首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamics of desertification in the Horqin Sandy Land between 2000 and 2005 were analyzed using Landsat TM/ETM images and the data-processing function of geographical information software. The results showed that the extent of desertified land decreased at a rate of slightly more than 0.1 km2 year−1, from 22,423.1 km2 in 2000 to 22,422.4 km2 in 2005, indicating that desertification has been controlled in this area and that desert areas may be approaching a steady state. The dynamics of desertification differed among land types. Desertification decreased most obviously in areas of previous desert land. The area in which desertification was ameliorated was higher than the area that underwent further degradation, but non-desertified land (113.3 km2) deteriorated at a rate of 22.7 km2 year−1 during this period. This significant change requires careful attention by managers in the study area.  相似文献   

2.
Aeolian sand transport during winter and the snow-free season was assessed quantitatively by direct year-round field measurements along transects on the lee side of parabolic dunes in subarctic Québec. In 1987–1988, niveo-aeolian deposition was more important than aeolian sedimentation in three of the four study sites, and contributed > 75% of the total annual accumulation in exposed sites and < 25% in protected forest sites. The maximum depth of interstratified snow and sand deposits (3.5 m) was recorded in March. Semi-permanent snow lenses may persist longer than 2 years in the aeolian sediments. After dissipation of snow, 22 cm of sand (as a maximum) accumulated on the slipface of the most active dunes, whereas only minor sand accumulation occurred in distant areas from active sand erosion. Wind-driven sand was dispersed over 7.4 km2 in the Whapmagoostui-Kuujjuarapik area. The acumulation of snow and sand during the snow season, together with spring thaw and collapse of the niveo-aeolian deposit, caused different types of injuries to trees, especially in 1985 and 1987 when a maximum of torn branches was recorded over the last 10 year period.  相似文献   

3.
We analyzed Rb-Sr-Nd isotope ratios of mineral dust in total aerosol load collected with rainwater continuously from 1998 to 2006 at the summit of Mt. Sefuri, northern Kyushu, southwestern Japan. During this period, the total mass of the dust generally increased in late winter, peaked in early spring, and then decreased.87Sr/86Sr in atmospheric mineral dust varied from 0.7096 to 0.7180, and εNd(0)CHUR from −19.9 to −3.5. During heavy deposition periods, the dust had high 87Sr/86Sr isotope ratios and low to middle εNd(0)CHUR values, respectively. These compositions are comparable to those of sand and loess in arid areas of Northeast China, Takla Makan and Western Beijing. Such particles were transported by westerlies from those areas to northern Kyushu in winter and spring. In summer and autumn, the isotopic compositions of the dust varied greatly; however, during light deposition periods, the Sr isotope composition was low. In these seasons, the contributions to the dust from Japanese soils and volcanic ash, transported by southern winds, were relatively larger than in winter and spring because of decreased mineral dust particle transport from the continent. Nevertheless, fine sandy desert particles and loess in general accounted for most mineral dust deposition in northern Kyushu year-round, even in summer. Local soils derived from weathered granite and volcanic ash were minor components only.The net mass of water-insoluble inorganic matter in the collected mineral dust fluctuated from year-to-year; deposition on Mt. Sefuri was relatively large before 2001, decreased from 2002 to 2005, and increased greatly in spring 2006. These year-to-year differences probably reflected changes in the strength of the westerlies and in climate conditions in the arid source areas.  相似文献   

