首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analytical model for describing the tidal effects in a two‐dimensional leaky confined aquifer system in an estuarine delta where ocean and river meet. This system has an unconfined aquifer on top and a confined aquifer on the bottom with an aquitard in between the two. The unconfined and confined aquifers interact with each other through leakage. It was assumed that the aquitard storage was negligible and that the leakage was linearly proportional to the head difference between the unconfined and confined aquifers. This model's solution was based on the separation of variables method. Two existing solutions that deal with the head fluctuation in one‐dimensional or two‐dimensional leaky confined aquifers are shown as special cases in the present solution. Based on this new solution, the dynamic effect of the water table's fluctuations can be clearly explored, as well as the influence of leakage on the behaviour of fluctuations in groundwater levels in the leaky aquifer system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The study on the hydraulic properties of coastal aquifers has significant implications both in hydrological sciences and environmental engineering. Although many analytical solutions are available, most of them are based on the same basic assumption that assumes aquifers extend landward semi‐infinitely, which does not necessarily reflect the reality. In this study, the general solutions for a leaky confined coastal aquifer have been developed that consider both finitely landward constant‐head and no‐flow boundaries. The newly developed solutions were then used to examine theoretically the joint effects of leakage and aquifer length on hydraulic head fluctuations within the leaky confined aquifer, and the validity of using the simplified solution, which assumes the aquifer is semi‐infinite. The results illustrated that the use of the simplified solution may cause significant errors, depending on joint effects of leakage and aquifer length. A dimensionless characteristic parameter was then proposed as an index for judging the applicability of the simplified solution. In addition, practical application of the general solution for the constant‐head inland boundary was used to characterize the hydraulic properties of a leaky confined aquifer using the data collected from a field site at the Seine River estuary, France, and the versatility of the general solution was further justified.  相似文献   

4.
A two‐dimensional semi‐analytical solution to analyse stream–aquifer interactions in a coastal aquifer where groundwater level responds to tidal effects is presented. The conceptual model considered is a two‐dimensional subsurface system with stream and coastline boundaries at right angles. The dimensional and non‐dimensional boundary value problems were solved for water level in the aquifer by successive application of Laplace and Fourier transform techniques, and the results were obtained by numerical inversion of the transformed solution. The solution was then verified by reducing the solutions to one‐dimensional known problems and comparing the results with those from previous studies. Hypothetical examples were used to examine the characteristics of water‐level variations due to the variations in stream stage and the fluctuations in tide level. Sensitivity analysis indicated that streambed leakance has no influence over the amplitude of groundwater fluctuations, but that the effect of stream stage increases with increasing leakance. Little difference was observed in the water level for different aquifer penetration ratios with narrow stream width. Increases in streambed leakance caused increases in the effect of aquifer penetration by the stream on the water level. An increased specific yield value resulted in decreased amplitude of water fluctuations and mean water level, and showed that water‐level variations due to stream and tidal boundaries are sensitive to specific yield. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a new semi‐analytical solution for a slug test in a well partially penetrating a confined aquifer, accounting for the skin effect. This solution is developed based on the solution for a constant‐flux pumping test and a formula given by Peres and co‐workers in 1989. The solution agrees with that of Cooper and co‐workers and the KGS model when the well is fully penetrating. The present solution can be applied to simulate the temporal and spatial head distributions in both the skin and formation zones. It can also be used to demonstrate the influences of skin type or skin thickness on the well water level and to estimate the hydraulic parameters of the skin and formation zones using a least‐squares approach. The results of this study indicate that the determination of hydraulic conductivity using a conventional slug‐test data analysis that neglects the presence of a skin zone will give an incorrect result if the aquifer has a skin zone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
An analytical model is presented for the analysis of constant flux tests conducted in a phreatic aquifer having a partially penetrating well with a finite thickness skin. The solution is derived in the Laplace transform domain for the drawdown in the pumping well, skin and formation regions. The time-domain solution in terms of the aquifer drawdown is then obtained from the numerical inversion of the Laplace transform and presented as dimensionless drawdown–time curves. The derived solution is used to investigate the effects of the hydraulic conductivity contrast between the skin and formation, in addition to wellbore storage, skin thickness, delayed yield, partial penetration and distance to the observation well. The results of the developed solution were compared with those from an existing solution for the case of an infinitesimally thin skin. The latter solution can never approximate that for the developed finite skin. Dimensionless drawdown–time curves were compared with the other published results for a confined aquifer. Positive skin effects are reflected in the early time and disappear in the intermediate and late time aquifer responses. But in the case of negative skin this is reversed and the negative skin also tends to disguise the wellbore storage effect. A thick negative skin lowers the overall drawdown in the aquifer and leads to more persistent delayed drainage. Partial penetration increases the drawdown in the case of a positive skin; however its effect is masked by the negative skin. The influence of a negative skin is pronounced over a broad range of radial distances. At distant observation points the influence of a positive skin is too small to be reflected in early and intermediate time pumping test data and consequently the type curve takes its asymptotic form.  相似文献   

