首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Scattering of plane harmonic SH, P, SV and Rayleigh waves by several inclusions of arbitrary shape, completely embedded into an elastic half-space, is considered. Perfect bonding between the half-space and the inclusions is assumed. The problem is investigated for linear, isotropic and homogeneous elastic materials. The displacement field is evaluated throughout the elastic medium so that the continuity conditions between the half-space and the inclusions are satisfied in mean-square sense. Numerical results of the surface displacement field are evaluated for single and two elliptic inclusions. The results show the following: (a) presence of a subsurface inhomogeneity may lead to large amplifications of the surface ground motion; (2) different surface displacement patterns emerge for different incident waves; (3) the presence of an additional inclusion may change significantly the surface displacement response of a single inclusion; (4) the surface motion extremes strongly depend upon (i) angle of incidence; (ii) frequency of incident field; (iii) embedment depth of the inclusions; (iv) separation distance between the inclusions; (v) material properties of the half-space and the inclusions; and (vi) location of observation point on the surface of the half-space.  相似文献   

2.
Scattering of plane harmonic P, SV, or Rayleigh waves by a two-dimensional rough cavity completely embedded in an isotropic elastic half-space is investigated by using a direct boundary integral equation method. The cavity’s roughness is assumed to be in the form of periodic or random perturbations of arbitrary amplitude superimposed to a smooth elliptical shape. For the randomly corrugated cavities the normal or the uniform probability distribution functions are assumed. Based on multiple random cavity results, the corresponding average surface response is computed. These are compared with the corresponding periodically corrugated and smooth cavity responses. The surface response is evaluated for different cavity shapes and incident waves and for a range of frequencies. The surface motion results are used to determine the peak surface motion frequencies. They depend strongly upon the basic inclusion shape (the principal axes) and the nature of the incident wave. Strong similarity in the peak surface motion frequencies can be observed for the rough and smooth cavity models for both circular and elliptical shapes. In order to quantify the importance of the cavity corrugation upon the surface motion, a roughness influence factor is defined in terms of the rough and smooth cavity surface responses. This factor strongly depends upon the type of the incident wave, the nature of the cavity corrugation, the basic cavity shape, and the frequency. The factor clearly shows the effect of the cavity roughness upon the surface motion.  相似文献   

3.
陈志刚 《地震学报》2015,37(4):617-1244
本文采用复变函数方法研究了稳态水平剪切波(SH波)在各向异性弹性半空间中任意形状孔洞上的散射及其对地面运动的影响.在变换空间中构造出自动满足各向异性半空间水平表面上应力为零的散射波函数,并根据孔洞表面应力为零的边界条件,采用最小二乘法求解散射波函数的系数.用介质的各向异性性质来模拟地质条件,给出了SH波作用下含圆孔、椭圆孔和方孔的各向异性半空间表面位移幅值的数值结果,并分析了介质特性、孔洞的形状、埋深、入射波波数及入射角度等因素对地面运动的影响规律.数值结果表明:介质的各向异性对含有孔洞的半空间表面的地表位移具有显著的影响;沿一定角度的入射波在某一频段内所引起的地表位移幅值比各向同性介质的可能要大,且随着孔洞埋深的增加,地表位移的幅值逐渐减小.   相似文献   

4.
Amplification of in-plane seismic ground motion by underground group cavities in layered half-space is studied both in frequency domain and time domain by using indirect boundary element method (IBEM), and the effect of cavity interval and spectrum of incident waves on the amplification are studied by numerical examples. It is shown that there may be large interaction between cavities, and group cavities with certain intervals may have significant amplification to seismic ground motion. The amplification of PGA (peak ground acceleration) and its PRS (peak response spectrum) can be increased up to 45.2% and 84.4%, for an example site in Tianjin, under the excitation of Taft wave and El Centro wave; and group cavities may also affect the spectra of the seismic ground motion. It is suggested that the effect of underground group cavities on design seismic ground motion should be considered.  相似文献   

