291-302
The probable sources of some of the famous Indian diamonds are the 1.2 Ga old Krishna lamproites of Southern India, a rare Proterozoic occurrence of lamproites which are usually Cretaceous or younger in age. In this study we report Nd, Sr, Pb and Hf isotopes and multiple trace element concentrations of the Krishna lamproites. The goals are to evaluate mantle-processes and the petrogenesis of these ultrapotassic rocks of extreme chemical composition in light of these geochemical data, including their major element compositions.The Krishna lamproites show nearly uniform, parallel rare earth element (REE) distribution patterns with high concentrations and extreme light-REE enrichment (La/Yb(N) = 41–88), high average concentrations of Ba (∼ 1200 ppm), Sr (∼ 1200 ppm), Zr (∼ 930 ppm), La (∼ 230 ppm), high U/Pb and Th/U ratios with notable absence of any Eu-anomaly. These rocks are typically porphyritic without any evidence of crystal accumulation, and have moderately high Mg-numbers (59–73) along with high Ni (average ∼ 301 ppm, highest 819 ppm) and Cr (average ∼ 183 ppm, highest 515 ppm) concentrations that show a positive correlation with MgO (wt.%), implying a role of olivine in the melt source. The low SiO2 content (lowest 37.8%, average 49%) and high Nb (average 147 ppm), Zr, Sr, as well as Ni and Cr in these rocks indicate lack of upper continental crustal contribution in the genesis of these rocks. The initial Pb-isotopic composition of these lamproites is unusual in that in a 207Pb/204Pb vs. 206Pb/204Pb plot, these rocks plot to the left of the 1.2 Ga geochron (age of emplacement), unlike most mantle-derived rocks. This Pb-isotopic signature and the superchondritic Nb/Ta ratios (average 23.6) of these rocks rule out their derivation from a metasomatized sub-continental lithospheric mantle. The high 207Pb/204Pb at low 206Pb/204Pb indicates an Archean component in the source of these rocks. We argue that this Archean crustal component, which produced the low-SiO2 lamproites along with the high Ni and Cr must have been ultrabasic, and we propose a model in which these lamproites formed by partial melting of metasomatized, subducted Archean komatiite in a peridotite mantle-source assemblage. In addition, these rocks display initial Hf isotopic compositions similar to Al-depleted komatiites, and high Nb/U, Nb/Th, and TiO2 as well as low Al2O3/TiO2 ratios (1.1–4.2) and average CaO/Al2O3 of ∼ 1.6 that are also similar to Archean komatiites. This is also supported by the initial Pb isotopic composition of the Krishna lamproites, requiring evolution in a variably high U/Pb, Th/Pb reservoir early in earth history, possibly resulting from preferential segregation of Pb relative to U and Th in the sulfides of the komatiite.The Al-depleted subducted komatiitic component was enriched by carbonate metasomatism in the peridotitic mantle. This metasomatism was responsible for the observed Nd–Hf isotope characteristics, specifically variable εNd(T) at relatively constant εHf(T) in the lamproites. This Nd–Hf-isotopic characteristic seems to be common in global lamproites of all ages. Our proposed model for the genesis of the Krishna lamproites involving a subducted komatiitic source may also be applicable for other global lamproites from cratonic settings, as older komatiite-bearing subducted crustal components were possibly ubiquitous in the architecture of ancient cratonic mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号