首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Information on regional snow water equivalent (SWE) is required for the management of water generated from snowmelt. Modeling of SWE in the mountainous regions of eastern Turkey, one of the major headwaters of Euphrates–Tigris basin, has significant importance in forecasting snowmelt discharge, especially for optimum water usage. An assimilation process to produce daily SWE maps is developed based on Helsinki University of Technology (HUT) model and AMSR‐E passive microwave data. The characteristics of the HUT emission model are analyzed in depth and discussed with respect to the extinction coefficient function. A new extinction coefficient function for the HUT model is proposed to suit models for snow over mountainous areas. Performance of the modified model is checked against the original, other modified cases and ground truth data covering the 2003–2007 winter periods. A new approach to calculate grain size and density is integrated inside the developed data assimilation process. An extensive validation was successfully performed by means of snow data measured at ground stations during the 2008–2010 winter periods. The root mean square error of the data set for snow depth and SWE between January and March of the 2008–2010 periods compared with the respective AMSR‐E footprints indicated that errors for estimated snow depth and predicted SWE values were 16.92 cm and 40.91 mm, respectively, for the 3‐year period. Validation results were less satisfactory for SWE less than 75.0 mm and greater than 150.0 mm. An underestimation for SWE greater than 150 mm could not be resolved owing to the microwave signal saturation that is observed for dense snowpack. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Snow water equivalent (SWE) is an important indicator used in hydrology, water resources, and climate change impact. There are various methods of estimating SWE (falling in 3 categories: indirect sensors, empirical models, and process‐based models), but few studies that provide comparison across these different categories to help users make decisions on monitoring site design or method selection. Five SWE estimation methods were compared against manual snow course data collected over 2 years (2015–2016) from the Dorset Environmental Science Centre, including the gamma‐radiation‐based CS725 sensor, 3 empirical estimation models (Sexstone snow density model, McCreight & Small snow density model, and a meteorology‐based model), and the University of British Columbia Watershed Model snow energy‐balance model. Snow depth, density, and SWE were measured at the Dorset Environmental Science Centre weather station in south‐central Ontario, on a daily basis over 6 winters from 2011 to 2016. The 2 snow density‐based models, requiring daily snow depth as input, gave the best performance (R2 of .92 and .92 for McCreight & Small and Sexstone models, respectively). The CS725 sensor that receives radiation coming from soil penetrating the snowpack provided the same performance (R2 = .92), proving that the sensor is an applicable method, although it is expensive. The meteorology‐based empirical model, requiring daily climate data including temperature, precipitation and solar radiation, gave the poorest performance (R2 = .77). The energy‐balance‐based University of British Columbia Watershed Model snow module, only requiring climate data, worked better than the empirical meteorology‐based model (R2 = .9) but performed worse than the density models or CS725 sensor. Given differences in application objectives, site conditions, and budget, this comparison across SWE estimation methods may help users choose a suitable method. For ongoing and new monitoring sites, installation of a CS725 sensor coupled with intermittent manual snow course measurements (e.g., weekly) is recommended for further SWE method estimation testing and development of a snow density model.  相似文献   

3.
