首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major‐ion compositions of groundwater are employed in this study of the water–rock interactions and hydrogeochemical evolution within a carbonate aquifer system. The groundwater samples were collected from boreholes or underground tunnels in the Ordovician limestone of Yanzhou Coalfield where catastrophic groundwater inflows can be hazardous to mining and impact use of the groundwater as a water supply. The concentration of total dissolved solid (TDS) ranged from 961 to 3555 mg/l and indicates moderately to highly mineralized water. The main water‐type of the middle Ordovician limestone groundwater is Ca‐Mg‐SO4, with SO42‐ ranging from 537 to 2297 mg/l, and average values of Ca2+ and Mg2+ of 455.7 and 116.6 mg/l, respectively. The water samples were supersaturated with respect to calcite and dolomite and undersaturated or saturated with respect to gypsum. Along the general flow direction, deduced from increases of TDS and Cl, the main water–rock interactions that caused hydrogeochemical evolution of the groundwater within the aquifer were the dissolution of gypsum, the precipitation of calcite, the dissolution or precipitation of dolomite, and ion exchange. Ion exchange is the major cause for the lower mole concentration of Ca2+ than that of SO42‐. The groundwater level of Ordovician aquifer is much higher than that of C‐P coal‐bearing aquifers, so the potential flow direction is upward, and the pyrite in coal is not a possible source of sulfate; additional data on the stable sulfur and oxygen isotopic composition of the sulfate may be helpful to identify its origin. Although ion exchange probably accounts for the higher mole concentration of Na+ than that of Cl, the dissolution of aluminosilicate cannot be ruled out. The data evaluation methods and results of this study could be useful in other areas to understand flow paths in aquifers and to provide information needed to identify the origin of groundwater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Karst terrain (carbonate rocks) covers a vast land of 0.446 million km2 in southwest China. Water yield and carbonate rocks weathering in this region have been receiving increased attention due to a large‐scale forest recovery. Using both hydrological measurements and forest inventories from 1986 to 2007 in the Houzhai karst basin (HKB), we analyzed the responses of water yield and dissolved inorganic carbon (DIC) export to forest recovery in southwest China. With implementation of both the Natural Forest Conservation Program (NFCP) and the Conversion of Farmland to Forests Program (CFFP), the fraction of forest area in HKB was increased from near zero to 18.9% during the study period, but the ratio of total water yield (surface and underground) to precipitation varied very little over the annual period, neither in wet season nor in dry season. By contrast, the concentration of DIC in water, especially in the surface water had a pronounced increase during the study period, with an increase of 0.53 and 0.25 g C m?3 yr?1 for surface water and underground water, respectively. As a result, total annual DIC export at mean annual rainfall significantly increased from the low to high forest area stage. This increase was largely driven by surface water during the wet season, presumably being related to biological activity. It was concluded that forest recovery in HKB had no significant effect on water yield, but resulted in more carbon dioxide (CO2) dissolved in karst water accompanying with carbon uptake by forests. Our results suggested that implementations of both NFCP and CFFP had no shifted water yield regimes in southwest China; instead, they might have alleviated global climate change by increasing carbon uptake through combined biological processes and carbonate rocks weathering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
萍-乐坳陷带为江西省最主要的隐伏岩溶发育区带之一,岩溶地层发育,地表水、地下水循环交替强烈,地质构造复杂,为岩溶的发育、岩溶地下水的富集提供了良好的条件。查明岩溶发育规律及岩溶水的富集特征,可为地下水资源合理开发与地质环境保护提供科学依据。  相似文献   

