首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This study analysed the importance of precipitation events from May 2003 to April 2004 on surface water chemistry and solute export from a 696 ha glaciated forested watershed in western New York State, USA. The specific objectives of the study were to determine: (a) the temporal patterns of solutes within individual storm events; (b) the impact of precipitation events on seasonal and annual export budgets; and (c) how solute concentrations and loads varied for precipitation events among seasons as functions of storm intensity and antecedent moisture conditions. Analysis of solute trajectories showed that NH4+, total Al and dissolved organic nitrogen (DON) peaked on the hydrograph rising limb, whereas dissolved organic carbon (DOC) concentrations peaked following the discharge peak. Sulphate and base‐cations displayed a dilution pattern with a minimum around peak discharge. End‐member mixing analysis showed that throughfall contributions were highest on the rising limb, whereas valley‐bottom riparian waters peaked following the discharge peak. The trajectories of NO3? concentrations varied with season, indicating the influence of biotic processes on the generation, and hence flux, of this solute. Storm events had the greatest impact on the annual budgets for NH4+, K+, total dissolved Al, DON and DOC. Storm events during summer had the greatest impact on seasonal solute budgets. Summer events had the highest hourly discharges and high concentrations of solutes. However, NO3? and DOC exports during a spring snowmelt event were considerably more than those observed for large events during other periods of the year. Comparisons among storms showed that season, precipitation amount, and antecedent moisture conditions affected solute concentrations and loads. Concentrations of solutes were elevated for storms that occurred after dry antecedent conditions. Seven of the largest storms accounted for only 15% of the annual discharge, but were responsible for 34%, 19%, 64%, 13%, 39% and 24% of the annual exports of NH4+, K+, Al, NO3?, DON and DOC respectively. These results suggest that the intense and infrequent storms predicted for future climate‐change scenarios will likely increase the exports of solutes like DOC, DON, NH4+, Al and K+ from watersheds. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Nutrient dynamics in karst agroecosystems remain poorly understood, in part due to limited long‐term nested datasets that can discriminate upland and in‐stream processes. We present a 10‐year dataset from a karst watershed in the Inner‐Bluegrass Region of central Kentucky, consisting of nitrate (nitrate‐N [NO3?]), dissolved reactive phosphorus (DRP), total organic carbon (TOC), and total ammoniacal‐N (TAN) measurements at nested spring and stream sites as well as flowrate at the watershed outlet. Hydrograph separation techniques were coupled with multiple linear regression and Empirical Mode Decomposition time‐series analysis to determine significance of seasonal processes and to generate continuous estimates of nutrient pathway loadings. Further, we used model results of benthic algae growth and decomposition dynamics from a nearby watershed to assess if transient storage in algal biomass could explain differences in spring and downstream watershed nutrient loading. Results highlight statistically significant seasonality for all nutrients at stream sites, but only for NO3? at springs with longitudinal variability showing significant decreases occurring from spring to stream sites for NO3? and DRP, and significant increases for TOC and TAN. Pathway loading analysis highlighted the importance of slow flow pathways to source approximately 70% of DRP and 80% of NO3?. Results for in‐stream dynamics suggest that benthic autotroph dynamics can explain summer deviations for TOC, TAN, and DRP but not NO3?. Regarding upland dynamics, our findings agree well with existing perceptions in karst for N pathways and upland source seasonality but deviate from perceptions that karst conduits are retentive of P, reflecting the limited buffering capacity of the soil profile and conduit sediments in the Inner‐Bluegrass. Regarding in‐stream fate, our findings highlighted the significance of seasonally driven nutrient processing in the bedrock‐controlled streambed to influence nutrient fluxes at the watershed outlet. Contrary to existing perceptions, we found high N attenuation and an unexplained NO3? sink in the bedrock stream, leading us to postulate that floating macrophytes facilitate high rates of denitrification.  相似文献   

5.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The relationship between solute concentrations and discharge can inform an integrated understanding of hydrological and biogeochemical processes at watershed scales. Recent work from multiple catchments has shown that there is typically little variation in concentration relative to large variations in discharge. This pattern has been described as chemostatic behavior. Pond Branch, a forested headwater catchment in Maryland, has been monitored for stream nitrate (NO3?) concentrations at weekly intervals for 14 years. In the growing season and autumn of 2011 a high‐frequency optical NO3? sensor was used to supplement the long‐term weekly data. In this watershed, long‐term weekly data show that NO3? concentrations decrease with increasing discharge whereas 6 months of 15‐minute sensor observed concentrations reveal a more chemostatic behavior. High‐frequency NO3? concentrations from the sensor collected during different storm events reveal variable concentration–discharge patterns highlighting the importance of high resolution data and ecohydrological drivers in controlling solute export for biologically reactive solutes such as NO3?.  相似文献   

