首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The broad purpose of the study described here was to assess the role of denitrification in riparian zones in ameliorating groundwater pollution through nitrate loss, and as a potential source of nitrous oxide to the atmosphere. A suitable riparian zone was identified at Cuddesdon Mill on the River Thame floodplain near Oxford, England. Measurements were made of water and nitrate moving from arable land through the riparian zone and into the river. Techniques to measure denitrification were tested and applied, and the factors controlling denitrification measured. While there was considerable potential for denitrification at the site, this was not realized because much of the water moving off the farmland bypassed the riparian zone, entering the river directly via springs or through gravel lenses beneath the floodplain soil. Management of this site would not reduce nitrate leaching unless the floodplain hydrology could be substantially modified, and the main conclusion is that nitrate buffer zones will only operate efficiently where the hydrology of the site is appropriate. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   

3.
We examined the influence of river stage on subsurface hydrology and pore water chemistry within the hyporheic zone of a groundwater‐fed river during the summer baseflow period of 2011. We found river stage and geomorphologic environment to control chemical patterns in the hyporheic zone. At a high river stage, the flux of upwelling water in the shallow sediments (>20 cm) decreased at sample sites in the upper section of our study reach and increased substantially at sites in the lower section. This differential response is attributed to the contrasting geomorphology of these subreaches that affects the rate of the rise and fall of a river stage relative to the subsurface head. At sites where streamward vertical flux decreased, concentration profiles of a conservative environmental tracer suggest surface water infiltration into the riverbed below depths recorded at a low river stage. An increase in vertical flux at sites in the lower subreach is attributed to the movement of lateral subsurface waters originating from the adjacent floodplain. This lateral‐moving water preserved or decreased the vertical extent of the hyporheic mixing zone observed at a low river stage. Downwelling surface water appeared to be responsible for elevated dissolved organic carbon (DOC) and manganese (Mn) concentrations in shallow sediments (0–20 cm); however, lateral subsurface flows were probably important for elevated concentrations of these solutes at deeper levels. Results suggest that DOC delivered to hyporheic sediments during a high river stage from surface water and lateral subsurface sources could enhance heterotrophic microbial activities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In watersheds impacted by nitrate from agricultural fertilizers, nitrification and denitrification may be decoupled as denitrification in the hyporheic zone is not limited to naturally produced nitrate. While most hyporheic research focuses on the 1–2 m of sediment beneath the stream bed, there are a limited number of studies that quantify nitrogen (N) cycling at larger hyporheic scales (10s of metres to kms). We conducted an investigation to quantify N cycling through a single meander of a low gradient, meandering stream, draining an agricultural watershed. Chemistry (major ions and N species) and hydrologic data were collected from the stream and groundwater beneath the meander. Evidence indicates that nearly all the shallow groundwater flowing beneath the meander originates as stream water on the upgradient side of the meander, and returns to the stream on the downgradient side. We quantified the flux of water beneath the meander using a numerical model. The flux of N into and out of the meander was quantified by multiplying the concentration of the important N species (nitrate, ammonium, dissolved organic nitrogen (DON)) by the modelled water fluxes. The flux of N into the meander is dominated by nitrate, and the flux of N out of the meander is dominated by ammonium and DON. While stream nitrate varied seasonally, ammonium and DON beneath the meander were relatively constant throughout the year. When stream nitrate concentrations are high (>2 mg litre?1), flow beneath the meander is a net sink for N as more N from nitrate in stream water is consumed than is produced as ammonium and DON. When stream nitrate concentrations are low (<2 mg litre?1), the flux of N entering is less than exiting the meander. On an annual basis, the meander hyporheic flow serves as a net sink for N. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This pilot study uses a chemical technique (KEtX) to establish vertical profiles of average monthly water temperature within river beds: the hyporheic zone at the interface between surface water and groundwater. Data are presented for two gravel-bed sites and one sand-bed site on the River Wissey, Norfolk, UK. From February to October 1992, average monthly temperatures were determined at 10cm intervals down 1 m profiles. A strong seasonal pattern was defined at all sites with hyporheic temperatures being relatively warm in winter and cool in summer. Isothermal periods occurred in March-April and September-October. Temperature ranges within the hyporheic were decreased (4.6–7.7°C) compared with those of surface waters (10 and 10.9°C). Temperature profiles were similar at all sites during winter, but the sand-bed site had relatively low temperatures at a standard depth within the hyporheic during summer and the temperature gradient became isothermal later in the autumn at this site. It is suggested that the influence of flows and substratum characteristics on temperature patterns, especially in regulated rivers, may have significant ecological implications, for example for determining the timing of salmonid fry and invertebrate emergence.  相似文献   

