首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Lanthanide tetrad effects are often observed in REE patterns of more highly evolved Variscan peraluminous granites of mid-eastern Germany (Central Erzgebirge, Western Erzgebirge, Fichtelgebirge, and Northern Oberpfalz). The degree of the tetrad effect (TE1,3) is estimated and plotted vs. K/Rb, Sr/Eu, Eu/Eu1, Y/Ho, and Zr/Hf. The diagrams reveal that the tetrad effect develops parallel to granite evolution, and significant tetrad effects are strictly confined to highly differentiated samples. Mineral fractionation as a cause for the tetrad effect is not supported by a calculated Rayleigh fractionation, which also could not explain the fractionation trends of Sr/Eu and Eu/Eu1. The strong decrease of Eu concentrations in highly evolved rocks suggests that Eu fractionates between the residual melt and a coexisting aqueous high-temperature fluid. Mineral fractionation as a reason for the tetrad effect is even more unlikely as REE patterns of accessory minerals display similar tetrad effects as the respective host rocks. The accessory minerals inherit the REE signature of the melt and do not contribute to the bulk-rock tetrad effect via mineral fractionation. These results point in summary to significant changes of element fractionation behavior in highly evolved granitic melts: ionic radius and charge, which commonly control the element distribution between mineral and melt, are no longer the exclusive control. The tetrad effect and the highly fractionated trace element ratios of Y/Ho and Zr/Hf indicate a trace element behavior that is similar to that in aqueous systems in which chemical complexation is of significant influence. This distinct trace element behavior and the common features of magmatic-hydrothermal alteration suggest the increasing importance of an aqueous-like fluid system during the final stages of granite crystallization. The positive correlation of TE1,3 with bulk-rock fluorine contents hints at the importance of REE fluorine complexation in generating the tetrad effect. As the evolution of a REE pattern with tetrad effect (M-type) implies the removal of a respective mirroring REE pattern (W-type), the tetrad effect identifies open system conditions during granite crystallization.  相似文献   

2.
Some F-rich granitic rocks show anomalous, nonchondritic ratios of Y/Ho, extreme negative Eu anomalies, and unusual, discontinuous, segmented chondrite-normalised plots of rare earth elements (REE). The effects of F-rich fluids have been proposed as one of the explanations for the geochemical anomalies in the evolved granitic systems, as the stability of nonsilicate complexes of individual rare earths may affect the fluid-melt element partitioning. The lanthanide tetrad effect, related to different configurations of 4f-electron subshells of the lanthanide elements, is one of the factors affecting such complexing behaviour. We present the first experimental demonstration of the decoupling of Y and Ho, and the tetrad effect in the partitioning of rare earths between immiscible silicate and fluoride melts. Two types of experiments were performed: dry runs at atmospheric pressure in a high-temperature centrifuge at 1100 to 1200°C, and experiments with the addition of H2O at 700 to 800°C and 100 MPa in rapid-quench cold-seal pressure vessels. Run products were analysed by electron microprobe (major components), solution-based inductively coupled plasma mass spectrometry (ICP-MS) (REE in the centrifuged runs), and laser ablation ICP-MS (REE and Li in the products of rapid-quench runs). All the dry centrifuge runs were performed at super-liquidus, two-phase conditions. In the experiments with water-bearing mixtures, minor amounts of aqueous vapour were present in addition to the melts. We found that lanthanides and Y concentrated strongly in the fluoride liquids, with two-melt partition coefficients reaching values as high as 100-220 in water-bearing compositions. In all the experimental samples, two-melt partition coefficients of lanthanides show subtle periodicity consistent with the tetrad effect, and the partition coefficient of Y is greater than that of Ho. One of the mixtures also produced abundant fluorite (CaF2) and cryolite (Na3AlF6) crystals, which enabled us to study fluorite-melt and cryolite-melt REE partitioning. REE concentrations in fluorite are high and comparable to those in the fluoride melt. However, fluorite-melt partition coefficients appear to depend mostly on ionic radii and show neither significant tetrad anomalies, nor differences in Y and Ho partitioning. In contrast, REE concentrations in cryolite are low (∼5-10 times lower than in the silicate melt), and cryolite-melt REE partitioning shows very strong tetrad and Y-Ho anomalies. Our results imply that Y-Ho and lanthanide tetrad anomalies are likely to be caused mainly by aluminofluoride complexes, and the tetrad REE patterns in natural igneous rocks can result from fractionation of F-rich magmatic fluids.  相似文献   

