首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop an evidence base to help predict the impacts of land management change on flood generation, four experimental sites were established on improved grassland used for sheep grazing at the Pontbren catchment in upland Wales, UK. At each site, three plots were established where surface runoff was measured, supplemented by measurements of soil infiltration rates and soil and vegetation physical properties. Following baseline monitoring, treatments were applied to two of the plots: exclusion of sheep (ungrazed) and exclusion of sheep and planting with native broadleaf tree species (tree planted), with the third plot acting as a control (grazed pasture). Due to a particularly dry summer that occurred pre‐treatment, the soil hydrological responses were initially impacted by the effects of the climate on soil structure. Nevertheless, treatments did have a clear influence on soil hydrological response. On average, post‐treatment runoff volumes were reduced by 48% and 78% in ungrazed and tree‐planted plots relative to the control, although all results varied greatly over the sites. Five years following treatment application, near‐surface soil bulk density was reduced and median soil infiltration rates were 67 times greater in plots planted with trees compared to grazed pasture. The results illustrate the potential use of upland land management for ameliorating local‐scale flood generation but emphasise the need for long‐term monitoring to more clearly separate the effects of land management from those of climatic variability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Although reviews of the scientific literature have failed to demonstrate conclusive evidence for the impact of rural land management on peak runoff rates, increasing emphasis is being placed by policy makers on its role in catchment‐scale flood risk management. Poor soil and field conditions can lead to higher rates of runoff from extreme rainfall events; however, the improvement of land condition will lead to differing runoff responses depending on land use, soil type and climatic regime. This study has evaluated the relative impact of improvement of field and soil conditions on peak daily runoff rates for a range of soils and vegetation cover types across England and Wales. It has shown that rural land management changes could be expected to make a positive contribution to sustainable flood risk management, especially for more frequent events. The greatest relative reduction in runoff can be achieved through the improvement of degraded permeable soils under managed grassland in drier regions. Taking a plausible scenario of land management improvement in arable and grassland systems, the relative reduction in peak runoff was estimated for 518 policy units as defined in the Environment Agency's Catchment Flood Management Plans. For the 1 in 100 year event, there were only a few policy units where the expected reduction in runoff exceeded 5%. Rural land management practices which are likely to be beneficial to flood risk management may afford some protection to areas where structural measures may not be implemented for cost–benefit reasons, and may help to offset some of the anticipated increases in flood risk associated with climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Understanding and modelling pluvial flood patterns is pivotal for the estimation of flood impacts in urban areas, especially in a climate change perspective. However, urban flood modelling under climate change conditions poses several challenges. On one hand, the identification and collection of climate change data suitable for flood-related evaluations requires consistent computational and scientific effort. On the other hand, large difficulties can arise in the reproduction of the rainfall-runoff transformation process in cases when only little information about the subsurface processes is known. In this perspective, a simplified approach is proposed to address the challenges regarding the quantitative estimation of climate change effects on urban flooding for real case applications. The approach is defined as “bottom-up” because climate change information is not included in flood modelling, but it is only invoked for the interpretation of results. In other words, the challenge faced in this work is the development of a modelling strategy that is expeditious, because it does not require flood simulations for future rainfall scenarios, but only under current climate conditions, thus reducing the overall computational effort; and it is flexible, because results can be easily updated once new climate change data, scenarios or methods become available, without the need of additional flood simulations. To simulate real case applications, the approach is tested for a scenario analysis, where different return periods and hyetograph shapes are used as input for urban inundation modelling in Naples, Italy. The approach can support public and private stakeholders, such as land administrators and water systems managers; moreover, it represents a valuable and effective basis for climate change risk communication strategies.  相似文献   

6.