5.
The transverse response of underground cylindrical cavities to incident SV waves is investigated. Analytical solutions are derived for unlined cavities embedded within an elastic half‐space using Fourier–Bessel series and a convex approximation of the half‐space free surface. The computed displacements at the half‐space free surface and the tangential stresses on the cavity are compared with the results of previous investigations. The analytical solutions are extended to formulate approximate solutions for assessing hoop stresses within cavity liners impinged by low‐frequency waves having wavelengths much longer than the cavity diameter. The approximate solutions are compared to existing numerical solutions, and used to evaluate the dynamic response of a flexible buried pipe shaken by the 1994 Northridge earthquake. The proposed approximate model for cavity liners is useful for the seismic analysis of underground pipes and small‐diameter tunnels. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Scattering of elastic waves by two dimensional multilayered dipping sediments of arbitrary shape embedded in an elastic half-sapce is investigated by using a bondary method. The displancement field is evaluated throughout the elastic media for both steady state and transient incident SH waves. The unknown scattered field is expressed in terms of wave functions which satisfy the equation of motion, traction-free boundary condition and appropariate radiation conditions. The transient response is constructed from the steady state solution by using the fast Fourier transform technique. The numerical results presented demonstrate that scattering of waves by subsurface irregularities may cause locally very large amplification of surface ground motion. The motion can be affected greatly by the scattered surface waves in the sediments. The results clearly indicate that the surface ground motion depends upon a number of parameters present in the problem, such as frequency and the angle of incidence of the incoming wave, impedance contrast between the layers and location of the observation point.  相似文献   

7.
A boundary integral formulation is presented and applied to model the ground motion on alluvial valleys under incident P, S and Rayleigh waves. It is based on integral representations for the diffracted and the refracted elastic waves using single-layer boundary sources. This approach is called indirect BEM in the literature as the sources' strengths should be obtained as an intermediate step. Boundary conditions lead to a system of integral equations for boundary sources. A discretization scheme based on the numerical and analytical integration of exact Green's functions for displacements and tractions is used. Various examples are given for two-dimensional problems of diffraction of elastic waves by soft elastic inclusion models of alluvial deposits in an elastic half-space. Results are displayed in both frequency and time domains. These results show the significant influence of locally generated surface waves in seismic response and suggest approximations of practical interest. For shallow alluvial valleys the response and its resonant frequencies are controlled by a coupling mechanism that involves both the simple one-dimensional shear beam model and the propagation of surface waves.  相似文献   

8.
Scattering of elastic waves by an orthotropic sedimentary basin is investigated for antiplane strain model using an indirect boundary integral equation approach. Both steady state and transient response were obtained for semicircular and semielliptical basins with different material properties. The results indicate that the basin geometry and the impedance contrast between the half-space and the basin have similar effects on the surface ground motion amplification as for the isotropic case. However, the material anisotropy may change significantly the fundamental resonant frequencies of the basin, resulting in different surface displacement amplification patterns. In addition, it was observed that the arrival time of the main disturbance on the surface strongly depends on material anisotropy for different angles of incidence. The results demonstrate that material anisotropy may be very important in explaining surface ground motion amplification for sedimentary basins. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Scattering of plane harmonic waves by a three‐dimensional basin of arbitrary shape embedded within elastic half‐space is investigated by using an indirect boundary integral equation approach. The materials of the basin and the half‐space are assumed to be the most general anisotropic, homogeneous, linearly elastic solids without any material symmetry (i.e. triclinic). The unknown scattered waves are expressed in terms of three‐dimensional triclinic time harmonic full‐space Green's functions. The results have been tested by comparing the surface response of semi spherical isotropic and transversely isotropic basins for which the numerical solutions are available. Surface displacements are presented for a semicircular basin subjected to a vertical incident plane harmonic pseudo‐P‐, SV‐, or SH‐wave. These results are compared with the motion obtained for the corresponding equivalent isotropic models. The results show that presence of the basin may cause significant amplification of ground motion when compared to the free‐field displacements. The peak amplitude of the predominant component of surface motion is smaller for the anisotropic basin than for the corresponding isotropic one. Anisotropic response may be asymmetric even for symmetric geometry and incidence. Anisotropic surface displacement generally includes all three components of motion which may not be the case for the isotropic results. Furthermore, anisotropic response strongly depends upon the nature of the incident wave, degree of material anisotropy and the azimuthal orientation of the observation station. These results clearly demonstrate the importance of anisotropy in amplification of surface ground motion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Scattering of incident plane harmonic pseudo P‐, SH‐, and SV‐waves by a two‐dimensional basin of arbitrary shape is investigated by using an indirect boundary integral equation approach. The basin and surrounding half‐space are assumed to be generally anisotropic, homogeneous, linearly elastic solids. No material symmetries are assumed. The unknown scattered waves are expressed as linear combinations of full‐space time‐harmonic two‐dimensional Green functions. Using the Radon transform, the Green functions are obtained in the form of finite integrals over a unit circle. An algorithm for the accurate and efficient numerical evaluation of the Green functions is discussed. A detailed convergence and parametric analysis of the problem is presented. Excellent agreement is obtained with isotropic results available in the literature. Steady‐state surface ground motion is presented for semi‐circular basins with generally anisotropic material properties. The results show that surface motion strongly depends upon the material properties of the basin as well as the angle of incidence and frequency of the incident wave. Significant mode conversion can be observed for general triclinic materials which are not present in isotropic models. Comparison with an isotropic basin response demonstrates that anisotropy is very important for assessing the nature of surface motion atop basins. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
周凤玺  高令猛  马强 《地震学报》2019,41(2):269-276
以地下隧道对附近场地动力特性的影响为研究目标,基于弹性波动理论,利用波函数展开法和镜像法,分析了弹性半空间中圆形衬砌隧道对平面SH波入射产生的散射问题,得到了地下圆形衬砌隧道附近场地位移的级数解答。通过数值算例分析了地下圆形衬砌隧道对场地动力响应的影响,重点考察了SH波入射角度、入射频率和隧道埋深、衬砌刚度对隧道周围土体动力响应随深度变化的影响规律。结果表明,地下隧道对沿线场地的地下地震动影响显著。  相似文献   