7.
This paper presents an analytical solution to tide‐induced head fluctuations in a two‐dimensional estuarine‐coastal aquifer system that consists of an unconfined aquifer and a heterogeneous confined aquifer extending under a tidal river with a semipermeable layer between them. This study considers the joint effects of tidal‐river leakage, inland leakage, dimensionless transmissivity between the tidal‐river and inland confined aquifer, and transmissivity anisotropic ratios. The analytical solution for this model is obtained via the separation of variables method. Three existing solutions related to head fluctuation in one‐ or two‐dimensional leaky confined aquifers are considered as special cases in the present solution. This study shows that there is a threshold of tidal‐river confined aquifer length. When the tidal‐river length is greater than the threshold length, the inland head fluctuations remain sensitive to the leakage effect but become insensitive to the tidal‐river width and dimensionless transmissivity. Considering leakage and transmissivity anisotropy, this study also demonstrates that at a location farther from the river–inland boundary, head fluctuations increase with increasing leakage and transmissivity anisotropy; the maximum head fluctuation occurs when leakage and transmissivity anisotropy are both at their maximum values. The combined action of the 3 effects of loading, tidal‐river aquifer leakage, and inland aquifer leakage differs significantly according to various aquifer parameters. The analytical solution in this paper can be applied to demonstrate the behaviours of the head fluctuations of an estuarine‐coastal aquifer system, and the head fluctuations can be clearly described when the tidal and hydrogeological parameters are derived from field measurement data or hypothetical cases.  相似文献   

8.
An aquifer containing a skin zone is considered as a two-zone system. A mathematical model describing the head distribution is presented for a slug test performed in a two-zone confined aquifer system. A closed-form solution for the model is derived by Laplace transforms and Bromwich integral. This new solution is used to investigate the effects of skin type, skin thickness, and the contrast of skin transmissivity to formation transmissivity on the distributions of dimensionless hydraulic head. The results indicate that the effect of skin type is marked if the slug-test data is obtained from a radial two-zone aquifer system. The dimensionless well water level increases with the dimensionless positive skin thickness and decreases as the dimensionless negative skin thickness increases. In addition, the distribution of dimensionless well water level due to the slug test depends on the hydraulic properties of both the wellbore skin and formation zones.  相似文献   

9.
A mathematical model is developed to investigate the effects of tidal fluctuations and leakage on the groundwater head of leaky confined aquifer extending an infinite distance under the sea. The leakages of the offshore and inland aquitards are two dominant factors controlling the groundwater fluctuation. The tidal influence distance from the coast decreases significantly with the dimensionless leakage of the inland aquitard (ui). The fluctuation of groundwater level in the inland part of the leaky confined aquifer increases significantly with the dimensionless leakage of the offshore aquitard (uo). The influence of the tidal propagation parameter of an unconfined aquifer on the head fluctuation of the leaky confined aquifer is comparatively conspicuous when ui is large and uo is small. In other words, ignoring water table fluctuation of the unconfined aquifer will give large errors in predicting the fluctuation, time lag, and tidal influence distance of the leaky confined aquifer for large ui and small uo. On the contrary, the influence of the tidal propagation parameter of a leaky confined aquifer on the head fluctuation of the leaky confined aquifer is large for large uo and small ui.  相似文献   