8.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
While the role of groundwater in flushing of solutes has long been recognized, few studies have explicitly studied the within‐event changes in groundwater chemistry. We compared the changes in groundwater chemistry during storm events for a wetland and hillslope position in a small (1·5 ha) glaciated, forested catchment in western New York. Flushing responses for dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3) and sulfate (SO4) in wetland and hillslope groundwaters were also compared against the corresponding responses in stream water. Eight storm events with varying intensity, amount, and antecedent moisture conditions were evaluated. Solute flushing patterns for wetland and hillslope groundwaters differed dramatically. While DOC concentrations in wetland groundwater followed a dilution trend, corresponding values for hillslope groundwater showed a slight increase. Concentrations for NO3 in wetland groundwater were below detection limits, but hillslope groundwaters displayed high NO3 concentrations with a pronounced increase during storm events. Flushing responses at all positions were also influenced by the size of the event and the time between events. We attributed the differences in flushing to the differences in hydrologic flow paths and biogeochemical conditions. Flushing of the wetland did appear to influence storm‐event stream chemistry but the same could not be said for hillslope groundwaters. This suggests that while a variety of flushing responses may be observed in a catchment, only a subset of these responses affect the discharge chemistry at the catchment outlet. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Although riparian zones are well known to reduce nitrogen (N) and phosphorus (P) runoff to streams, they also have the potential to affect greenhouse gas (CO2, N2O, and CH4) fluxes to the atmosphere. Following large storms, soil biogeochemical conditions often become more reduced, especially in oxbow depressions and side channels, which can lead to hot moments of greenhouse gas production. Here, we investigate the impact of the remnants of Hurricane Irene and Tropical Storm Lee on riparian zone hydrology (water table: WT), and biogeochemistry (oxidation‐reduction potential [ORP], dissolved oxygen [DO], NO3?, PO43?, CO2, N2O, CH4). Results indicate that large storms have the potential to reset WT levels for weeks to months. Overbank flooding at our site following Irene and Lee led to the infiltration of well‐oxygenated water at depth (higher DO and ORP) while promoting the development of anoxic conditions within soil aggregates near the soil surface (increased N2O and CH4 fluxes). A short‐term increase in CO2 emission was observed following Irene at our site where aerobic respiration was water‐limited. Over a 2‐year period, an oxbow depression exhibited higher WT, higher N2O and CH4 fluxes (hot moment), higher CO2 fluxes (seasonal), and lower NO3? concentrations (seasonal) than the rest of the riparian zone. However, neither Irene, nor Lee, nor the oxbow depression significantly impacted PO43?. Dissolved organic carbon, ORP, and DO data illustrate the time‐lag (>20 years) between the creation of an oxbow depression and the development of reducing conditions despite clear differences in riparian zone and oxbow WT dynamics.  相似文献   

11.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding the influence of complex interactions among hydrological factors, soil characteristics and biogeochemical functions on nutrient dynamics in overland flow is important for efficiently managing agricultural nonpoint pollution. Experiments were conducted to assess nutrient export from Ultisol soils in the Sunjia catchment, Jiangxi province, southern China, between 2003 and 2005. Four plots were divided into two groups: two peanut plots and two agroforestry (peanut intercropped with citrus) plots. During the study period, we collected water samples for chemical analyses after each rainfall event that generated overland flow to assess nutrient export dynamics. The concentrations of potassium (K) and nitrate‐N (NO3–N) in overland flow were higher during the wetting season (winter and early spring). This reflects the solubility of K and NO3–N, the accumulation of NO3–N during the dry season and an increase in desorption processes and mixing with pre‐event water caused by prolonged contact with soil in areas with long‐duration, low‐intensity rainfall. In contrast, concentrations of total nitrogen (TN) and total phosphorus (TP) were higher during the wet season (late March to early July) and during the dry season (mid‐July to the end of September or early October). This was due to the interaction between specific hydrological regimes, the properties of the Ultisol and particulate transport processes. Variations in nutrient concentrations during storm events further identified that