Snowmelt is an important component of the river discharge in mountain environments. In the past 40 years, the snowmelt dynamics has been mostly evaluated using degree‐day‐based models like the snowmelt runoff model (SRM). This model has no control on the volume of the melting snow, even if SRM includes as data input the snow‐covered area. This lack explains why the application of SRM may lead to inaccurate snowmelt volume estimations, even if the discharge volumes are accurately reproduced. Here we introduce in SRM the control on the melted snow volume and consider it in the determination of SRM parameters. The total snow volume, accumulated at the end of winter season, is evaluated by a snow water equivalent statistically based model, SWE‐SEM, and used as an estimate of the melting snow during the summer season. The benefit derived from the introduction of the control on the melting snow volume was investigated in the Mallero basin (northern Italy) for the 2003 and 2004 snow melting seasons. The analysis compares the model's results adopting different parameter sets, both considering and ignoring the control on the melting snow volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The spatial distribution of snow water equivalent (SWE) is a key variable in many regional‐scale land surface models. Currently, the assimilation of point‐scale snow sensor data into these models is commonly performed without consideration of the spatial representativeness of the point data with respect to the model grid‐scale SWE. To improve the understanding of the relationship between point‐scale snow measurements and surrounding areas, we characterized the spatial distribution of snow depth and SWE within 1‐, 4‐ and 16‐km2 grids surrounding 15 snow stations (snowpack telemetry and California snow sensors) in California, Colorado, Wyoming, Idaho and Oregon during the 2008 and 2009 snow seasons. More than 30 000 field observations of snowpack properties were used with binary regression tree models to relate SWE at the sensor site to the surrounding area SWE to evaluate the sensor representativeness of larger‐scale conditions. Unlike previous research, we did not find consistent high biases in snow sensor depth values as biases over all sites ranged from 74% overestimates to 77% underestimates. Of the 53 assessments, 27 surveys indicated snow station biases of less than 10% of the surrounding mean observed snow depth. Depth biases were largely dictated by the physiographic relationship between the snow sensor locations and the mean characteristics of the surrounding grid, in particular, elevation, solar radiation index and vegetation density. These scaling relationships may improve snow sensor data assimilation; an example application is illustrated for the National Operational Hydrologic Remote Sensing Center National Snow Analysis SWE product. The snow sensor bias information indicated that the assimilation of point data into the National Operational Hydrologic Remote Sensing Center model was often unnecessary and reduced model accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The temporal and spatial continuity of spatially distributed estimates of snow‐covered area (SCA) are limited by the availability of cloud‐free satellite imagery; this also affects spatial estimates of snow water equivalent (SWE), as SCA can be used to define the extent of snow telemetry (SNOTEL) point SWE interpolation. In order to extend the continuity of these estimates in time and space to areas beneath the cloud cover, gridded temperature data were used to define the spatial domain of SWE interpolation in the Salt–Verde watershed of Arizona. Gridded positive accumulated degree‐days (ADD) and binary SCA (derived from the Advanced Very High Resolution Radiometer (AVHRR)) were used to define a threshold ADD to define the area of snow cover. The optimized threshold ADD increased during snow accumulation periods, reaching a peak at maximum snow extent. The threshold then decreased dramatically during the first time period after peak snow extent owing to the low amount of energy required to melt the thin snow cover at lower elevations. The area having snow cover at this later time was then used to define the area for which SWE interpolation was done. The area simulated to have snow was compared with observed SCA from AVHRR to assess the simulated snow map accuracy. During periods without precipitation, the average commission and omission errors of the optimal technique were 7% and 11% respectively, with a map accuracy of 82%. Average map accuracy decreased to 75% during storm periods, with commission and omission errors equal to 11% and 12% respectively. The analysis shows that temperature data can be used to help estimate the snow extent beneath clouds and therefore improve the spatial and temporal continuity of SCA and SWE products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Accuracy of the Copernicus snow water equivalent (SWE) product and the impact of SWE calibration and assimilation on modelled SWE and streamflow was evaluated. Daily snowpack measurements were made at 12 locations from 2016 to 2019 across a 4104 km2 mixed-forest basin in the Great Lakes region of central Ontario, Canada. Sub-basin daily SWE calculated from these sites, observed discharge, and lake levels were used to calibrate a hydrologic model developed using the Raven modelling framework. Copernicus SWE was bias corrected during the melt period using mean bias subtraction and was compared to daily basin average SWE calculated from the measured data. Bias corrected Copernicus SWE was assimilated into the models using a range of parameters and the parameterizations from the model calibration. The bias corrected Copernicus product agreed well with measured data and provided a good estimate of mean basin SWE demonstrating that the product shows promise for hydrology applications within the study region. Calibration to spatially distributed SWE substantially improved the basin scale SWE estimate while only slightly degrading the flow simulation demonstrating the value of including SWE in a multi-objective calibration formulation. The particle filter experiments yielded the best SWE estimation but moderately degraded the flow simulation. The particle filter experiments constrained by the calibrated snow parameters produced similar results to the experiments using the upper and lower bounds indicating that, in this study, model calibration prior to assimilation was not valuable. The calibrated models exhibited varying levels of skill in estimating SWE but demonstrated similar streamflow performance. This indicates that basin outlet streamflow can be accurately estimated using a model with a poor representation of distributed SWE. This may be sufficient for applications where estimating flow is the primary water management objective. However, in applications where understanding the physical processes of snow accumulation, melt and streamflow generation are important, such as assessing the impact of climate change on water resources, accurate representations of SWE are required and can be improved via multi-objective calibration or data assimilation, as demonstrated in this study.  相似文献   

7.
