首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Enhanced oil recovery based on CO2 injection is expected to increase recovery from Croatian oil fields. Large quantities of CO2 are generated during hydrocarbon processing produced from gas and gas condensate fields situated in the north-western part of Croatia. First CO2 injection project will be implemented on the Ivani? Oil Field. Numerical modelling based on Upper Miocene sandstone core samples testing results have shown the decrease of oil viscosity during CO2 injection. Some of the characteristics of the testing samples are porosity 21.5–23.6 %, permeability 14–80 × 10?15 m2 and initial water saturation 28–38.5 %. Water alternating foam (WAF) and water alternating gas (WAG) simulations have provided satisfactory results. The WAF injection process has provided better results, but due to the process sensitivity and costs WAG is recommended for future application. During the pilot project 16 × 106 m3 CO2 and 5 × 104 m3 of water were injected. Additional amounts of hydrocarbons (4,440 m3 of oil and 2.26 × 106 m3 of gas) were produced which confirmed injection of CO2 as a successful tertiary oil recovery mechanism in Upper Miocene sandstone reservoirs in the Croatian part of the Pannonian Basin System.  相似文献   

2.
We present an analytical solution to estimate the minimum polymer slug size needed to ensure that viscous fingering of chase water does not cause its breakdown during secondary oil recovery. Polymer flooding is typically used to improve oil recovery from more viscous oil reservoirs. The polymer is injected as a slug followed by chase water to reduce costs; however, the water is less viscous than the oil. This can result in miscible viscous fingering of the water into the polymer, breaking down the slug and reducing recovery. The solution assumes that the average effect of fingering can be represented by the empirical Todd and Longstaff model. The analytical calculation of minimum slug size is compared against numerical solutions using the Todd and Longstaff model as well as high resolution first contact miscible simulation of the fingering. The ability to rapidly determine the minimum polymer slug size is potentially very useful during enhanced oil recovery (EOR) screening studies.  相似文献   

3.
In this work, the analytical and numerical solutions for modeling miscible gas and water injection into an oil reservoir are presented. Conservation laws with three levels of complexity are considered. Only the most complex model has the correct phase behavior for the example system, which is a multicontact miscible condensing gas drive with simultaneous water and gas injection. Example displacements in which one or both of the simpler models result in accurate simulations in a fraction of the computation time are presented, along with an example in which neither simplified thermodynamic model achieves a truly satisfactory result. A methodology is presented that can be used to establish the accuracy of simplified models in 1-D simulation based on convergence to analytical solutions for the full three-phase system.  相似文献   

4.
The construction of quasirectangular tunnels at shallow depths is becoming increasingly common in urban areas to efficiently utilize underground space and reduce the need for backfilling. To clarify the mechanical mechanism of the stresses and displacements around the tunnels, this study proposes analytical solutions that precisely account for quasirectangular tunnel shapes, the ground surface, the tunnel depth, and the ground's elastic/viscoelastic properties. The Schwarz alternating method combined with complex variable theory is employed to derive the elastic solution, and convergent and highly accurate solutions are obtained by superposing the solutions in the alternating iterations. Based on the solution and the extended corresponding principle for the viscoelastic problem, the time-dependent analytical solutions for the displacement are obtained for the ground assuming any viscoelastic model. The analytical solutions agree well with the finite element method (FEM) numerical results for models that are completely consistent, and qualitatively agree with field data. Furthermore, based on the stress solution combined with the Mohr-Coulomb failure criterion, the predicted initial plastic zone and propagation directions around the tunnels are qualitatively consistent with those determined by the limit analysis. A parametric study is performed to investigate the influences of the rectangular/quasirectangular tunnel shape, burial depth, and supporting pressure on the ground stresses and displacements.  相似文献   

5.
李玮  师庆三  董海海  侯锐 《中国地质》2022,49(2):485-495
[研究目的]克拉玛依油田X区克下组低渗透油藏存在物性差、水驱开发采收率低等问题,影响了油田的可持续发展.CO2是全球变暖的主要成分,世界各国都在想方设法减少CO2的排放量,本文试图利用CO2驱油气方式提高该油藏的采收率,变害为利.[研究方法]文章选取研究区60余口取心井目标层位岩心样品,开展扫描电镜及压汞测试分析等研究...  相似文献   