12.
Earthquake ground motion records are nonstationary in both amplitude and frequency content. However, the latter nonstationarity is typically neglected mainly for the sake of mathematical simplicity. To study the stochastic effects of the time‐varying frequency content of earthquake ground motions on the seismic response of structural systems, a pair of closely related stochastic ground motion models is adopted here. The first model (referred to as ground motion model I) corresponds to a fully nonstationary stochastic earthquake ground motion model previously developed by the authors. The second model (referred to as ground motion model II) is nonstationary in amplitude only and is derived from the first model. Ground motion models I and II have the same mean‐square function and global frequency content but different features of time variation in the frequency content, in that no time variation of the frequency content exists in ground motion model II. New explicit closed‐form solutions are derived for the response of linear elastic SDOF and MDOF systems subjected to stochastic ground motion model II. New analytical solutions for the evolutionary cross‐correlation and cross‐PSD functions between the ground motion input and the structural response are also derived for linear systems subjected to ground motion model I. Comparative analytical results are presented to quantify the effects of the time‐varying frequency content of earthquake ground motions on the structural response of linear elastic systems. It is found that the time‐varying frequency content in the seismic input can have significant effects on the stochastic properties of system response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The scattering and diffraction of plane SV waves underground, circular, cylindrical cavities at various depths in an elastic half space is studied in this paper. The cavities, studied here, are at depths of two to five cavity radii, measured from the surface to the center of the cavity. Fourier-Bessel series are used to satisfy the wave equation and the boundary conditions. When the angle of incidence of the plane SV wave exceeds the critical angle, surface waves are generated, which are expanded in terms of Fourier series, which also involve Bessel functions. The surface displacement amplitudes and phases that are presented show that the results depend on the following parameters: (1) The angle of incidence, θβ; (2) the ratio cavity depth to the cavity radius, h/a; (3) the dimensionless frequency of the incident SV wave, η; and (4) Poisson's ratio, v. The presence of the cavity in the half space results in significant deviation of both the displacement amplitudes and phases on the nearby half space surface from that of a uniform half space.  相似文献   

14.
The main purpose of the paper is the analysis of seismic site effects in various alluvial basins. The analysis is performed considering a numerical approach (boundary element method). Two main cases are considered: a shallow deposit in the centre of Nice (France) [Soil Dyn. Earthquake Engng 19 (2000) 345] and a deep irregular basin in Caracas (Venezuela) [Comput. Geotech. 29 (2002) 573].

The amplification of seismic motion is analysed in terms of level, occuring frequency and location. For both sites, the amplification factor is found to reach maximum values of 20 (weak motion). Site effects nevertheless have very different features concerning the frequency dependence and the location of maximum amplification. For the shallow deposit in Nice, the amplification factor is very small for low frequencies and fastly increases above 1.0 Hz. The irregular Caracas basin gives a much different frequency dependence with many different peaks at various frequencies. The model for Caracas deep alluvial basin also includes a part of the local topography such as the nearest mountain. One can estimate seismic site effects due to both velocity contrast (between the basin and the bedrock) and local topography of the site.