event water was the dominant source of total nitrogen and total phosphorus, and pre‐event water was the dominant source of NO3–N. In addition, the results obtained for the different land uses suggest that agroforestry practices reduce nutrient loss via overland flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Transfer of atmospheric N deposition on shallow‐soil forested basins on the Canadian Shield to receiving water bodies may be enhanced by rapid preferential flow along the soil–bedrock interface (BR runoff) on basin slopes. Controls on BR runoff, partitioning of event and pre‐event water contributions to this flow, and implications of this partitioning for N fluxes in BR runoff were studied under natural and artificial inputs to an instrumented slope. BR runoff as a fraction of water inputs to the slope increased with antecedent soil wetness and input depth. Event water contributions to BR runoff initially increased with antecedent soil wetness, but then declined at large antecedent soil wetness. Export of applied NH4+ from the slope was maximized when event water contributions containing large NH4+ concentrations dominated BR runoff; however, there was no relationship between the fraction of NO3? application transported in BR runoff and either application input or the event water fraction of that runoff. The applicability of our results to other shallow‐soil areas of the Canadian Shield is limited by artificial N inputs to the slope in excess of natural loads and by low rates of N mineralization and negligible nitrification in the slope's soils. Nevertheless, the study reinforces the need to consider how the hydrologic, geometric and pedologic properties of forest slopes interact with biotic and abiotic soil processes to control N transport and transformation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Stream water was analysed to determine how induced watershed acidification changed the chemistry of peakflow and baseflow and to compare the relative timing of these changes. Two watersheds in north‐central West Virginia, WS3 and WS9, were subjected to three applications of ammonium sulphate fertilizer per year to induce acidification. A third watershed, WS4, was the control. Samples were collected for 8 years from WS9 and for 9 years from WS3. Prior to analyses, concentration data were flow adjusted, and the influence of natural background changes was removed by accounting for the chemical responses measured from WS4. This yielded residual values that were evaluated using robust locally weighted regression and Mann–Kendall tests. On WS3, analyte responses during baseflow and peakflow were similar, although peakflow responses occurred soon after the first treatment whereas baseflow responses lagged 1–2 years. This lag in baseflow responses corresponded well with the mean transit time of baseflow on WS3. Anion adsorption on WS3 apparently delayed increases in SO4 leaching, but resulted in enhanced early leaching losses of Cl and NO3. Leaching of Ca and Mg was strongly tied, both by timing and stoichiometrically, to NO3 and SO4 leaching. F‐factors for WS3 baseflow and peakflow indicated that the catchment was insensitive to acid neutralizing capacity reductions both before and during treatment, although NO3 played a large role in reducing the treatment period F‐factor. By contrast, the addition of fertilizer to WS9 created an acid sensitive system in both baseflow and peakflow. On WS9, baseflow and peakflow responses also were similar to each other, but there was no time lag after treatment for baseflow. Changes in concentrations generally were not as great on WS9 as on WS3, and several ions showed no significant changes, particularly for peakflow. The lesser response to treatment on WS9 is attributed to the past abusive farming and site preparation before larch planting that resulted in poor soil fertility, erosion, and consequently, physical and chemical similarities between upper and lower soil layers. Even with fertilizer‐induced NO3 and SO4 leaching increases, base cations were in low supplies and, therefore, unavailable to leach via charge pairing. The absence of a time lag in treatment responses for WS9 baseflow indicates that it has substantially different flow paths than WS3. The different hydrologies on these nearby watersheds illustrates the importance of understanding watershed hydrology when establishing a monitoring programme to detect ecosystem change. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

15.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The differences between δ18O in throughfall and open rainfall were studied for 16 selected spring and summer storms in deciduous, pine and spruce forests in central Pennsylvania, USA. Throughfall δ18O averaged 0.17, 0.32 and 0.24%o greater than δ18O of open rainfall for all storms at the deciduous, pine and spruce sites, respectively. Throughfall 18O enrichment was greater in low intensity spring rainfall events than higher intensity growing season storms and greater in the coniferous stands than the deciduous hardwood stand. Maximum throughfall 18O enrichment of l.61%o occurred in the spruce forest during one spring event. The differences between rainfall and throughfall 18O observed in this study for individual storm events may have important implications for isotope flow separation studies.  相似文献   

18.