3.
The Haldzan-Buregtey group of alkali granitoid massifs with an age of 391–395 Ma is located among the Early Caledonides of the Ozernaya zone of western Mongolia and consists of seven intrusive phases, including two rare-metal phases with Zr, Mn, Y, and REE mineralization. In order to identify the magma sources of the massifs, the abundances and canonical ratios of incompatible trace elements in the rocks of various intrusive phases are analyzed and compared with those in the volcanic rocks of Pantelleria island. The latter rocks were taken as the reference association of rocks linked through crystallization differentiation. The rocks of the Haldzan-Buregtey Complex were formed by mixing an OIB source (with participation of MORB) and host ophiolites, while alkali granitoids of phase 2 originated via mixting these sources with the host non-alkaline granitoids. Practically all rocks have mixed sources, with all transitional varieties from OIB, MORB to ophiolites. OIB was the main source for the rocks, while the host ophiolites could serve as sources for anatectic magmas or contaminants of the magmas of other considered rocks. The rare-metal granitoids were produced from the same sources as the barren magmatic rocks of the Haldzan-Buregtey Complex. The rocks of the Haldzan-Buregtey Complex show a bimodal distribution, with the practically complete absence of intermediate varieties between basite dikes and syenite-granite rocks. This seems to be related to the formation of the least differentiated sialic rocks (nordmarkites, pantellerites, some alkali granites) by anatexis of their own parental basite rocks (dolerites and basites), their cumulates, or ophiolites. Most of the phase-2 alkali granites likely resulted from the differentiation of the phase-1 nordmarkites coupled with assimilation of the host ophiolites. Ekerites are geochemically similar to the nordmarkites and can be interpreted as their residual in situ melts or their anatectic melts.  相似文献   

4.
REE Tetrad Effects in Rare—metal Granites   总被引:1,自引:1,他引:1  
Described in this paper are the characteristics of tetrad effects of REE in rare-metal granites.Based on the analytical data and experimental geochemical data available,it is pointed out that the tetrad effects of REE in the granites are produced in the metal-fluid system.Intense fractional crystallization of granitic melt(containing REE accessary minerals)and its interaction with volatile-rich(F,Cl)fluid are the major factors leading to the tetrad effects of REE.From this,this paper presents a composite genetic model for high-degree fractional crystallization-volatile-rich fluid metasomatism of rare-metal granites.With the model,quantitative calculations have been made.Meanwhile,it is pointed out that the tetrad effects of REE can be used as an important indicator to distinguish mineralized granites from barren ones.  相似文献   

5.
In NE China, voluminous granitoids were emplaced in late Paleozoic and Mesozoic times. We report here Sr–Nd–O isotopic and elemental abundance data for two highly evolved granitic plutons, Woduhe and Baerzhe, from the Great Xing'an Mountains. They show a rather “juvenile” Sr–Nd isotopic signature and a spectacular tetrad effect in their REE distribution patterns as well as non-CHARAC (charge-and-radius-controlled) trace element behavior. The emplacement ages are constrained at 130±4 Ma for the Woduhe and 122±5 Ma for the Baerzhe granites by Rb–Sr and Sm–Nd isotope analyses. Both granites are also characterized by low but imprecise initial 87Sr/86Sr ratios of about 0.703. The Nd–Sr isotope data argue for their generation by melting of dominantly juvenile mantle component with subordinate recycled ancient crust. This is largely compatible with the general scenario for much of the Phanerozoic granitoids emplaced in the Central Asian Orogenic Belt. The parental magmas for both the Woduhe and Baerzhe granites have undergone extensive magmatic differentiation, during which intense interaction of the residual melts with aqueous hydrothermal fluids (probably rich in F and Cl) resulted in the non-CHARAC trace element behavior and the tetrad effect of REE distribution. Both the Woduhe and Baerzhe granites show the characteristic trace element patterns of rare-metal granites, but their absolute abundances differ by as much as two orders of magnitude. The oxygen isotope compositions of the two granites have been severely disturbed. Significant 18O depletion in feldspar, but not so much in quartz, suggests that the hydrothermal alteration took place in a temperature condition of 300–500 °C. This subsolidus hydrothermal alteration is decoupled from the late-stage magma–fluid interaction at higher temperatures. Despite the two distinct and intense events of “water–rock” interaction, the Rb–Sr and Sm–Nd geochronological systems seem to have maintained closed, hence, suggesting that the two events occurred shortly after the plutonic emplacements.  相似文献   