Upland agricultural land management activities such as grazing, vegetation burning, and bare ground restoration impact hydrological elements of headwater catchments, many of which may be important for downstream flood peaks (e.g., overland flow and soil water storage). However, there is poor understanding of how these management practices affect river flow peaks during high magnitude rainfall events. Using the distributed TOPMODEL, spatial configurations of land management were modelled to predict flood response in an upland catchment, which contains different regions operating subsidized agricultural stewardship schemes. Heavy grazing leading to soil compaction and loss of vegetation cover in stewardship regions covering 79.8% of the catchment gave a 42‐min earlier flow peak, which was 82.2% higher (under a 1‐hr 15‐mm storm) than the current simulated hydrograph. Light grazing over the same regions of the catchment had much less influence on river flow peaks (18 min earlier and 32.9% increase). Rotational burning (covering 8.8% of the catchment), most of which is located in the headwater areas, increased the peak by 3.2% in the same rainfall event. Vegetation restoration with either Eriophorum or Sphagnum (higher density) in bare areas (5.8%) of the catchment provided a reduction of flood peak (3.9% and 5.2% in the 15‐mm storm event), whereas the same total area revegetated with Sphagnum in riparian regions delivered a much larger decrease (15.0%) in river flow peaks. We show that changes of vegetation cover in highly sensitive areas (e.g., near‐stream zones) generate large impacts on flood peaks. Thus, it is possible to design spatially distributed management systems for upland catchments, which reduce flood peaks while at the same time ensuring economic viability for upland farmers.  相似文献   

7.
A distributed hydrological model (WaSiM-ETH) was applied to a mesoscale catchment to investigate natural flood management as a nonstructural approach to tackle flood risks from climate change. Peak flows were modelled using climate projections (UKCP09) combined with afforestation-based land-use change options. A significant increase in peak flows was modelled from climate change. Afforestation could reduce some of the increased flow, with greatest benefit from coniferous afforestation, especially replacing lowland farmland. Nevertheless, large-scale woodland expansion was required to maintain peak flows similar to present and beneficial effects were significantly reduced for larger “winter-type” extreme floods. Afforestation was also modelled to increase low-flow risks. Land-use scenarios showed catchment-scale trade-offs across multiple objectives meant “optimal” flood risk solutions were unlikely, especially for afforestation replacing lowland farmland. Hence, combined structural/nonstructural measures may be required in such situations, with integrated catchment management to synergize multiple objectives.  相似文献   

8.
Rural land management signals in catchment‐scale runoff have proven difficult to identify in general. The Pontbren experimental catchment in upland Wales, UK, provides a new data set with which to address this challenge. This data set includes more than 4 years of data from six tipping bucket rainfall gauges and eight stream flow gauges representing different land management regimes at different scales. Data‐based mechanistic rainfall–runoff models were fitted to this data set using the CAPTAIN toolbox. The spatial and temporal variabilities of model parameters were identified and interpreted where possible. The analysis highlighted a dependency between the modelled residence time and the presence of agriculturally improved grassland, which produced a flashier response than grassland in a more natural condition. Another factor found to strongly affect the spatial variability of runoff response was the presence of lakes, while catchment area had a less pronounced effect, and the influence of trees, steepness and soil type could not be identified. Some time variability of response was observed but this was not consistent across the catchment and could not easily be interpreted. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of changes in catchment processes and conditions can be studied by using connectivity as a framework for understanding the feedbacks and interactions occurring within the system. The sediment record preserved in reservoirs can be a useful archive of catchment changes, but needs to be considered in conjunction with the different elements that compose and act on the system to take into account its complexity. Changing patterns of connectivity have been studied in the Ingbirchworth Catchment (Yorkshire, UK), using a multiple methodology approach combining the analysis of reservoir‐sediment records with knowledge of recent land‐use history, high resolution rainfall records, catchment characteristics and management aspects. Sedimentation rates inferred from reservoir‐sediment cores from two reservoirs in the Ingbirchworth catchment show sedimentation peaks which coincide with periods of significant changes in the catchment, such as the introduction