4.
This paper describes the hydrological changes caused by inter‐basin water transfer and the reservoir development on the hydrological regimes of two rivers. The Sabljaki Reservoir in the Zagorska Mre?nica River and the Bukovik Reservoir in the upper Dobra River began operation in 1959. Both are part of the hydroelectric power plant (HEPP) Gojak, whose installed capacity is 50 m3/s. Their water volumes at the spillway altitudes of 320·10 and 320·15 m a. s. l. are 3·3 × 106 and 0·24 × 106 m3 respectively. Both the Dobra and Mre?nica Rivers are losing, sinking and underground karst rivers. A 9376‐m‐long tunnel provides water from the Sabljaki Reservoir to the HEPP Gojak, which was constructed in the Lower Dobra River. The Sabljaki Reservoir is located in the Pla?ki karst polje, while the Bukovik Reservoir is located in the neighbouring Ogulin karst polje. The consequences of the inter‐basin water transfer are strong and have caused abrupt changes in the hydrological regimes of the downstream sections of both rivers. At the same time, the construction and development of both the reservoirs have also caused hydrological changes to the upstream section of the Upper Dobra River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
To identify the groundwater flow system in the North China Plain, the chemical and stable isotopes of the groundwater and surface water were analysed along the Chaobai River and Yongding River basin. According to the field survey, the study area in the North China Plain was classified hydrogeologically into three parts: mountain, piedmont alluvial fan and lowland areas. The change of electrical conductance and pH values coincided with groundwater flow from mountain to lowland areas. The following groundwater types are recognized: Ca? HCO3 and Ca? Mg? HCO3 in mountain areas, Ca? Mg? HCO3 and Na? K? HCO3 in piedmont alluvial fan areas, and HCO3? Na in lowland areas. The stable isotope distribution of groundwater in the study area also has a good corresponding relation with other chemical characteristics. Stable isotope signatures reveal a major recharge from precipitation and surface water in the mountain areas. Chemical and stable isotope analysis data suggest that mountain and piedmont alluvial fan areas were the major recharge zones and the lowland areas belong to the main discharge zone. Precipitation and surface water were the major sources for groundwater in the North China Plain. Stable isotopic enrichment of groundwater near the dam area in front of the piedmont alluvial fan areas shows that the dam water infiltrated to the ground after evaporation. As a result, from the stable isotope analysis, isotope value of groundwater tends to deplete from sea level (horizontal ground surface) to both top of the mountain and the bottom of the lowland areas in symmetrically. This suggests that groundwater in the study area is controlled by the altitude effect. Shallow groundwater in the study area belongs to the local flow system and deep groundwater part of the regional flow system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Ecosystem in the karst region of southwest China is very fragile due to a very limited amount of water storage for plant uptake in the thin and rocky soils underlain by rock fractures. Plants in these karst regions are thought to take water from the soils and shallow fractured rock zone (subcutaneous zone) as well. However, the role of subcutaneous water in maintaining karst vegetation remains unclear, and proportions of the water sources for plant uptake in different environment conditions are unknown. In this study, five typical species of plants at two sites were selected in a karst plateau of Qingzhen, central Guizhou Province of China. Proportions of the possible water sources contributed for the plant uptake from two soil layers and subcutaneous zone were determined on the basis of δD and δ18O values of plant stem water, soil water and subcutaneous water. The analysis reveals that most plants take water from the soil layers and the subcutaneous zone as well, but proportions of these water contributions for plant uptake vary seasonally and depend on site‐specific conditions and plant species. Plant uptake of the subcutaneous water for all species averages less than 30% of the total monthly amount in June and September, compared with more than 60% in dry December. Plants tend to take a larger proportion of water from the upper soil layer at the bush site than at the forest site in June and September (63 vs 28% in July; 66 vs 54% in September for all species in average). In December, however, 98% of water is taken from the subcutaneous zone at the bush site which is much greater than 68% at the forest site. Compared to deciduous arbor, evergreen shrub takes a greater proportion of subcutaneous water in the December drought. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Most rivers worldwide have a strong interaction with groundwater when they leave the mountains and flow over alluvial plains before flowing into the seas or disappearing in the deserts, and in New Zealand, typically, rivers lose water to the groundwater in the upper plains and generally gain water from the groundwater in the lower plains. Aiming at simulating surface water–groundwater interaction nationally in New Zealand, we developed a conceptual groundwater module for the national hydrologic model TopNet to simulate surface water–groundwater interaction, groundwater flow, and intercatchment groundwater flow. The developed model was applied to the Pareora catchment in South Island of New Zealand, where there are concurrent spot gauged flows. Results show that the model simulations not only fit quite well to flow measurement but also to concurrent spot gauged flows, and compared to the original TopNet, it has a significant improvement in the low flows. Sensitivity analysis shows river flow is sensitive to the river losing/gaining rate instead of groundwater characteristic, while groundwater storage is sensitive to both river losing/gaining rate and groundwater characteristic. This indicates our conceptual approach is promising for nationwide modeling without the large amount of geology and aquifer data typically required by physically‐based modeling approaches.  相似文献   