6.
Spatial and temporal variability in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream was investigated. Four locations in a 150‐m reach of the stream were studied using hydrometric and hydrochemical tracing techniques. A high degree of hydrological connectivity between the riparian hillslope and the stream channel was indicated at two locations, where hydrochemical changes and hydraulic gradients indicated that the hyporheic zone was dominated by upwelling ground water. The chemistry of ground water reflected relatively long residence times and reducing conditions with high levels of alkalinity and conductivity, low dissolved oxygen (DO) and nitrate. At the other locations, connectivity was less evident and, at most times, the hyporheic zone was dominated by downwelling stream water characterized by high DO, low alkalinity and conductivity. Substantial variability in hyporheic chemistry was evident at fine (<10 m) spatial scales and changed rapidly over the course of hydrological events. The nature of the hydrochemical response varied among locations depending on the strength of local ground water influence. It is suggested that greater emphasis on spatial and temporal heterogeneity in ground water–surface water interactions in the hyporheic zone is necessary for a consideration of hydrochemical effects on many aspects of stream ecology. For example, the survival of salmonid eggs in hyporheic gravels varied considerably among the locations studied and was shown to be associated with variation in interstitial chemistry. River restoration schemes and watershed management strategies based only on the surface expression of catchment characteristics risk excluding consideration of potentially critical subsurface processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The hydrology and nitrogen biogeochemistry of a riparian zone were compared before and after the construction of beaver dams along an agricultural stream in southern Ontario, Canada. The beaver dams increased surface flooding and raised the riparian water table by up to 1·0 m. Increased hydraulic gradients inland from the stream limited the entry of oxic nitrate‐rich subsurface water from adjacent cropland. Permeable riparian sediments overlying dense till remained saturated during the summer and autumn months, whereas before dam construction a large area of the riparian zone was unsaturated in these seasons each year. Beaver dam construction produced significant changes in riparian groundwater chemistry. Median dissolved oxygen concentrations were lower in riparian groundwater after dam construction (0·9–2·1 mg L?1) than in the pre‐dam period (2·3–3·9 mg L?1). Median NO3‐N concentrations in autumn and spring were also lower in the post‐dam (0·03–0·07 mg L?1) versus the pre‐dam period (0·1–0·3 mg L?1). In contrast, median NH4‐N concentrations in autumn and spring months were higher after dam construction (0·3–0·4 mg L?1) than before construction (0·13–0·14 mg L?1). Results suggest that beaver dams can increase stream inflow to riparian areas that limit water table declines and increase depths of saturated riparian soils which become more anaerobic. These changes in subsurface hydrology and chemistry have the potential to affect the transport and transformation of nitrate fluxes from adjacent cropland in agricultural landscapes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The effect of the interplay between unsteady flow and bedform in a flood event on nitrogen cycling in the hyporheic zone (HZ) remains poorly understood. In this study, a reactive transport groundwater model with different flood hydrographs was proposed to investigate the effect of modified hyporheic flow on nitrate dynamics in the HZ, including nitrate source-sink function, response to the single-peak flood event and removal efficiency. The results demonstrate that there exists an optimal range of river channel gradients that could enhance the biogeochemical reactions (respiration, nitrification and denitrification) in a flood event. The HZ acts as a nitrate sink especially after the flood event, and its source-sink function is independent of the unsteady discharge/stage conditions. The nitrate in the HZ has a hysteretic response to peak stage/discharge, and its removal efficiency is decreased by up to 70% compared to steady flow conditions. These findings not only provide a better understanding of nitrogen dynamics under the effect of unsteady channel flow, but also can be applied for river restoration to efficiently remove nitrate in the HZ by modifying river channel gradients.  相似文献   