10.
We have derived an analytical solution for two-region flow toward a well in a confined aquifer based on a linearization method. The two-region flow includes Izbash non-Darcian flow near the well and Darcian flow in the rest of the aquifer. The wellbore storage is also considered. The type curves in the non-Darcian and Darcian flow domains are obtained by a numerical Laplace inversion method incorporated in MATLAB programs. We have compared our results with the one-region Darcian flow model (Theis). Our solutions agree with those of Sen [Sen Z. Type curves for two-region well flow. J Hydr Eng 1988;114(12):1461–84] which were obtained using the Boltzmann transform at late times for fully turbulent flow, while some difference has been found at early and moderate times. We have defined a dimensionless non-Darcian hydraulic conductivity term which is shown to be a key parameter for analyzing the two-region flow. A smaller dimensionless non-Darcian hydraulic conductivity results in a larger drawdown in the non-Darcian flow region at late times. However, the dimensionless non-Darcian hydraulic conductivity does not affect the slope of the dimensionless drawdown versus the logarithmic dimensionless time in the non-Darcian flow region at late times. The dimensionless non-Darcian hydraulic conductivity does not affect the late time drawdown in the Darcian flow region.  相似文献   

11.
A steady/quasi-steady model is developed for predicting flow into a partially penetrating well with skin zone in a confined aquifer overlying an impervious layer. The model takes into account flow through the bottom of the wellbore, finite skin thickness and finite horizontal and vertical extent of the aquifer. Moreover, the solution can be easily extended to include the mixed-type boundary condition at the well face, where a Dirichlet in the form of a specified hydraulic head and a Neumann in the form of zero flux coexist at the same time at different portions of the well face. The validity of the proposed solution is tested by comparing a few results obtained from the developed model with corresponding results obtained by analytical and numerical means. The study shows that, among other factors remaining constant, both the horizontal and vertical extent of an artesian aquifer, thickness of the skin zone, bottom flow and conductivity contrast of the skin and formation zones, play an important part in deciding flow to a well dug in the aquifer, and hence these factors must be considered while analyzing the problem. The model proposed here can be used to estimate skin thickness as well as hydraulic conductivities of the skin and formation zones of a well with skin zone in an artesian aquifer underlain by an impervious layer by utilizing pumping test data falling in the steady or quasi-steady state of a typical pumping test. As the proposed solution is of a general nature in the sense that it can handle, apart from partial penetration and bottom flow, the finite size skin zone and finite horizontal and vertical extent of an artesian aquifer together with the mixed-type boundary condition at the well face, it is hoped that the predictions coming out of the model will be more realistic than those obtained using solutions developed with more stringent assumptions.  相似文献   

12.
The solution describing the wellbore flow rate in a constant‐head test integrated with an optimization approach is commonly used to analyze observed wellbore flow‐rate data for estimating the hydrogeological parameters of low‐permeability aquifers. To our knowledge, the wellbore flow‐rate solution for the constant‐head test in a two‐zone finite‐extent confined aquifer has never been reported so far in the literature. This article is first to develop a mathematical model for describing the head distribution in the two‐zone aquifer. The Laplace domain solutions for the head distributions and wellbore flow rate in a two‐zone finite confined aquifer are derived using the Laplace transform, and their corresponding time domain solutions are then obtained using the Bromwich integral method and residue theorem. These new solutions are expressed in terms of an infinite series with Bessel functions and not straightforward to calculate numerically. A large‐time solution for the wellbore flow rate is therefore developed by employing the relationship of small Laplace variable versus large time variable and L'Hospital's rule. The result shows that the large‐time solution is identical to the steady‐state solution obtained after applying the Tauberian theorem into the Laplace domain solution. This large‐time solution can reduce to the Thiem equation in the case of no skin. Finally, the newly developed solution is used to investigate the effects of outer boundary distance and conductivity ratio on the wellbore flow rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Analytical solutions for contaminant transport in a non‐uniform flow filed are very difficult and relatively rare in subsurface hydrology. The difficulty is because of the fact that velocity vector in the non‐uniform flow field is space‐dependent rather than constant. In this study, an analytical model is presented for describing the three‐dimensional contaminant transport from an area source in a radial flow field which is a simplest case of the non‐uniform flow. The development of the analytical model is achieved by coupling the power series technique, the Laplace transform and the two finite Fourier cosine transform. The developed analytical model is examined by comparing with the Laplace transform finite difference (LTFD) solution. Excellent agreements between the developed analytical model and the numerical model certificate the accuracy of the developed model. The developed model can evaluate solution for Peclet number up to 100. Moreover, the mathematical behaviours of the developed solution are also studied. More specifically, a hypothetical convergent flow tracer test is considered as an illustrative example to demonstrate the three‐dimensional concentration distribution in a radial flow field. The developed model can serve as benchmark to check the more comprehensive three‐dimensional numerical solutions describing non‐uniform flow contaminant transport. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   