The intensity of cosmic ray neutrons is inversely correlated with the amount of water present in the surrounding environment. This effect is already employed by around 50 neutron sensors in the COSMOS-UK network to provide daily estimates of soil moisture across the UK. Here, these same sensors are used to automatically provide estimates of snow water equivalent (SWE). Lying snow is typically ephemeral and of shallow depth for most parts of the UK. Moreover, soil moisture is usually high and variable, which acts to increase uncertainties in the SWE estimate. Nevertheless, even under such challenging conditions, both above ground and buried cosmic ray neutron sensors are still able to produce potentially useful SWE estimates. Triple collocation analysis suggests typical uncertainties of less than around 4 mm under UK snow conditions.  相似文献   

8.
This study demonstrates the potential value of a combined unmanned aerial vehicle (UAV) Photogrammetry and ground penetrating radar (GPR) approach to map snow water equivalent (SWE) over large scales. SWE estimation requires two different physical parameters (snow depth and density), which are currently difficult to measure with the spatial and temporal resolution desired for basin-wide studies. UAV photogrammetry can provide very high-resolution spatially continuous snow depths (SD) at the basin scale, but does not measure snow densities. GPR allows nondestructive quantitative snow investigation if the radar velocity is known. Using photogrammetric snow depths and GPR two-way travel times (TWT) of reflections at the snow-ground interface, radar velocities in snowpack can be determined. Snow density (RSN) is then estimated from the radar propagation velocity (which is related to electrical permittivity of snow) via empirical formulas. A Phantom-4 Pro UAV and a MALA GX450 HDR model GPR mounted on a ski mobile were used to determine snow parameters. A snow-free digital surface model (DSM) was obtained from the photogrammetric survey conducted in September 2017. Then, another survey in synchronization with a GPR survey was conducted in February 2019 whilst the snowpack was approximately at its maximum thickness. Spatially continuous snow depths were calculated by subtracting the snow-free DSM from the snow-covered DSM. Radar velocities in the snowpack along GPR survey lines were computed by using UAV-based snow depths and GPR reflections to obtain snow densities and SWEs. The root mean square error of the obtained SWEs (384 mm average) is 63 mm, indicating good agreement with independent SWE observations and the error lies within acceptable uncertainty limits.  相似文献   

9.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   

10.
11.