6.
Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling has created millions of oil and gas wells. Models of CO2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic framework is required. These models must be able to capture both the large-scale CO2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and analytical models with a specific set of simplifying assumptions to produce an efficient numerical–analytical hybrid model. The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency for applications of risk analysis in many CO2 sequestration problems.  相似文献   

7.
Results of an experimental study of local velocity, fluctuation and void fraction profiles in liquid plugs of an upward vertical gas-liquid flow as well as of wall shear stress distribution both under gas slugs and in liquid plugs, are presented. The conditional sampling technique allowed to obtain instantaneous profiles of the above hydrodynamical quantities, which illuminated the real physical picture of the flow in a liquid plug. The toroidal vortex adjacent to the bottom of a gas slug is shown to determine significantly the development of the flow in a liquid plug. The intensity of this vortex is determined only by the relative velocity of the gas bubble with respect to the liquid.  相似文献   

8.
Geological sequestration of CO2 in depleted oil reservoirs is a potentially useful strategy for greenhouse gas management and can be combined with enhanced oil recovery. Development of methods to estimate CO2 leakage rates is essential to assure that storage objectives are being met at sequestration facilities. Perfluorocarbon tracers (PFTs) were added as three 12 h slugs at about one week intervals during the injection of 2090 tons of CO2 into the West Pearl Queen (WPQ) depleted oil formation, sequestration pilot study site located in SE New Mexico. The CO2 was injected into the Permian Queen Formation. Leakage was monitored in soil–gas using a matrix of 40 capillary adsorbent tubes (CATs) left in the soil for periods ranging from days to months. The tracers, perfluoro-1,2-dimethylcyclohexane (PDCH), perfluorotrimethylcyclohexane (PTCH) and perfluorodimethylcyclobutane (PDCB), were analyzed using thermal desorption, and gas chromatography with electron capture detection. Monitoring was designed to look for immediate leakage, such as at the injection well bore and at nearby wells, and to develop the technology to estimate overall CO2 leak rates based on the use of PFTs. Tracers were detected in soil–gas at the monitoring sites 50 m from the injection well within days of injection. Tracers continued to escape over the following years. Leakage appears to have emanated from the vicinity of the injection well in a radial pattern to about 100 m and in directional patterns to 300 m. Leakage rates were estimated for the 3 tracers from each of the 4 sets of CATs in place following the start of CO2 injection. Leakage was fairly uniform during this period. As a first approximation, the CO2 leak rate was estimated at about 0.0085% of the total CO2 sequestered per annum.  相似文献   

9.
大庆长垣外围特低渗透扶杨油层CO_2非混相驱油试验研究   总被引:2,自引:0,他引:2  
大庆长垣外围有3×108t特低渗透的扶杨油层储量在注水开发条件下难以有效动用,为提高这部分储量的有效动用率,开展了CO2非混相驱油试验研究。PVT测试结果表明,扶杨油层原油较稠,体积系数小,膨胀性和收缩性小,溶解系数较低;CO2驱油细管实验最小混相压力为29 MPa,比原始地层压力高8.6 MPa,现场试验为非混相驱;长岩心实验CO2驱油采收率比注水高4~6个百分点。综合室内可行性评价实验结果看,大庆长垣外围扶杨油层开展CO2驱油试验是可行的,并于2003年初在宋芳屯油田南部开辟了注气试验区,有注气井1口,采出井5口。矿场试验结果表明,CO2驱油能够使特低渗透、裂缝不发育的扶杨油层建立起有效驱动体系,从根本上改善其开发效果,该技术有望成为特低渗透扶杨油层有效动用的可行技术。  相似文献   