of arable crops, the establishment of land drainage and the widespread intensification and mechanization of agriculture. Rainfall patterns, including combinations of events such as droughts and increased precipitation, contribute to increased sediment transfer under catchment conditions in which more sediment and/or new pathways are made available due to catchment changes. Sediment fingerprinting supports the notion that changes in sedimentation rates are not just related to increased/reduced erosion and transport in the same areas, but also to the establishment of different pathways increasing sediment connectivity. The results demonstrate that typical calculations of catchment‐area yields are not sufficient as sediment‐contributing areas vary as a consequence of changing conditions. The study provides insights into the complex interactions influencing connectivity, such as the relation between catchment changes and climatic inputs, and the subsequent effect on catchment conditions and transfer networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Hydrological models are recognized as valid scientific tools to study water quantity and quality and provide support for the integrated management and planning of water resources at different scales. In common with many catchments in the Mediterranean, the study catchment has many problems such as the increasing gap between water demand and supply, water quality deterioration, scarcity of available data, lack of measurements and specific information. The application of hydrological models to investigate hydrological processes in this type of catchments is of particular relevance for water planning strategies to address the possible impact of climate and land use changes on water resources. The distributed catchment scale model (DiCaSM) was selected to study the impact of climate and land use changes on the hydrological cycle and the water balance components in the Apulia region, southern Italy, specifically in the Candelaro catchment (1780 km2). The results obtained from this investigation proved the ability of DiCaSM to quantify the different components of the catchment water balance and to successfully simulate the stream flows. In addition, the model was run with the climate change scenarios for southern Italy, i.e. reduced winter rainfall by 5–10%, reduced summer rainfall by 15–20%, winter temperature rise by 1·25–1·5 °C and summer temperature rise by 1·5–1·75 °C. The results indicated that by 2050, groundwater recharge in the Candelaro catchment would decrease by 21–31% and stream flows by 16–23%. The model results also showed that the projected durum wheat yield up to 2050 is likely to decrease between 2·2% and 10·4% due to the future reduction in rainfall and increase in temperature. In the current study, the reliability of the DiCaSM was assessed when applied to the Candelaro catchment; those parameters that may cause uncertainty in model output were investigated using a generalized likelihood uncertainty estimation (GLUE) methodology. The results showed that DiCaSM provided a small level of uncertainty and subsequently, a higher confidence level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Sediment‐laden runoff from arable fields has increasingly been recognized as a threat to housing, infrastructure and watercourses in Western Europe. Research suggests that land‐use change is far more important than any changes in rainfall in explaining recent increases in muddy flooding. However, the importance of changes in the organization of fields in the catchment has been overlooked. The loss of field boundaries has led to the loss of traditional sites of sediment deposition and an increase in the risk of sediment export via valley‐bottom ephemeral gullies. Successful schemes to combat muddy flooding have been pioneered in Flanders. The installation of grassed waterways in topographically controlled concentrated runoff pathways and the creation of sediment deposition structures are effective and efficient muddy flooding control measures. A supportive legislative and financial framework is also essential. The situation in Flanders is contrasted to that in the South Downs National Park, UK, where few measures to combat muddy flooding have been introduced and a supportive framework is lacking. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   

13.
ABSTRACT

Flooding events can produce significant disturbances in underground transport systems within urban areas and lead to economic and socioenvironmental well-known consequences, which can be worsened by variations in the occurrence of weather and climate extremes. A better comprehension of these impacts and their conditions is consequently needed. Hence, this paper presents a state-of-the-art literature review on flood impact assessment in “metro” systems, analysing their purposes and their shortcomings. This document shows the adaptation measures dealing with specific classes of pluvial flood damages, besides identifying prospective paths towards the application of suitable actions facing actual and projected hazards in metro systems worldwide.  相似文献   

14.
