首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Post‐earthquake reconnaissance has reported the vulnerability of older reinforced concrete (RC) columns lacking details for ductile response. Research was undertaken to investigate the full‐range structural hysteretic behavior of older RC columns. A two‐dimensional specimen frame, composed of nonductile and ductile columns to allow for load redistribution, was subjected to a unidirectional base motion on a shaking table until global collapse was observed. The test demonstrates two types of column failure, including flexure‐shear and pure flexural failure. Test data are compared with various simplified assessment models commonly used by practicing engineers and researchers to identify older buildings that are at high risk of structural collapse during severe earthquake events. Comparison suggests that ASCE/SEI 41‐06 produces very conservative estimates on load–deformation relations of flexure‐shear columns, while the recently proposed ASCE/SEI 41‐06 update imposes significant modifications on the predictive curve, so that improved accuracy has been achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Shaking table test results from a one‐story, two‐bay reinforced concrete frame sustaining shear and axial failures are compared with nonlinear dynamic analyses using models developed for the collapse assessment of older reinforced concrete buildings. The models provided reasonable estimates of the overall frame response and lateral strength degradation; however, the measured drifts were underestimated by the models. Selected model parameters were varied to investigate the sensitivity of the calculated response to changes in the drift at shear failure, rate of shear strength degradation, and drift at axial failure. For the selected ground motion, the drift at shear failure and rate of shear strength degradation did not have a significant impact on the calculated peak drift. By incorporating shear and axial‐load failure models, the analytical model is shown to be capable of predicting the axial‐load failure for a hypothetical frame with three nonductile columns. Improvements are needed in drift demand estimates from nonlinear dynamic analysis if such analyses are to be used in displacement‐based performance assessments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Reinforced concrete frame structures built prior to the mid‐1970s are susceptible to brittle column failure under seismic action, potentially leading to progressive collapse of the structure. The behavior of columns susceptible to brittle shear‐axial failure has been studied previously but rarely has the interaction between damaged columns and the surrounding three‐dimensional structure been investigated experimentally and at full scale. In this study, as the second in a series of hybrid simulations, two full‐scale reinforced concrete columns of a representative pre‐1970s structure were tested at the Multi‐axial Full‐scale Substructure Testing and Simulation (MUST‐SIM) laboratory. Through the use of hybrid simulation, the interaction of the columns with the surrounding structure is studied under a severe seismic motion including vertical excitation. The computational model representing the remainder of the representative 10‐story structure is created in the computer program OpenSees. During the hybrid simulation, both physical specimens experience significant loss of shear and axial strength, and the effects of these failures on the surrounding system are described. The three‐dimensional computational model in OpenSees allowed for analytical flexural‐axial failure of a third column in the structure to occur. The effects of these multiple failures on the response of a full structural system under seismic action are quantified, and the progressive collapse resistance mechanisms are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the shake‐table tests of a 2/3‐scale, three‐story, two‐bay, reinforced concrete frame infilled with unreinforced masonry walls. The specimen is representative of the construction practice in California in the 1920s. The reinforced concrete frame had nonductile reinforcement details and it was infilled with solid masonry walls in one bay and infill walls with window openings in the other bay. The structure was subjected to a sequence of dynamic tests including white‐noise base excitations and 14 scaled historical earthquake ground motion records of increasing intensity. The performance of the structure was satisfactory considering the seismic loads it was subjected to. The paper summarizes the design of the specimen and the major findings from the shake‐table tests, including the dynamic response, the load resistance, the evolution of damage, and the final failure mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of vertical excitation on shear capacity of reinforced concrete columns is important. Field evidences, analytical studies and static or hybrid simulations suggested that excessive tension or tensile strain of the column may lead to shear strength degradation, and therefore vertical excitation can be one of the causes of shear failure. This paper describes an experimental study consisting of shaking table tests on reduced‐scale bridge columns. Results of the tests indicate that tension in the columns has the potential to degrade the shear capacity, which is mainly due to the degradation of the concrete contribution to this capacity. The presented computational results and code evaluations also support this shear strength degradation. The presented dynamic tests contribute to better understanding of the effect of vertical excitation on the shear failure, which is one of the most critical brittle failure mechanisms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
利用地震振动台对大跨预应力混凝土井式梁空间框架结构的抗震性能进行了实验研究。两个模型的实验结果表明:(1)大跨预应力井式梁空间框架结构可以提供大的楼层平面内刚度;(2)对称大跨预应力井式梁空间框架结构,可以不考虑耦合地震反应;(3)大跨预应力井式梁空间框架结构的竖向地震反应中心大而周边小;(4)在相同加速度但不同的地震波作用下,结构的竖向地震反应不同。  相似文献   