10.
Summary  This paper presents a simple graphical method for computing the displacement beneath/at the surface of a transversely isotropic half-space subjected to surface loads. The surface load can be distributed on an irregularly-shaped area. The planes of transverse isotropy are assumed to be parallel to the horizontal surface of the half-space. Based on the point load solutions presented by the authors, four influence charts are constructed for calculating the three displacements at any point in the interior of the half-space. Then, by setting z=0 of the derived solutions, another four influence charts for computing the surface displacements can also be proposed. These charts are composed of unit blocks. Each unit block is bounded by two adjacent radii and arcs, and contributes the same level of influence to the displacement. Following, a theoretical study was performed and the results showed that the charts for interior displacements are only suitable for transversely isotropic rocks with real roots of the characteristic equation; however, the charts for surface displacements are suitable for all transversely isotropic rocks. Finally, to demonstrate the use of the new graphical method, an illustrative example of a layered rock subjected to a uniform, normal circular-shaped load is given. The results from the new graphical method agree with those of analytical solutions as well. The new influence charts can be a practical alternative to the existing analytical or numerical solutions, and provide results with reasonable accuracy.  相似文献   

11.
12.
Coal seam gas (CSG) is an increasingly important source of natural gas all over the world. Although the influence of conventional oil and gas extraction on surface subsidence has been widely recognized and studied, few studies are carried out on the surface subsidence in coal seam gas fields and its impact on surface infrastructure and the environment. This paper discusses modelling of the surface subsidence associated with coal seam gas production by applying both analytical and numerical methods. By comparison of results from the numerical model and two analytical models, i.e. the disc-shaped reservoir model and the uniaxial compaction model, the analytical solutions cannot describe the complex process of water and gas extraction and have the limitations to predict the surface subsidence, while the numerical model can be better used in prediction of subsidence. After applying the numerical model in numerical analysis, the deformation characteristics of coupled fluid flow, and the effects of permeability change of coal seam, associated overlying and underlying layers, and depressurization rates on surface subsidence are investigated. The results demonstrate that the proposed model can simulate the production of water and gas from coal seams and the associated surface subsidence.  相似文献   

13.
Similarity solutions are derived for wedge-shaped hydraulic fractures driven by a constant inlet pressure P0 into a permeable medium under a uniform confining stress σ. These results describe the seepage-dominated regime in which most of the injected fluid is lost into the permeable walls of the fracture; they complement previous results for the capacitance-dominated regime in which seepage is negligible. Fracture propagation velocity is obtained as an analytical function of fracture length, driving pressure, confining stress, material properties and a single separation constant or eigenvalue which is determined numerically. Self-similar profiles of pressure, opening displacement and fluid velocity along the fracture are presented, together with the self-similar isobars of the two-dimensional pressure field within the permeable medium. Comprehensive results are reported for laminar or turbulent flow of a constant-compressibility liquid or an ideal gas driven by overpressures (P0?σ)/σ ranging from 10?2 to 102.  相似文献   

14.
During 2003–2006, a pilot project of alternating water and CO2 injection was performed on a limited part of the Upper Miocene sandstone oil reservoir of the Ivani? Field. During the test period oil and gas recovery was significantly increased. Additionally 4,440 m3 of oil and 2.26 × 106 m3 of gas were produced. It has initiated further modelling of sandstone reservoirs in the Ivani? Field in order to calculate volumes available for CO2 injection for the purpose of increasing hydrocarbon production from depleted sandstone reservoirs in the entire Croatian part of the Pannonian Basin System. In the first phase, modelling was based on results of laboratory testing on the core samples. It considered applying analogies with world-known projects of CO2 subsurface storage and its usage to enhance hydrocarbon production. In the second phase, reservoir variables were analysed by variograms and subsequently mapped in order to reach lithological heterogeneities and to determine reliable average values of reservoir volumes. Data on porosity, depth and reservoir thickness for the “Gamma 3” and the “Gamma 4” reservoirs, are mapped by the ordinary kriging technique. Calculated volume of CO2 expressed at standard condition which can be injected in the main reservoirs of the Ivani? Field at near miscible conditions is above 15.5 billion m3.  相似文献   

15.
吴彦君  孙卫  杨希濮  屈乐  QU Le 《云南地质》2011,30(2):242-245,237
物性较好且孔隙结构分选和连通性较好的储层,其驱油效率较高;在注水开发初期,提高注入压力和增加注入量,对驱油效率的影响较明显,当注入量超过3Pv之后,二者的增加对驱油效率的影响将明显减弱。  相似文献   