The south‐west region of the Goulburn–Broken catchment in the south‐eastern Murray–Darling Basin in Australia faces a range of natural resource challenges. A balanced strategy is required to achieve the contrasting objectives of remediation of land salinization and reducing salt export, while maintaining water supply security to satisfy human consumption and support ecosystems. This study linked the Catchment Analysis Tool (CAT), comprising a suite of farming system models, to the catchment‐scale CATNode hydrological model to investigate the effects of land use change and climate variation on catchment streamflow and salt export. The modelling explored and contrasted the impacts of a series of different revegetation and climate scenarios. The results indicated that targeted revegetation to only satisfy biodiversity outcomes within a catchment is unlikely to have much greater impact on streamflow and salt load in comparison with simple random plantings. Additionally, the results also indicated that revegetation to achieve salt export reduction can effectively reduce salt export while having a disproportionately smaller affect on streamflows. Furthermore, streamflow declines can be minimized by targeting revegetation activities without significantly altering salt export. The study also found that climate change scenarios will have an equal if not more significant impact on these issues over the next 70 years. Uncertainty in CATNode streamflow predictions was investigated because of the effect of parameter uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The potential impact of climate change on fluvial flooding is receiving considerable scientific and political interest thanks to evidence from climate model projections and a widely held belief that flood risk may be increasing at European levels. This review compares published work on historical trends in UK rainfall and river flow records with high‐resolution regional climate change projections, and attempts to reconcile apparent differences between the two. Attention is focused on the techniques used for climate change detection and attribution, as well as the potential confounding effects of land‐use change. International and domestic efforts to build adaptive capacity rest on improved quantification of uncertainty in flood risk at very local, catchment and regional scales. This will involve further research to better integrate climate and land‐management interactions, to understand changes in the dependence between different flood generating mechanisms, and to improve the characterization and communication of uncertainty at all stages of analysis. Resources are also needed to ensure that latest, but still uncertain, science is presented in an appropriate form to underpin policy development and is translated into sensible guidance for practitioners. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Although the importance of sustainable soil management is recognized, there are many threats to soils including widespread soil structural degradation. This reduces infiltration through the soil surface and/or the percolation of water through the soil profile, with important consequences for crop yields, nutrient cycling and the hydrological response of catchments. This article describes a broad‐scale modelling approach to assess the potential effect that improved agricultural soil management, through reduced soil structural degradation, may have on the baseflow index (BFI) of catchments across England and Wales. A daily soil–water balance model was used to simulate the indicative BFI of 45 696 thirty‐year model runs for different combinations of soil type, soil/field condition, land cover class and climate which encapsulate the variability across England and Wales. The indicative BFI of catchments was then calculated by upscaling the results by spatial weighting. WaSim model outputs of indicative BFI were within the 95% confidence intervals of the national‐average BFI values given for the Hydrology of Soil Type (HOST ? ) classes for 26 of the 28 classes. At the catchment scale, the concordance correlation coefficient between the BFI from the WaSim model outputs and those derived from HOST was 0·83. Plausible improvements in agricultural soil/field condition produced modest simulated increases of up to 10% in the indicative BFI in most catchments across England and Wales, although for much of southern and northern England the increases were less than 5%. The results suggest that improved soil management might partially mitigate the expected adverse effects of climate change on baseflow to rivers. Healthy, well‐functioning soils produce many additional benefits such as better agricultural yields and reduced pollutant movement, so improved soil management should provide win‐win opportunities for society, agricultural systems and the environment and provide resilience to some of the expected environmental impacts of climate change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The assessment of surface water resources (SWRs) in the semi‐arid Yongding River Basin is vital as the basin has been in a continuous state of serious water shortage over the last 20 years. In this study, the first version of the geomorphology‐based hydrological model (GBHM) has been applied to the basin over a long period of time (1956–2000) as part of an SWR assessment. This was done by simulating the natural hydrological processes in the basin. The model was first evaluated at 18 stream gauges during the period from 1990 to 1992 to evaluate both the daily streamflows and the annual SWRs using the land use data for 1990. The model was further validated in 2000 with