The US Army ERDC CRREL and the US Department of Agriculture Natural Resources Conservation Service developed a square electronic snow water equivalent (e‐SWE) sensor as an alternative to using fluid‐filled snow pillows to measure SWE. The sensors consist of a centre panel to measure SWE and eight outer panels to buffer edge stress concentrations. Seven 3 m square e‐SWE sensors were installed in five different climate zones. During the 2011–2012 winter, 1.8 and 1.2 m square e‐SWE sensors were installed and operated in Oregon. With the exception of New York State and Newfoundland, the e‐SWE sensors accurately measured SWE, with R2 values between the sensor and manual SWE measurements of between 0.86 and 0.98. The e‐SWE sensor at Hogg Pass, Oregon, accurately measured SWE during the past 8 years of operations. In the thin, icy snow of New York during midwinter 2008–2009, the e‐SWE sensors overmeasured SWE because of edge stress concentrations associated with strong icy layers and a shallow snow cover. The New York e‐SWE sensors' measurement accuracy improved in spring 2009 and further improved during the 2011–2012 winter with operating experience. At Santiam Junction, measured SWE from the 1.8 and 1.2 m square e‐SWE sensors agreed well with the snow pillow, 3 m square e‐SWE sensor, and manual SWE measurements until February 2013, when dust and gravel blew onto the testing area resulting in anomalous measurements. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

12.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A 10‐km gridded snow water equivalent (SWE) dataset is developed over the Saint‐Maurice River basin region in southern Québec from kriging of observed snow survey data for evaluation of SWE products. The gridded SWE dataset covers 1980–2014 and is based on manual gravimetric snow surveys carried out on February 1, March 1, March 15, April 1, and April 15 of each snow season, which captures the annual maximum SWE (SWEM) with a mean interpolation error of ±19%. The dataset is used to evaluate SWEM from a range of sources including satellite retrievals, reanalyses, Canadian regional climate models, and the Canadian Meteorological Centre operational snow depth analysis. We also evaluate a number of solid precipitation datasets to determine their contribution to systematic errors in estimated SWEM. None of the evaluated datasets is able to provide estimates of SWEM that are within operational requirements of ±15% error, and insufficient solid precipitation is determined to be one of the main reasons. The Climate System Forecast Reanalysis is the only dataset where snowfall is sufficiently large to generate SWEM values comparable to observations. Inconsistencies in precipitation are also found to have a strong impact on year‐to‐year variability in SWEM dataset performance and spread. Version 3.6.1 of the Canadian Land Surface Scheme land surface scheme driven with ERA‐Interim output downscaled by Version 5.0.1 of the Canadian Regional Climate Model was the best physically based model at explaining the observed spatial and temporal variability in SWEM (root‐mean‐square error [RMSE] = 33%) and has potential for lower error with adjusted precipitation. Operational snow products relying on the real‐time snow depth observing network performed poorly due to a lack of real‐time data and the strong local scale variability of point snow depth observations. The results underscore the need for more effort to be invested in improving solid precipitation estimates for use in snow hydrology applications.  相似文献   

14.
Multivariate statistical analysis was used to explore relationships between catchment topography and spatial variability in snow accumulation and melt processes in a small headwater catchment in the Spanish Pyrenees. Manual surveys of snow depth and density provided information on the spatial distribution of snow water equivalent (SWE) and its depletion over the course of the 1997 and 1998 melt seasons. A number of indices expressing the topographic control on snow processes were extracted from a detailed digital elevation model of the catchment. Bivariate screening was used to assess the relative importance of these topographic indices in controlling snow accumulation at the start of the melt season, average melt rates and the timing of snow disappearance. This suggested that topographic controls on the redistribution of snow by wind are the most important influence on snow distribution at the start of the melt season. Furthermore, it appeared that spatial patterns of snow disappearance were largely determined by the distribution of snow water equivalent (SWE) at the start of the melt season, rather than by spatial variability in melt rates during the melt season. Binary regression tree models relating snow depth and disappearance date to terrain indices were then constructed. These explained 70–80% of the variance in the observed data. As well as providing insights into the influence of topography on snow processes, it is suggested that the techniques presented herein could be used in the parameterization of distributed snowmelt models, or in the design of efficient stratified snow surveys. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
In the Northern Great Plains, melting snow is a primary driver of spring flooding, but limited knowledge of the magnitude and spatial distribution of snow water equivalent (SWE) hampers flood forecasting. Passive microwave remote sensing has the potential to enhance operational river flow forecasting but is not routinely incorporated in operational flood forecasting. We compare satellite passive microwave estimates from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) to the National Oceanic and Atmospheric Administration Office of Water Prediction (OWP) airborne gamma radiation snow survey and U.S. Army Corps of Engineers (USACE) ground snow survey SWE estimates in the Northern Great Plains from 2002 to 2011. AMSR‐E SWE estimates compare favourably with USACE SWE measurements in the low relief, low vegetation study area (mean difference = ?3.8 mm, root mean squared difference [RMSD] = 34.7 mm), but less so with OWP airborne gamma SWE estimates (mean difference = ?9.5 mm, RMSD = 42.7 mm). An error simulation suggests that up to half of the error in the former comparison is potentially due to subpixel scale SWE variability, limiting the maximum achievable RMSD between ground and satellite SWE to approximately 26–33 mm in the Northern Great Plains. The OWP gamma versus AMSR‐E SWE comparison yields larger error than the point‐scale USACE versus AMSR‐E comparison, despite a larger measurement footprint (5–7 km2 vs. a few square centimetres, respectively), suggesting that there are unshared errors between the USACE and OWP gamma SWE data.  相似文献   

16.