9.
Fritz BG  Arntzen EV 《Ground water》2007,45(6):753-760
Measurement of ground water/surface water interaction within the hyporheic zone is increasingly recognized as an important aspect of subsurface contaminant fate and transport. Understanding the interaction between ground water and surface water is critical in developing a complete conceptual model of contaminant transport through the hyporheic zone. At the Hanford Site near Richland, Washington, ground water contaminated with uranium discharges to the Columbia River through the hyporheic zone. Ground water flux varies according to changes in hydraulic gradient caused by fluctuating river stage, which changes in response to operation of dams on the Columbia River. Piezometers and continuous water quality monitoring probes were installed in the hyporheic zone to provide long-term, high-frequency measurement of hydraulic gradient and estimated uranium concentrations. Subsequently, the flux of water and uranium was calculated for each half-hour time period over a 15-month study period. In addition, measurement of water levels in the near-shore unconfined aquifer enhanced the understanding of the relationship between river stage, aquifer elevation, and uranium flux. Changing river stage resulted in fluctuating hydraulic gradient within the hyporheic zone. Further, influx of river water caused lower uranium concentrations as a result of dilution. The methods employed in this study provide a better understanding of the interaction between surface and ground water in a situation with a dynamically varying vertical hydraulic gradient and illustrate how the combination of relatively standard methods can be used to derive an accurate estimation of water and contaminant flux through the hyporheic zone.  相似文献   

10.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   

11.
Background aqueous chemistry and 15Nnitrate tracer injection methods were used to calculate in‐stream nitrate uptake metrics at Red Canyon Creek, a third‐order stream in the Rocky Mountains in the state of Wyoming, United States. ‘Net’ nitrate uptake lengths, which reflect both nitrate uptake and regeneration, and ‘gross’ nitrate uptake lengths, which exclude re‐mineralization, were quantified separately from background nitrate chemistry and 15N labelling tracer data, respectively. Gross nitrate uptake lengths, from tracer injections of 15N labelled nitrate, ranged from 502 to 3140 m. Net nitrate uptake lengths, from background nitrate chemistry downstream of a point source, ranged from 1170 to 4330 m. Diurnal changes in uptake lengths suggest the importance of nitrate utilization by autotrophs in the stream and benthic zone. The differences between net and gross nitrate uptake lengths along lower reaches of Red Canyon Creek allowed us to estimate the nitrate regeneration rate, which was 0·056–0·080 µmol m?2 s?1 during the day and 0·0062–0·0083 µmol m?2 s?1 at night. Spatial patterns of streambed pore water chemistry indicate those areas of the hyporheic zone where denitrification was likely occurring. Permanent log dams generated stronger redox gradients in the hyporheic zone than areas with transient beaver dams. By combining isotopically labelled nitrate additions, estimates of uptake from background aqueous nitrate chemistry and characterization of redox conditions in the hyporheic zone, we were able to determine the nitrate regeneration rate and the redox processes responsible for nitrogen cycling in the hyporheic zone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Despite the presence of gas in river beds being a well known phenomenon, its potential feedbacks on the hydraulic and thermal dynamics of the hyporheic zone has not been widely studied. This paper explores hypotheses that the presence of accumulated gas impacts the hydraulic and thermal dynamics of a river bed due to changes in specific storage, hydraulic conductivity, effective porosity, and thermal diffusivity. The hypotheses are tested using data analysis and modelling for a study site on the urban River Tame, Birmingham, UK. Gas, predominantly attributed to microbial denitrification, was observed in the river bed up to around 14% by volume, and to at least 0.8 m depth below river bed. Numerical modelling indicates that, by altering the relative hydraulic conductivity distribution, the gas in the river bed leads to an increase of groundwater discharge from the river banks (relative to river bed) by a factor of approximately 2 during river low flow periods. The increased compressible storage of the gas phase in the river bed leads to an increase in the simulated volume of river water invading the river bed within the centre of the channel during storm events. The exchange volume can be more than 30% greater in comparison to that for water saturated conditions. Furthermore, the presence of gas also reduces the water-filled porosity, and so the possible depth of such invading flows may also increase markedly, by more than a factor of 2 in the observed case. Observed diurnal temperature variations within the gaseous river bed at 0.1 and 0.5 m depth are, respectively, around 1.5 and 6 times larger than those predicted for saturated sediments. Annual temperature fluctuations are seen to be enhanced by around 4 to 20% compared to literature values for saturated sediments. The presence of gas may thus alter the bulk thermal properties to such a degree that the use of heat tracer techniques becomes subject to a much greater degree of uncertainty. Although the likely magnitude of thermal and hydraulic changes due to the presence of gas for this site have been demonstrated, further research is needed into the origins of the gas and its spatial and temporal variability to enable quantification of the significance of these changes for chemical attenuation and hyporheic zone biology.  相似文献   