7.
不同再生骨料掺量的中高剪力墙振动台试验研究   总被引:2,自引:0,他引:2  
为了研究再生混凝土剪力墙的动力性能,进行了3个1/3缩尺的不同再生骨料取代率的中高剪力墙模型的模拟地震振动台试验,其中1个为普通混凝土剪力墙、1个为再生粗骨料混凝土剪力墙、1个为全再生骨料混凝土剪力墙。试验过程经历了剪力墙弹性、开裂和破坏阶段,实测并比较分析了各剪力墙在不同阶段的动力特性、动力反应及破坏形态。试验结果表明:再生粗骨料混凝土中高剪力墙具有和普通混凝土剪力墙相近的抗震性能,其墙体开裂时台面加速度输入降低9.7%,其弹塑性位移角达到1/120时台面加速度输入降低5.8%,经合理设计,可用于建筑结构。  相似文献   

8.
Two models of masonry infilled reinforced concrete frame buildings were tested at the shaking table. Models were built in the reduced scale 1:4 using the materials produced in accordance to modelling demands of true replica modelling technique. The first model represented a one‐storey box‐like building and the second one the two‐stories building with plan shaped in the form of a letter H. Models were shaken with the series of horizontal sine dwell motions with gradually increasing amplitude. Masonry infills of tested models were constructed of relatively strong bricks laid in weak mortar. Therefore, typical cracks developed and propagated along mortar beds without cracking of bricks or crushing of infill corners. Data collected from tests will be used in future evaluation, verification and development of computational models for prediction of in‐plane and out‐of‐plane behaviour of masonry infills. The responses of tested models can be well compared with global behaviour of real structures using the modelling rules. The similarity of local behaviour of structural elements, e.g. reinforced concrete joints, is less reliable due to limitations in modelling of steel reinforcement properties. The model responses showed that buildings designed according to Eurocodes are able to sustain relatively high dynamic excitations due to a significant level of structural overstrength. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
A full‐scale shake table test on a six‐story reinforced concrete wall frame structure was carried out at E‐Defense, the world's largest three‐dimensional earthquake simulation facility, in January 2006. Story collapse induced from shear failure of shear critical members (e.g., short columns and shear walls) was successfully produced in the test. Insights gained into the seismic behavior of a full‐scale specimen subjected to severe earthquake loads are presented in this paper. To reproduce the collapse process of the specimen and evaluate the ability of analytical tools to predict post‐peak behavior, numerical simulation was also conducted, modeling the seismic behavior of each member with different kinds of models, which differ primarily in their ability to simulate strength decay. Simulated results showed good agreement with the strength‐degrading features observed in post‐peak regions where shear failure of members and concentrated deformation occurred in the first story. The simulated results tended to underestimate observed values such as maximum base shear and maximum displacement. The effects of member model characteristics, torsional response, and earthquake load dimensions (i.e., three‐dimensional effects) on the collapse process of the specimen were also investigated through comprehensive dynamic analyses, which highlighted the following seismic characteristics of the full‐scale specimen: (i) a model that is incapable of simulating a specimen's strength deterioration is inadequate to simulate the post‐peak behavior of the specimen; (ii) the torsional response generated from uniaxial eccentricity in the longitudinal direction was more significant in the elastic range than in the inelastic range; and (iii) three‐dimensional earthquake loads (X–Y–Z axes) generated larger maximum displacement than any other loading cases such as two‐dimensional (X–Y or Y–Z axes) or one‐dimensional (Y axis only) excitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
在试验研究的基础上,以框架结构延性设计为目的采用桁架+拱模型研究了框架柱塑性铰区域抗剪受力机理,分析了,位移延性系数、加载循环次数等因素对框架柱构件塑性铰区域剪切受力性能的影响,并结合试验结果提出了混凝土框架柱塑性铰区域剪切承载力抗震延性设计实用公式,可有效实现结构的延性破坏机制。主要为配合GBJ10-89的修订,该成果已被《混凝土结构设计规范》(GB50010—2003)吸收。  相似文献   

12.
This study focuses on the seismic performance of Ordinary Moment‐Resisting Concrete Frames (OMRCF) designed only for gravity loads. For this purpose, a 3‐story OMRCF was designed in compliance with the minimum design requirements in the American Concrete Institute Building Code ACI 318 (1999). This model frame was a regular structure with flexure‐dominated response. A 1/3‐scale 3‐story model was constructed and tested under quasi‐static reversed cyclic lateral loading. The overall behavior of the OMRCF was quite stable without abrupt strength degradation. The measured base shear strength was larger than the design base shear force for seismic zones 1, 2A and 2B calculated using UBC 1997. Moreover, this study used the capacity spectrum method to evaluate the seismic performance of the frame. The capacity curve was obtained from the experimental results for the specimen and the demand curve was established using the earthquake ground motions recorded at various stations with different soil conditions. Evaluation of the test results shows that the 3‐story OMRCF can resist design seismic loads of zones 1, 2A, 2B, 3 and 4 with soil types SA and SB . For soil type SC , the specimen was satisfactory in seismic zones 1, 2A, 2B and 3. For soil type SD , the OMRCF was only satisfactory for seismic zones 1 and 2A. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
通过两榀二层三跨规范钢筋混凝土对称、非对称框架结构模型的拟动力试验,对试件在小震作用截面约束的失效相关性进行了分析,并与文献中的Monte-Carlo随机模拟结果进行了比较,进一步验证了规范钢筋混凝土框架结构在小震作用下失效独立的相关性结论。  相似文献   