6.
The dike belt and separate intrusive bodies of the Abdar–Khoshutula series were formed in the NE-trending linear zone, southwest of the Daurian–Khentei batholith, in the peripheral part of the Early Mesozoic magmatic area, on the western termination of the Mongol–Okhotsk belt. The granitoids of this series are subdivided into following geochemical types: anatectic granitoids of the calc-alkaline and subalkaline series, alkaline rocks, and plumasite rare-metal leucogranites (Li–F granites). The entire series was formed within approximately 12–15 Ma. Its geochemical evolution follows two trends, which correspond to two stages of the granitoid magmatism. The early stage was responsible for the formation of granitoids of two phases of the Khoshutulinsky Pluton and alkaline syenites with similar trace element distribution patterns. However, syenites, as agpaitic rocks, are significantly enriched in Ba, Zr, and Hf. The late stage of the intrusive- dike series resulted in the formation of the dike belt and Abdar Massif of rare-metal granites. These rocks show enrichment in Li, Rb, Cs, Nb, Ta, Sn, and Y, and deep negative anomalies of Ba, Sr, La, and Ce, which are best expressed in the late amazonite–albite granites of the Abdar intrusion and ongonites of the dike belt. The intrusive-dike series in the magmatic areas of different age of Mongolia and Baikal region are characterized by the wide compositional variations, serve as important indicators of mantle-crustal interaction and differentiation of granitoid magmas, and could highlight the nature of zonal areas within the Central Asian Fold Belt. Obtained geochemical data indicate a potential opportunity to concentrate trace and ore components during long-term evolution of the intrusive-subvolcanic complexes, which could be indicators of the evolution of the ore-magmatic systems bearing rare-metal mineralization.  相似文献   

7.
In order to better constrain the evolution and petrogenesis of pegmatite, geochemical analysis was conducted on a suite of apatite crystals from the Altay Koktokay No. 3 pegmatite, Xinjiang, China and from the granitic and amphibolitic wall rocks. Apatite samples derived from pegmatite zones show convex tetrad effects in their REE patterns, extremely negative Eu anomalies and non-chondritic Y/Ho ratios. In contrast, chondritic Y/Ho ratios and convex tetrad effects are observed in the muscovite granite suggesting that different processes caused non-chondritic Y/Ho ratios and lanthanide tetrad effects. Based on the occurrence of convex tetrad effects in the host rocks and their associated minerals, we propose that the tetrad effects are likely produced from immiscible fluoride and silicate melts. This is in contrast to previous explanations of the tetrad effect; i.e. surface weathering, fractional crystallization and/or fluid-rock interaction. Additionally, we put forward that extreme negative Eu and non-chondritic Y/Ho in apatite are likely caused by the large amount of hydrothermal fluid exsolved from the pegmatite melts. Evolution of melt composition was found to be the primary cause of inter and intra-crystal major and trace element variations in apatite. Mn entering into apatite via substitution of Ca is supported by the positive correlation between CaO and MnO. Different evolution trends in apatite composition imply different crystallization environments between wall rocks and pegmatite zones. Based on the geochemistry of apatite samples, it is likely that there is a genetic relationship between the source of muscovite granite and the source of the pegmatite.  相似文献   