13.
River stage fluctuations drive surface water-groundwater exchanges within river corridors. This study evaluates how repeated daily stage fluctuations, representative of hydropeaking conditions, influence aerobic respiration of river-sourced dissolved organic carbon (DOC) in the riparian exchange zone using reactive flow and transport simulations. Over 50 hypothetical scenarios were modelled to evaluate how the duration of the daily flood signal, river DOC concentration, aquifer hydraulic conductivity and ambient groundwater flow condition affect the fate and transport of DOC and DO in the riparian aquifer. Time series subsurface snapshots highlight how the various factors influence the subsurface distribution of DOC and DO. The total mass of DOC respired per meter of river had a wide range depending on the parameters, spanning from 1.4 to 71 g over 24-h, with high hydraulic conductivity and losing ambient groundwater flow conditions favouring the largest amount of DOC respired. The ratio of DOC mass entering the riparian zone with the mass returning to the river showed that as little as 5% to as much as 76% of the DOC that enters the bank during stage fluctuations returns to the river. This return ratio is dependent on river DOC concentration, hydraulic conductivity and ambient groundwater flow. The results illustrate that stage variations due to river regulation can be a significant control on aerobic respiration in riparian exchange zones.  相似文献   

14.
The Xiaolangdi Dam, completed in 2000, is second in scale in China to the Three Gorges Project. It has generated remarkable economic and social benefits but with profound impacts to the riverine and regional environments. This paper reports field monitoring of riparian groundwater in the Kouma section of the Yellow River to illustrate the interactions between dam‐regulated river flow and riparian groundwater. The results show that the hydrological condition in riparian zones downstream from the dam has changed from a typical wet–dry cycle to a condition of semi‐permanent dryness, resulting in degradation of the typical attributes and functions of the wetland ecosystem. Hydrological processes in the riparian zone have changed from a complex multiple flooding regime to a simple regime of dominant groundwater drainage towards the river, which only reverses temporarily during the water and sediment regulation period of the dam. Data on groundwater level and groundwater quality show that there are two key points, at ca 200 and 400 m from the river bank, which distinguish zones with different sensitivity to changes of river flow and indicate different interactions between river water and groundwater. The shallow groundwater quality also is negatively affected by the intensive agricultural development that has occurred since the dam was completed. Ecological restoration needs to be carried out to construct a protective natural riparian zone within ca 200 m from the river, this being an ecotone, which is key to the protection of both riparian groundwater and the river. The riparian zone from 200 to 400 m also should be treated as a transitional zone. In addition, ecologically sensitive agriculture and ecotourism organized by local communities would be beneficial in the area beyond 400 m. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Small‐order streams have highly variable flows that can result in large temporal and spatial variation of the hyporheic zone. Dam construction along these intermittent headwater streams alters downstream flow and influences the hydrologic balance between stream water and the adjacent riparian zone. A 3‐year site study was conducted along an impounded second‐order stream to determine the water balance between stream, unsaturated zone, groundwater and riparian vegetation. The presence of the upstream impoundment provided near‐perennial water flow in the stream channel. The observed woody plant transpiration accounted for 71% of average annual water loss in the site. The overall contribution of stream water via the hyporheic zone to site water balance was 73 cm, or 44% of total inputs. This exceeded both rainfall and upland subsurface contribution to the site. A highly dynamic hyporheic zone was indicated by high water use from woody plants that fluctuated seasonally with stream water levels. We found leaf area development in the canopy layer to be closely coupled with stream and groundwater fluctuations, indicating its usefulness as a potential indicator of site water balance for small dam systems. The net result of upstream impoundment increased riparian vegetation productivity by influencing movement of stream water to storage in the groundwater system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Denitrification is studied in sediments from two areas of the River Butrón which represent different situations with respect to their degree of pollution. Denitrification is analysed by means of the following parameters: maximum denitrification rate (Vmax), Michaelis constant (Km), denitrification rate (v), denitrification constant (kd) and number of denitrifiers. In all the samples analysed denitrification follows a kinetic type Michaelis-Menten with respect to nitrate. Vmax, Km and number of denitrifiers are clearly superior in the polluted area when compared to the cleaner area, indicating an advantage given that denitrification suggests an alternative pathway for breaking down organic matter with low levels of dissolved oxygen. By comparison between Km and natural nitrate concentration values we find that v follows a first order kinetic depending directly on the nitrate concentration. v also presents higher values in the area of the river where the entry of sewage is taking place than in the cleaner area. However, this difference does not have a kinetic origin but rather is given by different nitrate concentrations in their sediments. This is due to the fact that the two areas present similar efficiencies in the elimination of nitrate, which is deduced from the similar values of kd.  相似文献   