15.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   

16.
Groundwater recharge and mounding of water‐table is a complex phenomenon involving time‐ and space‐dependent hydrologic processes. The effect of long‐term groundwater mounding in the aquifer depends on soil, aquifer geometry and the area contributing to recharge. In this paper, a GIS‐based spatio‐temporal algorithm has been developed for the groundwater mound dynamics to estimate the potential rise in the water‐table and groundwater volume balance residual in an unconfined aquifer. The recharge and mound dynamics as predicted using the methodology recommended here were compared with those using the Hantush equation, and the differences were quite significant. The significance of the study is to assess the effectiveness of the basin in terms of its hydrologic and hydraulic properties for sustainable management of groundwater recharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Wells in aquifers of loose collapsible sediment are cased so that they have a blind wall and gain water only from the bottom. The hydraulic gradient established at the bottom of these wells during pumping brings the aquifer materials in a quicksand state, which may cause abrasion of pipes and pumps and even the destruction of well structure. To examine the quicksand occurrence, an analytical solution for the steady flow to a partially penetrating blind‐wall well in a confined aquifer is developed. The validity of the proposed solution is evaluated numerically. The sensitivity of maximum vertical gradient along the well bottom in response to aquifer and well parameters is examined. The solution is presented in the form of dimensionless‐type curves and equations that can be easily used to design the safe pumping rate and optimum well geometry to protect the well against sand production. The solution incorporates the anisotropy of aquifer materials and can also be used to determine the hydraulic conductivity of the aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Dilatation of aquifer and associated water level fluctuation in groundwater well is known to be driven periodically from lunar, solar, or other tidal forces. Time‐dependent variables in groundwater system, such as water level, can be converted to power spectra in the frequency domain using Fourier transform to evaluate significant fluctuation. The major innovation of this research is to develop spectral representation in frequency domain for the groundwater system that the storage in confined aquifer can be determined considering dilatation affected by Earth tides and barometric effect. In order to verify applicability of the evolved method, time series of Earth tides and barograph are collected; aquifer storage is then determined inversely by selecting significant semidiurnal and diurnal components in spectra computation. It suggests that to discover groundwater storage using groundwater level with barograph and tidal potential of Earth in frequency domain becomes accessible and feasible.  相似文献   

19.
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate.  相似文献   

20.
The soil and water assessment tool (SWAT) has been widely used and thoroughly tested in many places in the world. The application of the SWAT model has pointed out that 2 of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic response unit concept and to the simplified groundwater concept, which contribute to its low performance in baseflow simulation and its inability to simulate regional groundwater flow. This study modified the groundwater module of SWAT to overcome the above limitations. The modified groundwater module has 2 aquifers. The local aquifer, which is the shallow aquifer in the original SWAT, represents a local groundwater flow system. The regional aquifer, which replaces the deep aquifer of the original SWAT, represents intermediate and regional groundwater flow systems. Groundwater recharge is partitioned into local and regional aquifer recharges. The regional aquifer is represented by a multicell aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen polygon method, where centres of the cells are locations of groundwater observation wells. Groundwater flow between cells is modelled using Darcy's law. Return flow from cell to stream is conceptualized using a non‐linear storage–discharge relationship. The SWAT model with the modified aquifer module, the so‐called SWAT‐MCA, was tested in 2 basins (Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany. Results from the Wipperau basin show that the SWAT‐MCA model is able (a) to simulate baseflow in a lowland area (where baseflow is a dominant source of streamflow) better than the original model and (b) to simulate regional groundwater flow, shown by the simulated groundwater levels in cells, quite well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号