4.
The coastal zone of the Sagar island has been studied. The island has been subjected to erosion by natural processes and to a little extent by anthropogenic activities over a long period. Major landforms identified in the coastal area of the Sagar island are the mud flats/salt marshes, sandy beaches/dunes and mangroves. The foreshore sediments are characterized by silty, slightly sandy mud, slightly silty sand and silty sand. Samples 500 m inland from high waterline are silty slightly sandy mud, and by clayey slightly sandy mud. The extent of coastline changes are made by comparing the topographic maps of 1967 and satellite imageries of 1996, 1998 and 1999. Between 1967 and 1999 about 29.8 km2 of the island has been eroded and the accreted area is only 6.03 km2. Between 1996 and 1998 the area underwent erosion of 13.64 km2 while accretion was 0.48 km2. From 1998 to 1999, 3.26 km2 additional area was eroded with meager accretion. Erosion from 1997 to 1999 was estimated at 0.74 km2 /year; however, from 1996 to 1999, the erosion rate was calculated as 5.47 km2/year. The areas severely affected by erosion are the northeastern, southwestern and southeastern faces of the island. As a consequence of coastal erosion, the mud flats/salt marshes, sandy beaches/dunes and mangroves have been eroded considerably. Deposition is experienced mainly on the western and southern part of the island. The island is built primarily by silt and clay, which can more easily be eroded by the waves, tides and cyclonic activities than a sandy coast. Historic sea level rises accompanied by land subsidence lead to differing rates of erosion at several pockets, thus periodically establishing new erosion planes.  相似文献   

5.
The Yangtze River is the China’s longest river and the third-longest river in the world. The river’s source region in the Qinghai-Tibet Plateau is especially sensitive to global environmental change because of its high elevation and cold environment. Under the influence of global warming, aeolian desertified land has expanded rapidly in this area. To assess the trends in aeolian desertification from 1975 to 2005, remote-sensing and GIS technology were used to monitor the extent of aeolian desertification in 1975, 1990, 2000, and 2005. The data sources included Landsat multi-spectral scanner images acquired in 1975, Enhanced Thematic Mapper (ETM+) images acquired in 2000, and Thematic Mapper (TM) images acquired in 1990 and 2005. Images recorded between June and October were selected, when vegetation grew well, because aeolian desertified land was more easily recognized during this period. Thematic maps, including land use and geomorphologic maps, were used as supplementary data. Aeolian desertification maps (1:100000) were produced for each year from the Landsat images through visual interpretation. The area of aeolian desertified land increased by 2,678.43 km2 from 1975 to 2005, accounting for 8.8% of the total area of aeolian desertified land in 1975, an increase of 89.28 km2 a−1. Increasing mean annual temperature and the combination of a dry, cold, and windy climate in winter and spring were mainly responsible for the expansion of desertified land.  相似文献   

6.
Assessment and inventory on soil erosion hazard are essential for the formulation of successful hazard mitigation plans and sustainable development. The objective of this study was to assess and map soil erosion hazard in Lesser Himalaya with a case study. The Dabka watershed constitutes a part of the Kosi Basin in the Lesser Himalaya, India, in district Nainital has been selected for the case illustration. The average rate of erosion hazard is 0.68 mm/year or 224 tons/km2/year. Anthropogenic and geo-environmental factors have together significantly accelerated the rate of erosion. This reconnaissance study estimates the erosion rate over the period of 3 years (2006–2008) as 1.21 mm/year (398 tons/km2/year) in the barren land having geological background of diamictite, siltstone and shale rocks, 0.92 mm/year (302 tons/km2/year) in the agricultural land with lithology of diamictite, slates, siltstone, limestone rocks, while in the forest land, it varies between 0.20 mm/year (66 tons/km2/year) under dense forest land having the geology of quartzwacke and quartrenite rocks and 0.40 mm/year (132 tons/km2/year) under open forest/shrubs land having geological setup of shale, dolomite and gypsum rocks. Compared to the intensity of erosion in the least disturbed dense forest, the erosion rate is about 5–6 times higher in the most disturbed agricultural land and barren land, respectively. The erosion hazard zones delineated following scalogram modelling approach. Integrated scalogram modelling approach resulted in severe classes of soil erosion hazard in the study area with numerical values of Erosion Hazard Index (EHI) ranging between 01 (very low hazard) and 5 (very high hazard).  相似文献   