In this study, the spatial and temporal variabilities of terrestrial water storage anomaly (TWSA) and snow water equivalent anomaly (SWEA) information obtained from the Gravity Recovery and Climate Experiment (GRACE) twin satellites data were analysed in conjunction with multisource snow products over several basins in the Canadian landmass. Snow water equivalent (SWE) data were extracted from three different sources: Global Snow Monitoring for Climate Research version 2 (GlobSnow2), Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), and Canadian Meteorological Centre (CMC). The objective of the study was to understand whether SWE variations have a significant contribution to terrestrial water storage anomalies in the Canadian landmass. The period was considered from December 2002 to March 2011. Significant relationships were observed between TWSA and SWEA for most of the 15 basins considered (53% to 80% of the basins, depending on the SWE products considered). The best results were obtained with the CMC SWE products compared with satellite-based SWE data. Stronger relationships were found in snow-dominated basins (Rs > = 0.7), such as the Liard [root mean square error (RMSE) = 21.4 mm] and Peace Basins (RMSE = 26.76 mm). However, despite high snow accumulation in the north of Quebec, GRACE showed weak or insignificant correlations with SWEA, regardless of the data sources. The same behaviour was observed in the Western Hudson Bay basin. In both regions, it was found that the contribution of non-SWE compartments including wetland, surface water, as well as soil water storages has a significant impact on the variations of total storage. These components were estimated using the Water-Global Assessment and Prognosis Global Hydrology Model (WGHM) simulations and then subtracted from GRACE observations. The GRACE-derived SWEA correlation results showed improved relationships with three SWEA products. The improvement is particularly important in the sub-basins of the Hudson Bay, where very weak and insignificant results were previously found with GRACE TWSA data. GRACE-derived SWEA showed a significant relationship with CMC data in 93% of the basins (13% more than GRACE TWSA). Overall, the results indicated the important role of SWE on terrestrial water storage variations.  相似文献   

17.
A spatially distributed snow model procedure for estimating snow melt, snow water equivalent and snow cover area is formulated and tested with data from the American River basin in California’s Sierra Nevada. An adaptation of the operational National Weather Service snow accumulation and ablation model is used for each model grid cell forced by spatially distributed precipitation and temperature data. The model was implemented with 6-hourly time steps on 1 km2 grid cells for the snow season of 1999–2003. Temperature is spatially interpolated using the prevailing lapse rate and digital terrain elevation data. Precipitation is spatially interpolated using regional climatological analyses obtained from PRISM. Parameters that control snow melt are distributed using ground surface aspect. The model simulations are compared with data from 12 snow-sensors located in the basin and the daily 500-m snow cover extent product from the MODIS/Terra satellite mission. The results show that the distribution of snow pack over the area is generally captured. The snow pack quantity compared to snow gauges is well estimated in high elevations with increasing uncertainty in the snow pack at lower elevations. Sensitivity and uncertainty analyses indicate that the significant input uncertainty for precipitation and temperature is primarily responsible for model errors in lower elevations and near the snow line. The model is suitable for producing spatially resolved realistic snow pack simulations when forced with operationally available observed or predicted data.  相似文献   

18.