8.
The Ulaan Tolgoi massif of rare-metal (Ta, Nb, and Zr) granites was formed at approximately 300Ma in the Eastern Sayan zone of rare-metal alkaline magmatism. The massif consists of alkaline salic rocks of various composition (listed in chronologic order of their emplacement): alkaline syenite → alkaline syenite pegmatite → pantellerite → alkaline granite, including ore-bearing alkaline granite, whose Ta and Nb concentrations reach significant values. The evolution of the massif ended with the emplacement of trachybasaltic andesite. The rocks of the massif show systematic enrichment in incompatible elements in the final differentiation products of the alkaline salic magmas. The differentiation processes during the early evolution of the massif occurred in an open system, with influx of melts that contained various proportions of incompatible elements. The magma system was closed during the origin of the ore-bearing granites. Rare-metal granitoids in the Eastern Sayan zone were produced by magmas formed by interaction between mantle melts (which formed the mafic dikes) with crustal material. The mantle melts likely affected the lower parts of the crust and either induced its melting, with later mixing the anatectic and mantle magmas, or assimilated crustal material and generated melts with crustal–mantle characteristics. The origin of the Eastern Sayan zone of rare-metal alkaline magmatism was related to rifting, which was triggered by interaction between the Tarim and Barguzin mantle plumes. The Eastern Sayan zone was formed in the marginal part of the Barguzin magmatic province, and rare-metal magmas in it were likely generated in relation with the activity of the Barguzin plume.  相似文献   

9.
As view from the petrological, mineralogical and petrochemical studies, the Hongzhen granitoid is characterized by the autochthonous-parautochthonous transformation. The source rocks are mainly felsic clastic sediments with a small amount of intermediate magmatite in the Zhangbaling Group. The granitoid is covered by mylonite and migmatite, and the three rocks share much in common with respect to their REE distribution patterns and the W-type distribution of transition elements, indicating that they all came from identical source rocks. The granitoid belongs to collision granites or postorogenic granitoids resulting from ductile thrusting-shearing under 550 °C and 7 × 108 Pa conditions in the foreland of the Yangtze plate during the Late Indosinian movement, and from metasomatism plus partial melting. This project was partly funded by the National Natural Science Foundation of China (DO406-49274200).  相似文献   

10.
Geological, mineralogical, petrographic, geochemical, and geochronological data are reported for granitoids of the Aturkol Massif (Gorny Altai). It is shown that it was formed in within-plate setting in the Early Triassic, nearly simultaneously with flood basalts of the Kuznetsk Basin and alkalic basite and lampropyre dike swarms in the western Altai-Sayan Fold Region. At the same time, the mineralogical-petrographic, geochemical, and isotope characteristics of the considered granitoids are close to those of I-type granites. Intraplate signatures (elevated HFSE and REE) are recognized only in the least silicic rocks (granosyenites). Obtained data suggest mantle–crustal nature of the granitoids. They were formed by mixing of lamprophyre magmas with high pressure (>10 kbar) crustal melts derived from a mixed source consisting mainly of N-MORB-type metabasites with insignificant admixture of high-Ti basalts and metasedimentary rocks. The contribution of mantle component in the granitoids was insignificant (<20%). Proposed petrogenetic mechanism can provide the formation of large volumes of granitoid magmas with “crustal” geochemical and isotope signatures in an intraplate setting.  相似文献   

11.
We studied the geologic position, geodynamic setting, petrology, and geochemistry of veined lepidolitic granitoids from the Mungutiyn Tsagaan Durulj (MTD) occurrence (central Mongolia), found within the area of Mesozoic intraplate rare-metal magmatism. It has been established that their trace-element enrichment resulted from the intense effect of fluids rich in F, K, Li, Rb, Cs, Sn, Be, and W, which arrived from a deep magma chamber of rare-metal granitic melts, on leucogranites with originally weak rare-metal mineralization. Very high contents of F, rare alkali metals, Sn, Be, and W, characteristic of MTD granitoids, are close only to those in greisens of rare-metal granites and topaz-lepidolite-albitic pegmatites. The difference from the greisens in each case might be due to the features of the original rocks. The difference between the greisenized MTD leucogranites and the topaz-lepidolite-albitic pegmatites is more radical: Along with evident petrographic distinctions, it includes an evolution trend toward the albite norm decrease, not typical of Li–F igneous rocks; rock shearing and gneissosity, which must have contributed to their chemical transformation according to this trend; and stably lower contents of Nb and Ta (trace elements which usually accumulate during crystallization fractionation of F–Li granitic melts and are poorly soluble in magmatic fluids). The greisenized MTD granitoids are not only high-grade rare-metal ores of Li, Rb, F, and Sn but are also regarded as an indicator of a deep concealed pluton of rare-metal granites.  相似文献   