7.
The characteristics of sand and dust movement over different sandy grasslands in China’s Otindag Sandy Land were explored based on field observations and laboratory analyses. Threshold wind speeds (the speed required to initiate sand movement) at a height of 2 m above the ground were estimated in the field for different surface types. Threshold wind speed above shifting dunes in the study area is about 4.6 m s−1 at this height. This value was smaller than values observed above other surfaces, resulting in a greater risk of blowing sand above these dunes. Differences in sand transport rates (STR) as a function of the severity of desertification resulted primarily from differences in surface vegetation cover and secondarily from the soil’s grain-size distribution. STR increased exponentially with increasing near-bed wind velocity. Under the same wind conditions, STR increased with increasing severity of desertification: from 0.08 g cm−2 min−1 above semi-fixed dunes to 8 g cm−2 min−1 above semi-shifting dunes and 25 g cm−2 min−1 above shifting dunes. Vegetation’s affect on STR was clearly large. Different components of sand and dust were trapped over different lands: mostly sand grains but little dust were trapped above shifting dunes, but much dust was collected over semi-shifting and semi-fixed dunes. Human disturbance is likely to produce dust even from fixed dunes as a result of trampling by animals and vehicle travel. In addition, spring rainfall decreased the risk of sand and dust movement by accelerating germination of plants and the formation of a soil crust.  相似文献   

8.
Airborne gamma-ray spectrometry data (uranium, potassium and thorium contents) reveal geochemical heterogeneities within the monolithological Hyrôme watershed (ca. 150 km2) in the Armorican massif (western France). Our observations and computations provide important constraints on the spatial distribution and the associated magnitudes of chemical erosion processes at the scale of a small watershed. Two distinct, partially preserved, weathering profiles exhibit a strong correlation between regolith evolution and airborne-derived K/Th ratios, suggesting that the variability is linked to supergene processes. Using both airborne data and laboratory measurements on rock samples, the total net export of potassium has been estimated at 422 ± 50 kg/m2 and the chemical weathering rate of potassium at 17 ± 2 kg/km2/a.  相似文献   

9.
RTK-GPS data, aerial photographs and Aster images were used to quantify volume, surface elevation, terminus position and area changes of Glacier No. 4 of Sigong River over Mt. Bogda, Tianshan during the period from 1962 to 2009. Glacier surface elevation of the tongue area decreased by 15 ± 8 m (0.32 ± 0.17 m a−1) and ice volume loss reached 0.014 ± 0.008 km3 (0.013 ± 0.007 km3 w. e.). The glacier terminus retreated at a rate of 8.0 m a−1 and the area decreased by about 0.53 km2, accounting for 15.8% of the glacier area in 1962 (3.33 km2). The changes can be primarily attributed to the significant increase in temperature in this region. A comparison with glacier changes by field measurements in other regions of eastern Tianshan showed obvious spatial differences in the magnitude of the changes, owing to a combination of regional climate change and topographical factors.  相似文献   

10.
A series of experiments to determine the direct emission of dust-sized particles from Gobi surfaces by clean wind (wind without sand), and the potential for aeolian abrasion of Gobi surfaces and beds of gravel and mobile sand to produce fine (<100 μm) and dust-sized (<10 μm, PM10) particles under sand-laden winds were conducted. Parent material was obtained from Gobi areas of the Ala Shan Plateau, the region with high dust emissions in arid China. The fine particles produced by aeolian processes were collected using sand traps and sieved the captured materials to exclude particles >100 μm in diameter and then PM10 by sedimentation was acquired. The Gobi surface provided most of the emitted fine particles during the initial dust emission processes, but subsequently, release of the clay coatings of particles by abrasion becomes the dominant source of fine materials. Under sand-laden winds, PM10 production rates produced by aeolian abrasion of Gobi surfaces ranged between 0.002 and 0.244% of blown materials. After removal of sand, silt, or clay with low resistance to erosion from the Gobi surfaces by the wind, the PM10 production rates caused by aeolian abrasion were similar to those from gravel and sand beds. The results also indicated that after the dust-sized particles with low resistance to erosion were removed, the production of dust-sized particles was unrelated to wind velocity. Under aeolian processes, Gobi deserts in this region therefore play a major role in dust emissions from arid and semiarid China.  相似文献   

11.