Snow is important for water management, and an important component of the terrestrial biosphere and climate system. In this study, the snow models included in the Biome‐BGC and Terrestrial Observation and Prediction System (TOPS) terrestrial biosphere models are compared against ground and satellite observations over the Columbia River Basin in the US and Canada and the impacts of differences in snow models on simulated terrestrial ecosystem processes are analysed. First, a point‐based comparison of ground observations against model and satellite estimates of snow dynamics are conducted. Next, model and satellite snow estimates for the entire Columbia River Basin are compared. Then, using two different TOPS simulations, the default TOPS model (TOPS with TOPS snow model) and the TOPS model with the Biome‐BGC snow model, the impacts of snow model selection on runoff and gross primary production (GPP) are investigated. TOPS snow model predictions were consistent with ground and satellite estimates of seasonal and interannual variations in snow cover, snow water equivalent, and snow season length; however, in the Biome‐BGC snow model, the snow pack melted too early, leading to extensive underpredictions of snow season length and snow covered area. These biases led to earlier simulated peak runoff and reductions in summer GPP, underscoring the need for accurate snow models within terrestrial ecosystem models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Kyuhyun Byun  Minha Choi 《水文研究》2014,28(7):3173-3184
Accurate estimation of snow water equivalent (SWE) has been significantly recognized to improve management and analyses of water resource in specific regions. Although several studies have focused on developing SWE values based on remotely sensed brightness temperatures obtained by microwave sensor systems, it is known that there are still a number of uncertainties in SWE values retrieved from microwave radiometers. Therefore, further research for improving remotely sensed SWE values including global validation should be conducted in unexplored regions such as Northeast Asia. In this regard, we evaluated SWE through comparison of values produced by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR‐E) from December 2002 to February 2011 with in situ SWE values converted from snow‐depth observation data from four regions in the South Korea. The results from three areas showed similarities which indicated that the AMSR‐E SWE values were overestimated when compared with in situ SWE values, and their Mean Absolute Errors (MAE) by month were relatively small (1.1 to 6.5 mm). Contrariwise, the AMSR‐E SWE values of one area were significantly underestimated when compared with in situ SWE values and the MAE were much greater (4.9 to 35.2 mm). These results were closely related to AMSR‐E algorithm‐related error sources, which we analyzed with respect to topographic characteristics and snow properties. In particular, we found that snow density data used in the AMSR‐E SWE algorithm should be based on reliable in situ data as the current AMSR‐E SWE algorithm cannot reflect the spatio‐temporal variability of snow density values. Additionally, we derived better results considering saturation effect of AMSR‐E SWE. Despite the demise of AMSR‐E, this study's analysis is significant for providing a baseline for the new sensor and suggests parameters important for obtaining more reliable SWE. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
T. Jonas  C. Marty  J. Magnusson   《Journal of Hydrology》2009,378(1-2):161-167
The snow water equivalent (SWE) characterizes the hydrological significance of snow cover. However, measuring SWE is time-consuming, thus alternative methods of determining SWE may be useful. SWE can be calculated from snow depth if the bulk snow density is known. Thus, a reliable estimation method of snow densities could (a) potentially save a lot of effort by, at least partly, sampling snow depth instead of SWE, and would (b) allow snow hydrological evaluations, when only snow depth data are available. To generate a useful parameterization of the bulk density a large dataset was analyzed covering snow densities and depths measured biweekly over five decades at 37 sites throughout the Swiss Alps. Four factors were identified to affect the bulk snow density: season, snow depth, site altitude, and site location. These factors constitute a convenient set of input variables for a snow density model developed in this study. The accuracy of estimating SWE using our model is shown to be equivalent to the variability of repeated SWE measurements at one site. The technique may therefore allow a more efficient but indirect sampling of the SWE without necessarily affecting the data quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号