In December 2008, 694 trees uprooted within a 108 ha (1·08 km2) watershed in central Massachusetts due to a severe ice storm, resulting in the displacement of ~1300 m3 of root material, unconsolidated sediment, and fractured bedrock. Overall, we find that uprooting and tree throw is often grouped in clusters and cascades; conifers displace more material than deciduous trees; areas with abundant mature hemlock and steep slopes are more susceptible to tree throw, with clusters as dense as 125 per hectare; and failure is predominantly downhill, suggesting that ice storms promote efficient downslope hillslope sediment transport in northern hardwood forests. Combining the recurrence interval of severe storms in New England (20–75 years) with the forest response presented here, we calculate a sediment transport rate of 2–5 × 10?5 m3 m?1 a?1 averaged over the entire watershed. Forest susceptibility to tree throw differed based on location in the watershed; some areas experienced up to ~30× higher than average sediment transport rates, while others experienced no tree throw. Two severe storms following the 2008 ice storm (hurricane in 2011; snow storm in October 2012) did not result in significant tree throw within the study area, highlighting that the coupling of storm severity and forest susceptibility controls the amount of tree throw during a given forest disturbance. In addition to recent tree throw from the 2008 ice storm, widespread pit and mound microtopography in the study area indicates that tree throw is a recurrent process in this landscape. Two factors emerge that will influence future ice storms related hillslope sediment transport in the steep forested hillslopes of New England: regional climate gradients and changing climate determine the size, intensity and recurrence of ice storms; forest management practices and health control the tree age and type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Short‐lived fallout isotopes, such as beryllium‐7 (7Be), are increasingly used as erosion and sediment tracers in watersheds. 7Be is produced in the atmosphere and delivered to the Earth's surface primarily in precipitation. However, relatively little has been published about the variation in 7Be wet deposition caused by storm type and vegetation cover. Our analysis of precipitation, throughfall, and sediments in two forested, headwater catchments in the mid‐Atlantic USA indicates significant variation in isotope deposition with storm type and storm height. Individual summer convective thunderstorms were associated with 7Be activity concentrations up to 5.0 Bq l?1 in precipitation and 4.7 Bq l?1 in throughfall, while single‐event wet depositional fluxes reached 168 Bq m?2 in precipitation and 103 Bq m?2 in throughfall. Storms originating from the continental USA were associated with lower 7Be activity concentrations and single‐event wet depositional fluxes for precipitation (0.7–1.2 Bq l?1 and 15.8–65.0 Bq m?2) and throughfall (0.1–0.3 Bq l?1 and 13.5–98.9 Bq m?2). Tropical systems had relatively low activity concentrations, 0.2–0.5 Bq l?1 in precipitation and 0.2–1.0 Bq l?1 in throughfall, but relatively high single‐event depositional fluxes due to large rainfall volumes, 32.8–67.6 Bq m?2 in precipitation and 25.7–134 Bq m?2 in throughfall. The largest sources of 7Be depositional variation were attributed to storm characteristics including precipitation amount and maximum storm height. 7Be activity associated with fluvial suspended sediments also exhibited the highest concentration and variability in summer (175–1450 Bq kg?1). We conclude the dominant source of variation on event‐level 7Be deposition is storm type. Our results illustrate the complex relationships between 7Be deposition in precipitation and throughfall and demonstrate event‐scale relationships between the 7Be in precipitation and on suspended sediment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Indirect nitrous oxide (N2O) emissions produced by nitrogen (N) leaching into surface water and groundwater bodies are poorly understood in comparison to direct N2O emissions from soils. In this study, dissolved N2O concentrations were measured weekly in both lowland headwater streams and subsurface agricultural field drain discharges over a 2‐year period (2013–2015) in an intensive arable catchment, Norfolk, UK. All field drain and stream water samples were found to have dissolved N2O concentrations higher than the water–air equilibrium concentration, illustrating that all sites were acting as a net source of N2O emissions to the atmosphere. Soil texture was found to significantly influence field drain N2O dynamics, with mean concentrations from drains in clay loam soils (5.3 μg N L?1) being greater than drains in sandy loam soils (4.0 μg N L?1). Soil texture also impacted upon the relationships between field drain N2O concentrations and other water quality parameters (pH, flow rate, and nitrate (NO3) and nitrite (NO2) concentrations), highlighting possible differences in N2O production mechanisms in different soil types. Catchment antecedent moisture conditions influenced the storm event mobilisation of N2O in both field drains and streams, with the greatest concentration increases recorded during precipitation events preceded by prolonged wet conditions. N2O concentrations also varied seasonally, with the lowest mean concentrations typically occurring during the summer months (JJA). Nitrogen fertiliser application rates and different soil inversion regimes were found to have no effect on dissolved N2O concentrations, whereas higher N2O concentrations recorded in field drains under a winter cover crop compared to fallow fields revealed cover crops are an ineffective greenhouse gas emission mitigation strategy. Overall, this study highlights the complex interactions governing the dynamics of dissolved N2O concentrations in field drains and headwater streams in a lowland intensive agricultural catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号