Remote sensing images of AD 1991–2011 and field observations help evaluate shoreline changes (erosion and accretion) in Puducherry and Tamil Nadu states of southeastern India. A minor harbor was constructed during AD 1986–1989 in the coast of Puducherry, and it initiated the gradual process of shoreline modification. In the subsequent years, beaches located toward the north of the harbor suffered erosion (?0.12–?4.19 m/year) and there was accretion (0.27–7.25 m/year) in the southern beaches. However, the man-made structures (seawall and groin) have reduced the shoreline changes after AD 2004. In the last two decades, the rate of erosion area-wise gradually decreased (0.24–0.013 km2/year) and accretion remained constant (0.019 km2/year). Our results suggest that accretion happened in the southern side of the breakwaters and erosion occurred in the northern part. Presence of groins structures in the region in the northern part has also provoked accretion in the south and erosion in the northern side close to the State of Tamil Nadu.

  相似文献   

12.
A set of six Landsat satellite images with 5–9 years apart was used in a post-classification analysis to map changes occurred at Rosetta promontory between 1973 and 2008 due to coastal erosion. Spectral information were extracted from two multi-spectral scanner (MSS) images (1973 and 1978), three thematic mapper (TM) images (1984, 1990, and 1999), and one enhanced thematic mapper plus (ETM+) image (2008). To estimate the quantity of land loss in terms of coastal erosion, a supervised classification scheme was applied to each image to highlight only two classes: seawater and land. The area of each class was then estimated from the number of pixels pertaining to this class in every image. In addition, the shoreline position was digitized to address retreat/advance pattern throughout the study period. Results showed that Rosetta promontory had lost 12.29 km2 of land between 1973 and 2008 and the shoreline withdrew southward about 3.5 km due to coastal erosion. Most land loss and shoreline retreat occurred between 1973 and 1978 (0.55 km2/year and 132 m/year, respectively). Coastal protection structures were constructed successively at the promontory. These structures have considerably contributed to reduce coastal erosion; however, they promoted downdrift erosion.  相似文献   

13.
The geochemistry of dissolved and suspended loads in river catchments of two low mountain ranges in Central Europe allows comparison of pertinent chemical weathering rates. Distinct differences in lithology, i.e. granites prevailing in the Black Forest compared to Palaeozoic sediments in the Rhenish Massif, provide the possibility to examine the influence of lithology on weathering. Here we determine the origin of river water using the stable isotope ratio δ18OH2O and we quantify the geogenic proportions of sulphate from stable isotope ratios δ34SSO4 and δ18OSO4. Particularly in catchments with abundant pyrite, determination of the geogenic amount of sulphate is important, since oxidation of pyrite leads to acidity, which increases weathering. Our results show that spatially averaged silicate weathering rates are higher for the river catchments Acher and Gutach in the Black Forest (10–12 t/km2/yr) compared to the river catchments of the Möhne dam and the Aabach dam in the Rhenish Massif (2–6 t/km2/yr). Correspondingly, the CO2 consumption by silicate weathering in the Black Forest (334–395 × 103 mol/km2/yr) is more than twice as high as in the Rhenish Massif (28–151 × 103 mol/km2/yr). These higher rates for watersheds of the Black Forest are likely due to steeper slopes leading to higher mechanical erosion with respective higher amounts of fresh unweathered rock particulates and due to the fact that the sediments in the Rhenish Massif have already passed through at least one erosion cycle. Carbonate weathering rates vary between 12 and 38 t/km2/yr in the catchments of the Rhenish Massif. The contribution of sulphuric acid to the silicate weathering is higher in the catchments of the Rhenish Massif (9–16%) than in the catchments of the Black Forest (5–7%) due to abundant pyrite in the sediments of the Rhenish Massif. Three times higher long-term erosion rates derived from cosmogenic nuclides compared to short-term erosion rates derived from river loads in Central Europe point to three times higher CO2 consumption during the past 103 to 104 years.  相似文献   