8.
Interactions of surface water and groundwater (SW–GW) play an important role in the physical, chemical, and ecological processes of riparian zones. The main objective of this study was to describe the two‐dimensional characteristics of riverbank SW–GW interactions and to quantify their influence factors. The SW–GW exchange fluxes for six sections (S1 to S6) of the Qinhuai River, China, were estimated using a heat tracing method, and field hydrogeological and thermodynamic parameters were obtained via inverse modelling. Global sensitivity analysis was performed to compare the effects of layered heterogeneity of hydraulic conductivity and river stage variation on SW–GW exchange. Under the condition of varied river stage, only the lateral exchange fluxes at S1 apparently decreased during the monitoring period, probably resulting from its relatively higher hydraulic conductivity. Meanwhile, the SW–GW exchanges for the other five sections were quite stable over time. The lateral exchange fluxes were higher than the vertical ones. The riverbank groundwater flow showed different spatial variation characteristics for the six sections, but most of the higher exchange fluxes occurred in the lower area of a section. The section with larger hydraulic conductivity has an apparent dynamic response to surface water and groundwater level differences, whereas lower permeabilities severely reduced the response of groundwater flow. The influence of boundary conditions on SW–GW interactions was restricted to a limited extent, and the impact extent will expand with the increase of peak water level and hydraulic conductivity. The SW–GW head difference was the main influence factors in SW–GW interactions, and the influence of both SW–GW head difference and hydraulic conductivity decreased with an increase of the distance from the surface water boundary. For each layer of riverbank sediment, its hydraulic conductivity had greater influence on its groundwater flow than the other layers, whereas it had negligible effects on its overlying/underlying layers. Consequently, the variations in river stage and hydraulic conductivity were the main factors influencing the spatial and temporal characteristics of riverbank groundwater flow, respectively.  相似文献   

9.
Hydrological processes in karst basins are controlled by permeable multimedia, consisting of soil pores, epikarst fractures, and underground conduits. Distributed modelling of hydrological dynamics in such heterogeneous hydrogeological conditions is a challenging task. Basing on the multilayer structure of the distributed hydrology‐soil‐vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow. Specifically, infiltration and saturated flow movement within epikarst fractures are expressed by the ‘cubic law’ equation which is associated with fractural width, direction, and spacing. A small karst basin located in Guizhou province of southwest China was selected for this hydrological simulation. The model parameters were determined on the basis of field measurement and calibrated against the observed soil moisture contents, vegetation interception, surface runoff, and underground flow discharges from the basin outlet. The results show that due to high permeability of the epikarst zone, a significant amount of surface runoff is only generated after heavy rainfall events during the wet season. Rock exposure and the epikarst zone significantly increase flood discharge and decrease evapotranspiration (ET) loss; the peak flood discharge is directly proportional to the size of the aperture. Distribution of soil moisture content (SMC) primarily depends on topographic variations just after a heavy rainfall, while SMC and actual ET are dominated by land cover after a period of consecutive non‐rainfall days. The new model was able to capture the sharp increase and decrease of the underground streamflow hydrograph, and as such can be used to investigate hydrological effects in such rock features and land covers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
为了探明达里诺尔湖流域地表水与地下水的氢(H)、氧(O)同位素的变化特征及相互补给关系,于2013年对达里诺尔湖及其周围的河水、井水、泉水中H、O同位素进行了取样分析,并结合总溶解性固体悬浮物(TDS)和区域水文地质对达里诺尔湖流域的补给关系进行讨论分析.结果表明:1)河水、泉水、井水中H、O同位素的值基本落在全球雨水线上,湖水H、O同位素落在全球雨水线的右下方,说明河水、井水、泉水没有发生蒸发分馏,而湖水则发生较大程度的蒸发分馏;对达里诺尔湖流域地表水与地下水的H、O同位素进行回归模拟,得出该区域的蒸发趋势线方程:δD=4.8753δ18O-20.139(n=32,R2=0.9968).蒸发线表明,这些水样具有相同水源的特征.2)从实地考察发现,泉水补给河水,泉水和河水补给湖水,同时井水、泉水和河水有相似的δD、δ18O和TDS值,且不随季节变化而变化,推断达里诺尔湖附近地下水补给湖水;区域水文地质条件亦证明达里诺尔湖周边地下水补给湖水.  相似文献   