17.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The hyporheic zone (HZ) plays a vital role in the stream ecosystem. Reactions in the HZ such as denitrification and nitrification have been examined in previous studies. However, no numerical model has yet been developed that can accurately simulate nitrogen concentration changes in the HZ, because the zones for the two reactions can change throughout the reactions. This study proposes a method of evaluating the nitrogen removal rate in the HZ through numerical modelling. First, a basic two‐dimensional numerical model coupling flow conditions with biochemical reactions is proposed to consider both nitrification and denitrification. The zones for different reactions are determined under the assumption that related environmental variables (i.e., the dissolved oxygen) will not change throughout the reactions. Next, to examine changes in environmental variables throughout the reactions, an improved model is proposed, and a method is developed for delineating the boundary between nitrification and denitrification zones and identifying a transition zone where either reaction might take place. However, more information about biochemical reactions in the HZ is required to use the improved model. To overcome this shortcoming, a new model that couples the basic model and genetic programming (GP) is proposed to optimize the simulation results of the basic model and allow for real‐time forecasting. The results show that the basic model obtains acceptable simulation results for nitrate concentration distribution in the HZ. The improved model performs better than the basic model, but the model coupling the basic model with GP performs best. In addition, the function of the HZ in nitrogen removal is examined through a case study of four scenarios, leading to the conclusion that the HZ has a higher nitrogen removal rate when water quality is neither too poor nor too good. Overall, this study enhances our understanding of the HZ and can benefit the restoration and management of HZs and streams in the face of the continual degradation caused by human activity.  相似文献   

19.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   

20.
A numerical study demonstrates the effects of flooding on subsurface hydrological flowpaths and nitrate removal in anoxic groundwater in riparian zones with a top peat layer. A series of two-dimensional numerical simulations with changing conditions for flow (steady state or transient with flooding), hydrogeology, denitrification, and duration of flooding demonstrate how flowpaths, residence times, and nitrate removal are affected. In periods with no flooding groundwater flows horizontally and discharges to the river through the riverbed. During periods with flooding, shallow groundwater is forced upwards as discharge through peat layers that often have more optimal conditions for denitrification caused by the presence of highly reactive organic matter. The contrast in hydraulic conductivity between the sand aquifer and the overlying peat layer, as well as the flooding duration, have a significant role in determining the degree of nitrate removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号