14.
The morphodynamic behavior of a mesotidal sandy beach was monitored during both calm and energetic conditions. Two years of seasonal surveys were carried out on Charf el Akab, a gently sloped beach in the North Atlantic coast of Morocco. The method of survey consisted of a 3D study of the beach morphological changes and provided 2 cm vertical accuracy. During the surveyed period, Charf el Akab beach underwent very energetic wave conditions, and the breaking wave height was of H b ≥ 1.5 m. The beach is characterized by a nonpermanent swash bar and composed of well-sorted medium sand. The application of environmental parameters revealed a dissipative state with very low beach gradient which did not vary significantly over the studied period. Morphological changes consist of beach erosion and bar decay under high-energy waves, whereas the intertidal bar re-established and the beach recorded an accentuated accretion due to relatively fair weather conditions. The beach volume reveals a seasonal behavior; the sand accumulated during summer is dramatically removed during winter season. The range in beach sand volume from the most accreted to the most eroded conditions observed is about −5,493 m3. The average sand volume flux between surveys reaches −1 and 0.4 m2/day during peak erosion and accretion periods. The relationships between the wave forcing and the sand volume adjustments were examined. The sand volume change was found to be highly correlated (0.91) with the wave energy flux. The highest correspondence (0.95) was found between the sand flux rate and the wave energy flux. The wave forcing is expected to be the main factor governing beach morphodynamics at Charf el Akab site.  相似文献   

15.
The Cordillera Blanca, located in the central zone of the Andes Mountains in Peru, has shown a retreat in its glaciers. This paper presents a trend analysis of the glacier area over the groups of Nevados Caullaraju-Pastoruri from 1975 to 2010 using Landsat-5 Thematic Mapper (TM) imagery. In the case of the Nevados Pastoruri/Tuco, the study period was extended back to 1957 by using an aerial photograph taken that year. The extent of clean glacier ice was estimated using Normalized Difference Snow Index (NDSI) thresholds. Moreover, the estimation of debris-covered glacier ice was retrieved by means of a decision tree classification method using NDSI, Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Area estimations derived from Landsat imagery were compared to the glacier ground-truth data in 1975 and 2010. Results show a statistically significant (p < 0.05) decreasing trend over the whole study area. Total glacier area decreased at a rate of 4.5 km2 per decade from 1975 to 2010, with a total loss of 22.5 km2 (58%). Lower decreasing rates were found for the period 1987–2010: 3.5 km2 per decade with a total loss of 7.7 km2 (32.5%). In the case of the Nevados Pastoruri/Tuco, decreasing rates of clean ice extent were constant for the periods 1957–2010, 1975–2010 and 1987–2010, with values close to 1.4 km2 per decade and a total loss between 1957 and 2010 estimated at about 5 km2 (54%). This work shows an evident area decrease in the Caullaraju-Pastoruri tropical glaciers, which needs to be included in a future hydrological scenario of local adaptability and water management.  相似文献   

16.
Aeolian (wind) erosion is most common in arid regions. The resulted emission of PM10 (particulate matter that is smaller than 10 μm in diameter) from the soil has many environmental and socioeconomic consequences such as soil degradation and air pollution. Topsoil resistance to aeolian transport highly depends on the surface composition. The study aim was to examine variations in PM10 fluxes in a desert-dust source due to surface composition and topsoil disturbance. Aeolian field experiments using a boundary layer wind tunnel alongside soil composition analysis were integrated in this study. The results show variations in PM10 fluxes (ranging from 9.5 to 524.6 mg m?2 min?1) in the studied area. Higher wind velocity increased significantly the PM10 fluxes in all surface compositions. A short-term natural disturbance caused changes in the aggregate soil distribution (ASD) and increased significantly PM10 emissions. Considering that PM10 contains clays, organic matter, and absorbed elements, the recorded PM10 fluxes are indicative of the potential soil loss and degradation by wind erosion in such resource-limited ecosystems. The findings have implications in modeling dust emission from a source area with complex surfaces.  相似文献   

17.
Siruvani watershed with a surface area of 205.54 km2 (20,554 hectare), forming a part of the Western Ghats in Attapady valley, Kerala, was chosen for testing RUSLE methodology in conjunction with remote sensing and GIS for soil loss prediction and identifying areas with high erosion potential. The RUSLE factors (R, K, LS, C and P) were computed from local rainfall, topographic, soil classification and remote sensing data. This study proved that the integration of soil erosion models with GIS and remote sensing is a simple and effective tool for mapping and quantifying areas and rates of soil erosion for the development of better soil conservation plans. The resultant map of annual soil erosion shows a maximum soil loss of 14.917 t h−1 year−1 and the computations suggest that about only 5.76% (1,184 hectares) of the area comes under the severe soil erosion zone followed by the high-erosion zone (11.50% of the total area). The dominant high soil erosion areas are located in the central and southern portion of the watershed and it is attributed to the shifting cultivation, and forest degradation along with the combined effect of K, LS and C factor. The RUSLE model in combination with GIS and remote sensing techniques also enables the assessment of pixel based soil erosion rate.  相似文献   