11.
Transient storage of floodwaters in aquifers is known to attenuate peak flows in rivers and drive subsurface dissolution. Transient aquifer storage could be enhanced in watersheds overlying karst aquifers where caves facilitate surface and groundwater exchange. Few studies, however, have examined controls on, or magnitudes of, transient aquifer storage or flood peak attenuation in karstic watersheds. Here we evaluate flood peak attenuation with multiple linear regression analyses of 10 years of river and groundwater data from the Suwannee River, which flows over the karstic upper Floridan aquifer in north-central Florida and experiences frequent flooding. Regressions show antecedent river stage exerts the dominant control on magnitudes of transient aquifer storage, with recharge and time to peak having secondary controls. Specifically, low antecedent stages result in larger magnitudes of transient aquifer storage and thus greater flood attenuation than conditions of elevated antecedent stage. These findings suggest subsurface weathering, including cave formation and enlargement, caused by transient aquifer storage could occur on a more frequent basis in aquifers where groundwater table elevation is lowered due to anthropogenic or climatic influences. Our work also shows that measures of groundwater table elevation prior to an event could be used to improve predictive flood models. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
A myriad of downstream communities and industries rely on streams fed by both groundwater discharge and glacier meltwater draining the Cordillera Blanca, Northern Peruvian Andes, which contains the highest density of glaciers in the tropics. During the dry season, approximately half the discharge in the region's proglacial streams comes from groundwater. However, because of the remote and difficult access to the region, there are few field methods that are effective at the reach scale to identify the spatial distribution of groundwater discharge. An energy balance model, Rhodamine WT dye tracing, and high‐definition kite‐borne imagery were used to determine gross and net groundwater inputs to a 4‐km reach of the Quilcay River in Huascaran National Park, Peru. The HFLUX computer programme ( http://hydrology.syr.edu/hflux.html ) was used to simulate the Quilcay River's energy balance using stream temperature observations, meteorological measurements, and kite‐borne areal photography. Inference from the model indicates 29% of stream discharge at the reach outlet was contributed by groundwater discharge over the study section. Rhodamine WT dye tracing results, coupled with the energy balance, show that approximately 49% of stream water is exchanged (no net gain) with the subsurface as gross gains and losses. The results suggest that gross gains from groundwater are largest in a moraine subreach but because of large gross losses, net gains are larger in the meadow subreaches. These insights into pathways of groundwater–surface water interaction can be applied to improve hydrological modelling in proglacial catchments throughout South America. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
We used hydrochemistry and environmental isotope data (δ18O, δD, tritium, and 14C) to investigate the characteristics of river water, groundwater, and groundwater recharge in China's Heihe River basin. The river water and groundwater could be characterized as Ca2+? Mg2+? HCO3?? SO42? and Na+? Mg2+? SO42?? Cl? types, respectively. Hydrogeochemical modelling using PHREEQC software revealed that the main hydrogeochemical processes are dissolution (except for gypsum and anhydrite) along groundwater flow paths from the upper to middle Heihe reaches. Towards the lower reaches, dolomite and calcite tend to precipitate. The isotopic data for most of the river water and groundwater lie on the global meteoric water line (GMWL) or between the GMWL and the meteoric water line in northwestern China, indicating weak evaporation. No direct relationship existed between recharge and discharge of groundwater in the middle and lower reaches based on the isotope ratios, d‐excess, and 14C values. On the basis of tritium in precipitation and by adopting an exponential piston‐flow model, we evaluated the mean residence time of shallow groundwater with high tritium activities, which was around 50 years (a). Furthermore, based on the several popular models, it is calculated that the deep groundwaters in piedmont alluvial fan zone of the middle reaches and in southern part of the lower reaches are modern water, whereas the deep groundwaters in the edge of the middle reaches and around Juyan Lake in the lower reaches of Heihe river basin are old water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
旅游酒店排污影响下的岩溶地下水水化学变化   总被引:1,自引:1,他引:1  
岩溶地下水系统具有高度的开放性和脆弱性,使得地下水极易遭受污染.为探究旅游酒店排污对岩溶地下水水化学变化的影响,以金佛山世界自然遗产地水房泉流域为例,对水房泉地下水的水化学进行自动化监测,对流域内雨水、土壤水、某酒店自来水、污废水进行定期采集,结合流域硝酸盐氮氧同位素分析.结果表明,监测期间水房泉水化学变化随酒店入住游客量总体表现为3个阶段:前期受降雨影响显著,旅游高峰期间水质急剧恶化,后期水质明显好转.酒店生活污废水的排放成为水房泉水化学演变的重要因素,硝酸盐氮氧同位素表明水房泉的NO3-主要来自粪便、污废水以及土壤N的混合.H2SO4及污水中HCl、有机酸等可能参与了碳酸盐岩的溶蚀,使水房泉Ca2+、Mg2+、HCO3-浓度增加明显.流域岩溶管道发育,地下水流速快,使污染物质扩散迅速,故在研究期间水房泉主要离子的浓度高峰对污废水排放高峰的响应仅滞后约4 d.  相似文献   