Furthermore, the maximum amplification is located on the surface for Nice, whereas some strong amplification areas also appear inside the basin itself in the case of Caracas. One investigates the influence of this focusing effect on the motion versus depth dependence. This is of great interest for the analysis of seismic response of underground structures. The form and the depth of alluvial deposits are then found to have a great influence on the location of maximum amplification on the surface but also inside the deposit for deep irregular basins. It is essential for the analysis of the seismic response of both surface and underground structures.  相似文献   


15.
16.
The three-dimensional harmonic response in the vicinity of an infinitely long, cylindrical cavity of circular cross-section buried in a layered, viscoelastic half-space is obtained when the half-space is subjected to homogeneous plane waves and surface waves impinging at an oblique angle with respect to the axis of the cavity. The solution is obtained by an indirect boundary integral method based on the use of moving Green's functions for the viscoelastic half-space. Numerical results describing the motion on the ground surface and the motion and stresses on the wall of the cavity are presented for obliquely incident P-, SV-, SH- and Rayleigh waves with different horizontal angles of incidence.  相似文献   

17.
Based on the plane complex variable theory and the image technique, an analytical solution is presented for scattering of plane harmonic P, SV or Rayleigh waves by a shallow lined circular tunnel in an elastic half space. The major contribution of this study is the treatment of the orthogonality of the boundary conditions along the half surface and the cavity wall. In terms of the image technique, the scattered waves by the half surface are simulated as transmitting from the image source of the origin of the tunnel. Using two different conformal mapping functions, we obtained the complex-valued stresses and displacements of the elastic medium and the liner in the image domain, respectively. The boundary value problem results in a set of infinite algebraic equations. The accuracy of the present approach is verified by comparing the present solution results with the available published data. Parametric study indicates that the embedment depth, the shear modulus and the thickness of the liner have significant influences on the dynamic response of the liner and the medium.  相似文献   

18.
Recent researches have revealed that the seismic ground response above tunnels can be different from the free-field motion during earthquakes. Nevertheless, to the best of the authors׳ knowledge, neither building codes nor seismic microzonation guidelines have yet considered this matter. In the present study, the seismic response of a linear elastic medium including a buried unlined tunnel subjected to vertically propagating incident SV and P waves are addressed. For analysis purposes, a numerical time-domain analysis is performed by utilizing a robust numerical algorithm working based on the boundary element method. It is observed that the amplification of the ground surface underlain by a tunnel is increased in long periods. The variation of the amplification factor and characteristic period of the medium versus the buried depth of the tunnel are depicted as the major results of this study. Some simple and useful relations are proposed for estimating the seismic microzonation of the areas underlain by tunnels. These relations can also be used for the preliminary seismic design of structures located on underground structures.  相似文献   

19.
The task of selecting and scaling an appropriate set of ground motion records is one of the most important challenges facing practitioners in conducting dynamic response history analyses for seismic design and risk assessment. This paper describes an integrated experimental and analytical evaluation of selected ground motion scaling methods for linear‐elastic building frame structures. The experimental study is based on the shake table testing of small‐scale frame models with four different fundamental periods under ground motion sets that have been scaled using different methods. The test results are then analytically extended to a wider range of structural properties to assess the effectiveness of the scaling methods in reducing the dispersion and increasing the accuracy in the seismic displacement demands of linear‐elastic structures, also considering biased selection of ground motion subsets. For scaling methods that are based on a design estimate of the fundamental period of the structure, effects of possible errors in the estimated period are investigated. The results show that a significant reduction in the effectiveness of these scaling methods can occur if the fundamental period is not estimated with reasonable certainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The calculated nonlinear structural responses of a building can vary greatly, even if recorded ground motions are scaled to the same spectral acceleration at a building's fundamental period. To reduce the variation in structural response at a particular ground‐motion intensity, this paper proposes an intensity measure (IMcomb) that accounts for the combined effects of spectral acceleration, ground‐motion duration, and response spectrum shape. The intensity measure includes a new measure of spectral shape that integrates the spectrum over a period range that depends on the structure's ductility. The new IM is efficient, sufficient, scalable, transparent, and versatile. These features make it suitable for evaluating the intensities of measured and simulated ground motions. The efficiency and sufficiency of the new IM is demonstrated for the following: (i) elastic‐perfectly plastic single‐degree‐of‐freedom (SDOF) oscillators with a variety of ductility demands and periods; (ii) ductile and brittle deteriorating SDOF systems with a variety of periods; and (iii) collapse analysis for 30 previously designed frames. The efficiency is attributable to the inclusion of duration and to the ductility dependence of the spectral shape measure. For each of these systems, the transparency of the intensity measure made it possible to identify the sensitivity of structural response to the various characteristics of the ground motion. Spectral shape affected all structures, but in particular, ductile structures. Duration only affected structures with cyclic deterioration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号