18.
The environmental change in the wetlands in the southern Mongolian Plateau has important impacts on the environment of North China and even the entire Northeast Asia, from which the global climate change can be understood on a large scale, especially the climate change in the Mongolian Plateau. This study extracted the information on the wetlands from three stages of remote sensing images (also referred to as RS images) of the study area, including Enhanced Thematic Mapper Plus (ETM+) images of 2000, TM images of 2010, and Landsat 8 Operational Land Imager (OLI) images of 2018. As indicated by the extraction results, the area of wetlands decreased from 796.90 km2 of 2000 to 666.24 km2 of 2018 at a rate of 7.26 km2/a. The reduced area is 130.66 km2, which is about 16.4% reduction. And the patch number of wetlands decreased from 731 of 2000 to 316 of 2018 in the study area, approximately 56.8% reduction (415 patches), and the decrease in the area of the wetlands mainly occurred in the northwest endorheic region. In terms of wetland types, the change of the wetlands was dominated by the decrease of lacustrine wetlands, of which the area and patch number decreased by 106.2 km2 and 242, respectively. Furthermore, the area of the lacustrine wetlands decreased at the highest rate of 8.70 km2/a in 2010–2018. From the perspective of spatial distribution, the wetlands in the western part shrunk more notably than those in the eastern part as a whole in the study area. According to local meteorological data, the precipitation gently decreased and the temperature increased (about 1.7°C) from 1975–2018. Overall, the decrease in the area of the wetlands and the temperature rises in the study area were mainly driven by the Mongolian monsoon climate, reduction in precipitation, and human activities.  相似文献   

19.
《Quaternary Research》2014,81(3):538-544
Measurements of 137Cs concentration in soils were made in a representative catchment to quantify erosion rates and identify the main factors involved in the erosion in the source region of the Yellow River in the Tibetan Plateau. In order to estimate erosion rates in terms of the main factors affecting soil loss, samples were collected taking into account the slope and vegetation cover along six selected transects within the Dari County catchment. The reference inventory for the area was established at a stable, well-preserved, site of small thickness (value of 2324 Bq·m 2). All the sampling sites had been eroded and 137Cs inventories varied widely in the topsoil (14.87–25.56 Bq·kg 1). The effective soil loss values were also highly variable (11.03–28.35 t·km 1·yr 1) in line with the vegetation cover change. The radiometric approach was useful in quantifying soil erosion rates and examining patterns of soil movement.  相似文献   

20.
Almost every year in the winter months (December–February), the vast Indo-Gangetic Plain south of the Himalaya is affected by dense fog. This fog is considered as radiational fog, and sometime it becomes smog (when it mixes with smoke). The typical meteorological, topographic and increasing pollution conditions over the Indo-Gangetic Plain are perhaps the common contributing factors for fog formation. In the present study, the North Indian fog has been successfully mapped and analysed using NOAA-AVHRR satellite data. In the winter seasons of 2005–06, 2006–07 and 2007–08, the fog-affected area has been found to cover about 575,800 km2, 594,100 km2 and 478,000 km2, respectively. Less fog in 2007–08 may be the consequence of high fluctuations in the meteorological parameters like temperature, relative humidity and wind speed as related to the prevailing synoptic regime for that season. The dissipation and migration pattern of fog in the study area has also been interpreted on the basis of the analysis of both meteorological and satellite data. Further analysis of the fog-affected area allowed identifying more fog-prone regions. Analysis of past fog-affected days and corresponding meteorological conditions enabled us to identify favourable conditions for fog formation viz. air temperature 3–13°C, relative humidity >87%, wind speed <2 m/s and elevation <300 m. Based on the observations of past fog formation and corresponding governing parameters, fog for few selected days could be predicted in hind-sight and later verified with NOAA images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号