the annual SWRs at seven major stream gauges. Second, the verified model was used in a 45‐year simulation to estimate the annual SWRs for the basin from 1956 to 2000 using the 1990 land use data. An empirical correlation between the annual precipitation and the annual SWRs was developed for the basin. Spatial distribution of the long‐term mean runoff coefficients for all 177 sub‐basins was also achieved. Third, an additional 10‐year (1991–2000) simulation was performed with the 2000 land use data to investigate the impact of land use changes from 1990 to 2000 on the long‐term annual SWRs. The results suggest that the 10‐year land use changes have led to a decrease of 8·3 × 107 m3 (7·9% of total) for the 10‐year mean annual SWRs in the simulation. To our knowledge, this work is the first attempt to assess the long‐term SWRs and the impact of land use change in the semi‐arid Yongding River Basin using a semi‐distributed hillslope hydrological model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Intensive agricultural land use can have detrimental effects on landscape properties, greatly accelerating soil erosion, with consequent fertility loss and reduced agricultural potential. To quantify the effects of such erosional processes on hillslope morphology and gain insight into the underlying dynamics, we use a twofold approach. First, a statistical analysis of topographical features is conducted, with a focus on slope and gradient distributions. The accelerated soil erosion is shown to be fingerprinted in the distribution tails, which provide a clear statistical signature of this human-induced land modification. Theoretical solutions are then derived for the hillslope morphology and the associated creep and runoff erosion fluxes, allowing us to distinguish between the main erosional mechanisms operating in disturbed and undisturbed areas. We focus our application on the landscape at the Calhoun Critical Zone Observatory in the US Southern Piedmont, where severe soil erosion followed intensive cotton cultivation, resulting in highly eroded and gullied hillslopes. The observed differences in hillslope morphologies in disturbed and undisturbed areas are shown to be related to the disruption of the natural balance between soil creep and runoff erosion. The relaxation time required for the disturbed hillslopes to reach a quasi-equilibrium condition is also investigated. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
In this study we analyzed runoff and sediment yield from land under various traditional and current land uses in Mediterranean mountain areas, using long‐term data from an experimental station in the Aísa Valley, Central Spanish Pyrenees. Monitoring at this station has provided 20 years of data that can help explain the hydrological and geomorphological changes that have been observed at larger spatial scales, and also the changes that have occurred to some of the most characteristic landscapes of the Mediterranean middle mountains. In spite of the problems associated with the use of small experimental plots, the results obtained are consistent with other studies in the Mediterranean region, and confirm the strong influence of land use changes on runoff generation and sediment yield. The results indicate that: (i) cereal cultivation on steep slopes (both alternating cereal cultivation and fallow on sloping fields and shifting agriculture on the steepest slopes) represents a major problem for soil conservation. This explains the occurrence throughout the Mediterranean mountains of many degraded hillslopes, which show evidence of sheet wash erosion, rilling, gullying and shallow landsliding; (ii) farmland abandonment has led to a marked reduction in runoff and sediment yield as a consequence of rapid plant recolonization, particularly by dense shrubs; (iii) the natural transformation of abandoned fields into grazing meadows has reduced runoff and sediment yield. Land use trends in the Mediterranean mountains are mainly characterized by generalized farmland abandonment and a decrease in livestock pressure. From a hydrological and geomorphological point of view the main consequences have been a reduction in overland flow from the hillslopes, and a reduction in sediment sources, with differences up to one order of magnitude in sediment yield from dense shrub cover and grazing meadow areas compared with areas under shifting agriculture. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

This study aims to assess the potential impact of climate change on flood risk for the city of Dayton, which lies at the outlet of the Upper Great Miami River Watershed, Ohio, USA. First the probability mapping method was used to downscale annual precipitation output from 14 global climate models (GCMs). We then built a statistical model based on regression and frequency analysis of random variables to simulate annual mean and peak streamflow from precipitation input. The model performed well in simulating quantile values for annual mean and peak streamflow for the 20th century. The correlation coefficients between simulated and observed quantile values for these variables exceed 0.99. Applying this model with the downscaled precipitation output from 14 GCMs, we project that the future 100-year flood for the study area is most likely to increase by 10–20%, with a mean increase of 13% from all 14 models. 79% of the models project increase in annual peak flow.

Citation Wu, S.-Y. (2010) Potential impact of climate change on flooding in the Upper Great Miami River Watershed, Ohio, USA: a simulation-based approach. Hydrol. Sci. J. 55(8), 1251–1263.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号