16.
雷国辉  孙华圣  吴宏伟 《岩土力学》2014,35(5):1224-1230
通过Flamant和Melan的解析解答、Mindlin解答的积分蜕化公式以及有限元数值分析计算结果,展示了在半无限平面问题中线荷载作用方向位移解答的不确定性。线荷载作用方向没有绝对位移,只有相对位移,但相对位移会随着与位移约束参考点距离的增大而增大,或随着线荷载在垂直于半平面方向分布长度的增大而增大,不具收敛性。这意味着,在解析和数值分析中,纯粹的半平面问题的位移解答具有多值性,因此,将岩土工程问题作为半空间问题进行分析是必要的。  相似文献   

17.
This paper presents an analytical layer element solution to axisymmetric thermal consolidation of multilayered porous thermoelastic media containing a deep buried heat source. By applying the Laplace–Hankel transform to the state variables involved in the basic governing equations of porous thermoelasticity, the analytical layer elements that describe the relationship between the transformed generalized stresses and displacements of a finite layer and a half‐space are derived. The global stiffness matrix equation is obtained by assembling the interrelated layer elements, and the real solutions in the physical domain are achieved by numerical inversion of the Laplace–Hankel transform after obtaining the solutions in the transformed domain. Finally, numerical calculations are performed to demonstrate the accuracy of this method and to investigate the influence of heat source's types, layering, and the porous thermoelastic material parameters on thermal consolidation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Determination of geomechanical parameters of petroleum reservoir and surrounding rock is important for coupled reservoir–geomechanical modeling, borehole stability analysis and hydraulic fracturing design. A displacement back analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) combination is investigated in this paper to identify reservoir geomechanical parameters based on ground surface displacements. An ANN is used to map the nonlinear relationship between Young’s modulus, E, Poisson’s ratio, v, internal friction angle, Φ, cohesion, c and ground surface displacements. The necessary training and testing samples for ANN are created by using numerical analysis. GA is used to search the set of unknown reservoir geomechanical parameters. Results of the numerical experiment show that the displacement back analysis technique based on ANN–GA combination can effectively identify reservoir geomechanical parameters based on ground surface movements as a result of oil and gas production.  相似文献   

19.
The construction of twin tunnels at shallow depth has become increasingly common in urban areas. In general, twin tunnels are usually near each other, in which the interaction between tunnels is too significant to be ignored on their stability. The equivalent arbitrarily distributed loads imposed on ground surface were considered in this study, and a new analytical approach was provided to efficiently predict the elastic stresses and displacements around the twin tunnels. The interaction between 2 tunnels of different radii with various arrangements was taken into account in the analysis. We used the Schwartz alternating method in this study to reduce the twin‐tunnel problem to a series of problems where only 1 tunnel was contained in half‐plane. The convergent and highly accurate analytical solutions were achieved by superposing the solutions of the reduced single‐tunnel problems. The analytical solutions were then verified by the good agreement between analytical and numerical results. Furthermore, by the comparison on initial plastic zone and surface settlement between analytical solution and numerical/measured results of elastoplastic cases, it was proven that the analytical solution can accurately predict the initial plastic zone and its propagation direction and can qualitatively provide the reliable ground settlements. A parametric study was finally performed to investigate the influence of locations of surcharge load and the tunnel arrangement on the ground stresses and displacements. The new solution proposed in this study provides an insight into the interaction of shallow twin tunnels under surcharge loads, and it can be used as an alternative approach for the preliminary design of future shallow tunnels excavated in rock or medium/stiff clay.  相似文献   

20.
Under certain physically reasonable assumptions, three-phase flow of immiscible, incompressible fluids can be described by a 2×2 nongenuinely nonlinear, hyperbolic system. We combine analytical solutions to the corresponding Riemann problem with an efficient front-tracking method to study Cauchy and initial-boundary value problems. Unlike finite difference methods, the front-tracking method treats all waves as discontinuities by evolving shocks exactly and approximating rarefactions by small entropy-violating discontinuities. This way, the method can track individual waves and give very accurate (or even exact) resolution of discontinuities. We demonstrate the applicability of the method through several numerical examples, including a streamline simulation of a water-alternating-gas (WAG) injection process in a three-dimensional, heterogeneous, shallow-marine formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号