15.
The contradiction between the freshwater shortage and the large demand of freshwater by irrigation was the key point in cultivated lowland area of North China Plain. Water transfer project brings fresh water from water resource‐rich area to water shortage area, which can in turn change the hydrological cycle in this region. Major ions and stable isotopes were used to study the temporal variations of interaction between surface water and groundwater in a hydrological year after a water transfer event in November 2014. Irrigation canal received transferred Yellow River, with 2.9% loss by evaporation during water transfer process. The effect of transferred water on shallow groundwater decreased with increasing distance from the irrigation canal. Pit pond without water transfer receives groundwater discharge. During dry season after water transfer event, shallow groundwater near the irrigation canal was recharged by lateral seepage and deep percolation of irrigation, whereas shallow groundwater far from irrigation canal was recharged by deep percolation of deep groundwater irrigation. Canal water lost by evaporation was 2.7–17.4%. Influence of water transfer gradually disappeared until March as the water usage of agricultural irrigation increased. In the dry season, groundwater discharged to irrigation canal and pond; 2.2–31.6% canal water and 11.3–20.0% pond water were lost by evaporation. In the rainy season (June to September), surface water was fed mainly by precipitation and surface run‐off, whereas groundwater was recharged by infiltration of precipitation. The two‐end member mix model showed that the mixing ratio of precipitation in pond and irrigation canal were 73–83.4% (except one pond with 28.1%) and 77.3–99.9%, respectively. Transferred water and precipitation were the important recharge sources for shallow groundwater, which decreased groundwater salinity in cultivated lowland area of North China Plain. With the temporary and spatial limitation of water transfer effects, increased water transfer amounts and frequency may be an effective way of mitigating regional water shortage. In addition, reducing the evaporation of surface water is also an important way to increase the utilization of transfer water.  相似文献   

16.
Plant water use plays a crucial part in the soil–plant-atmosphere continuum. However, in karst regions, plants frequently suffer from water shortages due to low soil water storage capacity. Therefore, it is necessary to understand plant water consumption (as determined by sap flow) and seasonal variation of water sources to improve water management in karst catchments. In this study, thermal dissipation probes (TDP), calibrated using empirical equations, were used to measure the sap flow of three typical woody vegetations, including Coriaria nepalensis (sparse-shrub), Toona sinensis (secondary forest) and Populus adenopoda (shrub-grass). Oxygen and hydrogen stable isotopes were used to analyze seasonal variation of plant water sources. The results showed that: (1) T. Sinensis (3.89 ± 3.87 L·day−1) had significantly higher daily sap flow than C. nepalensis (0.33 ± 0.37 L·day−1) and P. adenopoda (0.09 ± 0.12 L·day−1); (2) daily sap flow was closely correlated to photosynthetically active radiation (PAR) and vapour pressure deficit (VPD); (3) over the entire study period, plants mainly used water from the surface soil horizons; and (4) a greater proportion of epikarst water was used for C. nepalensis than by T. sinensis and P. adenopoda over the whole growth stage, and more epikarst water was used in early and mid-growth stages compared to the late stage for the three species. This study contributes to a deeper understanding of the plant water use strategies in karst regions, and is helpful for ecosystem management.  相似文献   

17.
Karst landscapes underlain with phosphatic limestones are now recognized to be an important contributor of fluvial phosphorus (P) to coastal waters. Specifically, karst agroecosystems may be a hotspot for dissolved reactive P (DRP) due to chronic over-application of organic and inorganic fertilizers that create legacy P accumulation in surface soils. Nevertheless, few studies have assessed the hydrologic controls on DRP transport in these systems at the watershed scale, which is the focus of this study. We analysed soil moisture, soil water extractable P, and storm event hydrologic and water quality data from a small heterogenous karst watershed (10.7 km2) in the Inner-Bluegrass Region of Central Kentucky, USA. Four storm events were sampled in winter, 2020 and were analysed for flow pathways using hydrograph recession analysis and water source connectivity using a tracer-based unmixing model. Based on hydrograph separation results, multiple linear regression analysis was performed to assess drivers of DRP concentrations and loadings. Soil water extractable P results showed stark vertical gradients with greater concentrations at both the surface and deeper soil zones, and minimum concentrations in the root zone. Results for the storm event analysis showed that water source connectivity provided superior prediction of DRP concentrations over the flow pathway analysis, which reflected the heterogeneity of karst maturity masking intermediate flow pathways. Findings from the MLR and loading analysis suggest waters sourced from the soil/epikarst produced significantly higher loadings compared with phreatic and precipitation water source in the three largest events, although concentrations fell between the phreatic (low) and precipitation (high) sources. Findings highlight variable activation of matrix-macropore exchange at different depths throughout the event. Collectively these results suggest existing models and approaches to assess karst hydrology need revision to improve management strategies in this critical landscape.  相似文献   