12.
利用JL-3600t压机实验研究了800MPa、不同温度条件下泥质岩部分熔融过程,利用EMPA和LA-ICPMS分别测定了熔体相和残留相中主要化学组成以及微量元素(包括REE)组成。实验结果表明,泥质岩低程度部分熔融(〈25%)形成的熔体中REE含量分布于308.8-3565μg/g较大范围内,显示较大的不均匀性,其REE球粒陨石标准化分布模式显示弱的M型REE“四分组效应”,而残留相矿物石榴子石中REE含量变化于167.5—1008μg/g范围,也显示有明显的不均匀性,其REE球粒陨石标准化分布模式显示明显的W型REE“四分组效应”,尤以第一段La-Nd最为显著;随着部分熔融程度的增加(〉30%),其形成的熔体中REE集中在523.2—1130μg/g范围,残留相石榴子石中BEE集中在288.6—512.7μg/g范围,均显示相对均匀;熔体相和残留相石榴子石矿物的REE球粒陨石标准化分布模式不发育REE“四分组效应”。实验前后Cl质量平衡计算的结果表明该实验过程中并没有产生岩浆挥发分相。上述特征表明S型花岗岩中的REE“四分组效应”现象很可能与泥质岩低程度部分熔融具有成因联系。  相似文献   

13.
Experimental data indicate that high F concentrations in leucocratic aluminosilicate melts (of granite and nepheline syenite composition) bring about the crystallization of F-rich minerals (topaz, villiaumite, and cryolite) on the liquidus. The crystallization of the minerals is controlled by the silicity, agpaitic coefficient, and proportions of alkalis in the system SiO2-Al2O3-Na2O-K2O-F-H2O. Our earlier experimental data on this system are compared with petrographic and petrochemical data on granites and nepheline syenites containing accessory topaz, cryolite, and villiaumite. The composition of topaz- and cryolite-bearing rocks is proved to correspond to the experimentally established equilibrium fields of F-rich aluminosilicate melt with these minerals. It is proved that the high-F minerals can crystallize from melt. The partial substitution of K and Na for Li modifies phase relations in the system, first of all, significantly expands the equilibrium field of aluminosilicate melt and alkaline aluminofluoride melts. The two melts are proved to be immiscible within broad compositional ranges in the SiO2-Al2O3-Na2O-Li2O-F-H2O system at 800–650°C and 1 kbar. Experimental data indicate that fluoride brine can coexist with aluminosilicate melts in nature. This finds support data on melt inclusions in granites and alkaline rocks whose contents of major components, water and fluorine are close to those in the experimental glasses. Our data lend support to the hypothesis that large cryolite bodies at the Ivigtut, Pitinga, Ulog-Tanzek, and other deposits were formed by fluoride salt melts that separated from F-rich aluminosilicate magmas late in the course of their differentiation. It is experimentally established that fluoride salt melts are able to concentrate valuable trace elements, such as Li, W, Nb, Hf, Sc, U, Th, and REE, which suggests that such melts can play an important role in the origin of rare-metal deposits genetically related to rocks that crystallize from magmas rich in F.  相似文献   