14.
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g.  相似文献   

15.
This paper discusses the dynamic tests of a two-story infilled reinforced concrete (RC) frame building using an eccentric-mass shaker. The building, located in El Centro, CA, was substantially damaged prior to the tests due to the seismic activity in the area. During the testing sequence, five infill walls were removed to introduce additional damage states and to investigate the changes in the dynamic properties and the nonlinear response of the building to the induced excitations. The accelerations and displacements of the structure under the forced and ambient vibrations were recorded through an array of sensors, while lidar scans were obtained to document the damage. The test data provide insight into the nonlinear response of an actual building and the change of its resonant frequencies and operational shapes due to varying damage levels and changes of the excitation amplitude, frequency, and orientation.  相似文献   

16.
本文首先介绍了一幢安装了粘滞阻尼器的复杂体型高层方钢管混凝土框架结构的1/15缩尺模型的模拟地震振动台试验结果;在此基础上,建立了梁、柱构件的多弹簧模型并组建了整体结构的计算分析模型,运用此计算模型首先对试验模型结构进行了动力弹塑性时程分析,计算结果和试验结果吻合较好,验证了计算模型的正确性;最后,以同样方法对原型结构进行了计算分析,并结合试验结果研究探讨了此结构的抗震性能和阻尼器的消能减震效果。结果表明:该结构未出现明显的薄弱层,能够满足规范的抗震设防要求,阻尼器发挥了一定的消能减震效果,进一步提高了结构的抗震性能。  相似文献   

17.
Column shear‐axial failure is a complex response, which lends itself to physical experimentation. Reinforced concrete structures built prior to the mid‐1970s are particularly susceptible to such failure. Shear‐axial column failure has been examined and studied at the element level, but current rehabilitation practice equates such a column failure with structural collapse, neglecting the collapse resistance of the full structural system following column failure. This system‐level response can prevent a column failure from leading to progressive collapse of the entire structure. In this study, a hybrid simulation was conducted on a representative pre‐1970s reinforced concrete frame structure under severe seismic ground motion, in which three full‐scale reinforced concrete columns were tested at the University of Illinois at Urbana Champaign. The analytical portion of the model was represented in the computer program OpenSees. Failure occurred in multiple physical specimens as a result of the ground motion, and the hybrid nature of the test allowed for observation of the system‐level response of the tested columns and the remaining structural system. The behavior of the system accounting for multiple column shear‐axial failure is discussed and characterized. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A modified force analogy method (MFAM) is developed to simulate the nonlinear inelastic response of reinforced concrete (RC) structures. Beam–column elements with three different plastic mechanisms are utilized to simulate inelastic response caused by moment and shear force. A multi‐linear hysteretic model is implemented to simulate the nonlinear inelastic response of RC member. The P‐Δ effect of the structure is also addressed in MFAM. Static and dynamic inelastic response of structure, damage condition and failure type for structural element, structural limit state and collapse time can also be simulated using MFAM. Compared with the general algorithm, the MFAM provides less computational time especially in the case of large structural system. It is also easier to be written as computer program. Three test data groups, which include cyclic loading test data of a non‐ductile RC bridge column, a two‐storey RC frame, and dynamic collapse test data of a non‐ductile RC portal frame, are selected to confirm the effectiveness of applying MFAM to simulate the inelastic behaviour of structures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Sine sweep and earthquake excitation tests have been performed on a one-story spatial steel frame building equipped with two identical semi-active assemblies described and fully characterized in a companion paper. The tests allowed identifying and validating simple mathematical models of the building in its passive configurations as well as in semi-active operation according to an energy storing and suddenly dissipating algorithm. In order to eliminate or at least attenuate the detrimental effects of control delays due to adopted software, electronic apparatus and mechanical inertia of variable dampers' moving parts, a simple ‘sine-fit’ prediction method was conceived, evaluated and adopted in subsequent tests. It is shown that, with adequate anticipation of device operation, the selected control algorithm produces a satisfactory reduction of building response compared to that obtained in passive configurations, with overall system efficiency practically independent of the earthquake input and related only to the properties of the semi-active assembly. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
<正>This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections,which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant.In order to investigate the seismic performance of this type of structure,several ground motion accelerations with different levels for seismic intensityⅧ,based on the Chinese Code for Seismic Design of Buildings,were selected to excite the model.The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity.In addition to the tests,numerical simulations were also conducted and the results showed good agreement with the test results.Thus,the numerical model is shown to be accurate and the beam element can be used to model this structural system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号