18.
The surface water and groundwater are important components of water cycle, and the interaction between surface water and groundwater is the important part in water cycle research. As the effective tracers in water cycle research, environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively. The study area is the Huaisha River basin, which is located in Huairou district, Beijing. The field surveying and sampling for spring, river and well water were finished in 2002 and 2003. The hydrogen and oxygen isotopes and water quality were measured at the laboratory. The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed. The altitude effect of oxygen isotope in springs was revealed, and then using this equation, theory foundation for deducing recharge source of spring was estimated. By applying the mass balance method, the annual mean groundwater recharge rate at the catchment was estimated. Based on the groundwater recharge analysis, combining the hydrogeological condition analysis, and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin, part of the runoff in the Huaisha River basin is recharged outside of this basin, in other words, this basin is an un-enclosed basin. On the basis of synthetically analyses, combining the compositions of hydrogen and oxygen isotopes and hydrochemistry, geomorphology, geology, and watershed systems characteristics, the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated, and the interaction between surface water and groundwater was re- vealed lastly.  相似文献   

19.
Spatial and temporal variability in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream was investigated. Four locations in a 150‐m reach of the stream were studied using hydrometric and hydrochemical tracing techniques. A high degree of hydrological connectivity between the riparian hillslope and the stream channel was indicated at two locations, where hydrochemical changes and hydraulic gradients indicated that the hyporheic zone was dominated by upwelling ground water. The chemistry of ground water reflected relatively long residence times and reducing conditions with high levels of alkalinity and conductivity, low dissolved oxygen (DO) and nitrate. At the other locations, connectivity was less evident and, at most times, the hyporheic zone was dominated by downwelling stream water characterized by high DO, low alkalinity and conductivity. Substantial variability in hyporheic chemistry was evident at fine (<10 m) spatial scales and changed rapidly over the course of hydrological events. The nature of the hydrochemical response varied among locations depending on the strength of local ground water influence. It is suggested that greater emphasis on spatial and temporal heterogeneity in ground water–surface water interactions in the hyporheic zone is necessary for a consideration of hydrochemical effects on many aspects of stream ecology. For example, the survival of salmonid eggs in hyporheic gravels varied considerably among the locations studied and was shown to be associated with variation in interstitial chemistry. River restoration schemes and watershed management strategies based only on the surface expression of catchment characteristics risk excluding consideration of potentially critical subsurface processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The Salar de Atacama is located in the most arid desert in the world. Despite its extreme conditions, it has many ecosystems of high ecological value. The Soncor ecosystem, a sequence of lagoons, is the most important environment of the region as it acts as the centre for the breeding of the Andean Flamingo. This salt flat also contains significant mining deposits and is an important water source for the region. Freshwater and brine—enriched in lithium and potassium—are being pumped from the aquifers near to the Soncor ecosystem, which has so far not been greatly affected by this groundwater extraction. However, there is a potential risk that future anthropogenic effects may disturb this fragile environment. The objective of this study is to determine the origin of the water sources of the Soncor ecosystem so as to adequately manage its water resources. Three hypotheses previously proposed in the technical literature were investigated in order to determine proactive actions to protect this fragile ecosystem. The study utilized classic hydrogeological techniques, such as the construction of stratigraphic profiles, piezometric maps and stream gauging, combined with less-common isotopic techniques, such as the 87Sr/86Sr ratio. The results confirmed the hypothesis that the origins of the water sources are associated with groundwater inputs coming from the east side of the salt flat, in the north of the basin.

Editor Z.W. Kundzewicz; Associate editor M. Acreman

Citation Ortiz, C., Aravena, R., Briones, E., Suárez, F., Tore, C., and Muñoz, J.F., 2014. Sources of surface water for the Soncor ecosystem, Salar de Atacama basin, northern Chile. Hydrological Sciences Journal, 59 (2), 336–350.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号