14.
This paper presents a study of ongonites from the Chechek and Akhmirovo dike belts located within the Kalba—Narym batholith in Eastern Kazakhstan. The obtained conclusions are based on the investigations of melt and fluid inclusion in quartz phenocrysts, supplemented by mineralogical and geochemical data. It was established that the dike rocks were formed by crystallization of volatile-rich rare-metal melts in the presence of an aqueous fluid phase with subordinate amounts of carbon dioxide and methane. The ongonites crystallized from three geochemically different melts. Porphyritic phenocrysts in the ongonites of the Chechek and Akhmirovo dike belts crystallized at close temperatures 560–605°C and pressure of 3.6–5.3 kbar. Ongonite magmas that formed the Chechek and Akhmirovo dike belts had a high ore potential. However, degassing dynamics was not favorable for the development of metasomatism and formation of hydrothermal mineralization at the level of dike emplacement. The area of the rare-metal magmatism represented by ongonite dikes and rare-metal granite pegmatites has been distinguished in the northern part of the Kalba—Narym zone. The formation of rare-metal magmas was related to the differentiation in large granitoid chambers under the effect of juvenile fluids derived from the Tarim mantle plume.  相似文献   

15.
New trace element data were obtained by ICP-MS for 58 samples representing eight intrusive phases of the Raumid granite Pluton. All of the rocks, except for one sample that was deliberately taken from a greisenized zone, were not affected by postmagmatic fluid alteration. The sequential accumulation of incompatible trace elements (Rb, Ta, Nb, Pb, U, and others) in the Raumid Pluton from the early to late phases coupled with a decrease in incompatible element contents (Sr, Eu, Ba, and others) indicates a genetic link between the granites of all phases via fractional crystallization of a granite melt. The REE distribution patterns of final granite phases are typical of rare-metal granites. The Ta content in the granites of phase 8 is only slightly lower than that of typical rare-metal granites. Greisenization disturbed the systematic variations in trace element distribution formed during the magmatic stage. The ranges of trace element contents (Rb, Sr, Ta, Nb, and others) and ratios (Rb/Sr, La/Lu, Eu/Eu*, and others) in the Raumid granite overlap almost entirely the ranges of granitic rocks of various compositions, from the least differentiated with ordinary trace element contents to rare-metal granites. This indicates that the geochemical signature of rare-metal granites can develop at the magmatic stage owing to fractional crystallization of melts, which is the case for the melt of the Raumid granite.  相似文献   

16.
高度演化花岗岩类多为富F的熔体溶液体系 ,具有鲜明的、不同于其他体系的地球化学行为。富F岩浆固相线和液相线的降低和岩浆寿命的延长 ,使残余熔体与热水热液的性状差异减小 ,模糊了岩浆与热液之间的界线。最近对于富F、B和P伟晶岩中熔融包裹体的研究获得了新的进展。在约 70 0~ 5 0 0℃的温度和 1 0 0 0× 1 0 5Pa的压力下 ,在伟晶岩石英中发现两种不同类型的熔体包裹体 ,一种是富硅酸盐、贫水的熔体包裹体 ,另一种是贫硅酸盐、富水的熔体包裹体。两种熔体在硅酸盐 (+F +B +P) 水体系的溶离线边界上同时被圈闭。这表明 ,在地壳浅部侵位的侵入体 ,当温度≥ 70 0℃时 ,水在富F、B和P的熔体中可以无限混溶 ;而一旦温度降低 ,就会分离为两种共存的熔体并伴随强烈的元素分异作用。在溶离线的富水一侧形成与正常硅酸盐熔体有很大不同的高度富挥发份的熔体 ,这种致密、高粘度、高扩散性以及高活动性的超富水 (hyper aqueousmelt)熔体 ,可以与水溶液流体相类比。这为岩浆热液过渡性流体的假说提供了新的有利的证据。此外 ,在这种具有超富水和熔体特征的过渡性流体中 ,微迹元素可能具有特殊的地球化学行为 ,如在许多晚期花岗岩包括淡色花岗岩和伟晶岩中稀土元素配分模式所显示的四分组效应等。富F熔体溶液体?  相似文献   

17.
I. A. Andreeva 《Petrology》2016,24(5):462-476
Melt inclusions were studied by various methods, including electron and ion microprobe analysis, to determine the compositions of melts and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif in Mongolia. Primary crystalline and coexisting melt inclusions were found in quartz from the rare-metal granites of intrusive phase V. Among the crystalline inclusions, we identified potassium feldspar, albite, tuhualite, titanite, fluorite, and diverse rare-metal phases, including minerals of zirconium (zircon and gittinsite), niobium (pyrochlore), and rare earth elements (parisite). The observed crystalline inclusions reproduce almost the whole suite of major and accessory minerals of the rare-metal granites, which supports the possibility of their crystallization from a magmatic melt. Melt inclusions in quartz from these rocks are completely crystallized. Their daughter mineral assemblage includes quartz, microcline, aegirine, arfvedsonite, polylithionite, a zirconosilicate, pyrochlore, and a rare-earth fluorocarbonate. The melt inclusions were homogenized in an internally heated gas vessel at a temperature of 850°C and a pressure of 3 kbar. After the experiments, many inclusions were homogeneous and consisted of silicate glass. In addition to silicate glass, some inclusions contained tiny quench zircon crystals confined to the boundary of inclusions, which indicates that the melts were saturated in zircon. In a few inclusions, glass coexisted with a CO2 phase. This allowed us to estimate the content of CO2 in the inclusion as 1.5 wt %. The composition of glasses from the homogeneous melt inclusions is similar to the composition of the rare-metal granites, in particular, with respect to SiO2 (68–74 wt %), TiO2 (0.5–0.9 wt %), FeO (2.2–4.6 wt %), MgO (0.02 wt %), and Na2O + K2O (up to 8.5 wt %). On the other hand, the glasses of melt inclusions appeared to be strongly depleted compared with the rocks in CaO (0.22 and 4 wt %, respectively) and Al2O3 (5.5–7.0 and 9.6 wt %, respectively). The agpaitic index is 1.1–1.7. The melts contain up to 3 wt % H2O and 2–4 wt % F. The trace element analysis of glasses from homogenized melt inclusions in quartz showed that the rare-metal granites were formed from extensively evolved rare-metal alkaline melts with high contents of Zr, Nb, Th, U, Ta, Hf, Rb, Pb, Y, and REE, which reflects the metallogenic signature of the Khaldzan Buregtey deposit. The development of unique rare metal Zr–Nb–REE mineralization in these rocks is related to the prolonged crystallization differentiation of melts and assimilation of enclosing carbonate rocks.  相似文献   

18.
诸广-下庄铀矿集区是我国最大的花岗岩型铀成矿区,本文从岩石蚀变、不同介质中稀土元素的四分组效应、方解石中碳、氧和锶同位素组成等方面系统讨论了诸广-下庄铀矿集区内与铀成矿有关的各种水-岩相互作用的地质地球化学特征,得到以下主要认识: (1)铀矿田范围内成矿的花岗岩大多发生了强烈的蚀变,是水-岩作用的直接表现,晶质铀矿表面发生的溶蚀作用是铀活化的直接证据,裂变径迹特征揭示面型分布的绿泥石化是花岗岩中以类质同像形式存在的铀从花岗岩中活化出来的主要反映; (2)与铀成矿有关的花岗岩具有 M型四分组效应,而沥青铀矿、黄铁矿、方解石、绿泥石和伊利石等矿石矿物和脉石矿物则具有 W型或 W-M混合型四分组效应,这种共轭存在的 M型和 W型四分组效应表明了流体-花岗岩作用是本区铀成矿作用的关键,沥青铀矿主要是从流体中沉淀成矿的; (3)矿田范围内方解石的δ 13C、 87Sr/86Sr及δ 18O组成特征,及 87Sr/86Sr与δ 18O之间明显的负相关关系,揭示出本区铀成矿过程中的碳、水和铀来源不同--碳是幔源,铀是壳源,流体中的水至少有一部分是大气降水.  相似文献   

19.
NE China is characterized by the massive distribution of Phanerozoic granitoids. Most of them are of I- and A-type granites, whereas S-type granites are rarely documented. The present work deals with the Dongqing pluton, a small granitic body emplaced in the southern Zhangguangcai Range. The pluton comprises a two-mica (±garnet) granite and a garnet-bearing muscovite granite; the latter occurs as veins in the former. The pluton shows a gradational contact with the surrounding host granites. Rb–Sr and Sm–Nd isotope analyses on whole-rocks and minerals reveal that the two types of granites were emplaced synchronously at about 160 Ma. The pluton was emplaced coeval with the surrounding I-type granitic pluton, and had a rapid cooling history. It is characterized by an initial Sr isotopic ratio of 0.706, slightly negative Nd(T) values (−0.5 to −1.9) and young depleted-mantle model ages (970–1090 Ma). This suggests that the parent magma originated from partial melting of relatively juvenile crust, which is largely compatible with the general scenario for much of the Phanerozoic granitoids emplaced in the Central Asian Orogenic Belt.Geochemically, the granites of the Dongqing pluton are peraluminous, with a Shand Index (molar ratio A/CNK) of 1.0–1.1 for the two-mica granites and 1.2–1.3 for the garnet-bearing granites. All the garnet-bearing granites and some of the two-mica granites show tetrad REE patterns (=tetrad group), whereas most two-mica granites show normal granitic REE patterns (=normal group). The normal group granites exhibit depletion in Nb, Ta, P and Ti in spidergrams, and generally weak positive Eu anomalies in REE patterns. By contrast, the tetrad group granites manifest depletion in Ba, Nb, Ta, Sr, P, and Ti and significant negative Eu anomalies. The trace element data constrain the parental magmas to having undergone extensive magmatic differentiation. During their late stage magmatic evolution, intense interaction of residual melts with aqueous hydrothermal fluids resulted in the non-CHARAC (charge and radius controlled) trace element behavior and the tetrad effect in REE distribution patterns. This, in turn, leads to the invalidation of the commonly used tectonic discrimination criteria derived from trace element abundances of normal granites. In view of this and previous studies, we conclude that there were probably no S-type granites produced in NE China during the Phanerozoic. Consequently, weathered sedimentary material did not play an important role in the genesis of the strongly peraluminous granites in the Zhangguangcai Range.  相似文献   

20.
Three stages of Early Proterozoic granitoid magmatism were distinguished in the southwestern margin of the Siberian craton: (1) syncollisional, including the formation of migmatites and granites in the border zone of the Tarak massif; (2) postorogenic, postcollisional, comprising numerous granitoid plutons of diverse composition; and (3) intraplate, corresponding to the development of potassic granitoids in the Podporog massif. Rocks of three petrological and geochemical types (S, I, and A) were found in the granitoid massifs. The S-type granites are characterized by the presence of aluminous minerals (garnet and cordierite), and their trace element distribution patterns and Nd isotopic parameters are similar to those of the country paragneisses and migmatites. Their formation was related to melting under varying H2O activity of aluminous and garnet—biotite gneisses at P ≥ 5 kbar and T < 850°C with a variable degree of melt separation from the residual phases. The I-type tonalites and dioritoids show low relative iron content, high concentrations of CaO and Sr, fractionated REE distribution patterns with (La/Yb)n = 11–42, and variable depletion of heavy REE. Their parental melts were derived at T ≥ 850°C and P > 10 and P < 10 kbar, respectively. According to isotopic data, their formation was related to melting of a Late Archean crustal (tonalite-diorite-gneiss) source with a contribution of juvenile material ranging from 25–55% (tonalites of the Podporog massif) to 50–70% (dioritoids of the Uda pluton). The most common A-type granitoids show high relative iron content; high concentration of high-field-strength elements, Th, and light and heavy REE; and a distinct negative Eu anomaly. Their primary melts were derived at low H2O activity and T ≥ 950°C. The Nd isotopic composition of the granitoids suggests contributions to the magma formation processes from ancient (Early and Late Archean) crustal (tonalite-diorite-gneiss) sources and a juvenile mantle material. The contribution of the latter increases from 0–35% in the granites of the Podporog and Tarak massifs to 40–50% for the rocks of the Uda and Shumikha plutons. The main factors responsible for the diversity of petrological and geochemical types of granitoids in collisional environments are the existence of various fertile sources in the section of the thickened crust of the collisional orogen, variations in magma generation conditions $(\alpha _{H_2 O} , T, and P)$ during sequential stages of granite formation, and the varying fraction of juvenile mantle material in the source region of granitoid melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号