首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, long‐term discharge data and climate records, such as temperature and precipitation during 1977–2006, have been used to define basin climatic and hydrologic regimes and changes. Discharge analyses at four key gauging stations (Eagle, Stevens Village, Nenana, and Pilot Station) in the Yukon River Basin show that the runoff in the cold season (November to April) is low with small variations, whereas it is high (28 500–177 000 ft3/s; 810–5000 m3/s) with high fluctuations in the warm season (May to October). The Stevens Village Station is in the upper basin and has similar changes with the flow near basin outlet. Flow increases in May (61 074 ft3/s; 1729 m3/s) and September (23 325 ft3/s; 660 m3/s); and decreases in July (35 174 ft3/s; 996 m3/s) and August (6809 ft3/s; 193 m3/s). Discharge in May at the Pilot Station (near the basin outlet) shows a positive trend (177 000 ft3/s; 5010 m3/s). Daily flow analyses show high fluctuation during the warm season and very low flow during the cold season; the 10‐year average analyses of daily flow at Pilot Station show a small increase in the peak and its timing shifted to a little earlier date. The annual flow, average of 227 900 ft3/s (6450 m3/s) with high inter‐annual fluctuations, has increased by 18 200 ft3/s (or 8%; 520 m3/s) during 1977–2006. From 1977 to 2006, basin air temperature in June has increased by 3.9 °F (2.2 °C) and decreased by 10.5 °F (5.8 °C) in January. A strong and positive correlation exists between air temperature in April and discharge in May, whereas a strong and negative correlation relates August temperature and September discharge. Negative trend during 1977–2006 is observed for precipitation in June (0.6 in.; 15 mm) with a confidence over 93%. Precipitation in August and September has strong and positive correlations with discharge in September and October at basin outlet; the precipitation in other months has weak correlation with the discharge. The mean annual precipitation during 1977–2006 increased by 1.1 in. (or 8%; 28 mm), which contributes to the annual flow increase during the study period. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite‐derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modelling. We observed gradients in water surface elevation between neighbouring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to ‘fill‐and‐spill’ over topographic depressions (surface sills), as we observed for the Twelvemile‐Buddy Lake pair following a May 2013 ice‐jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill‐and‐spill) to shallow groundwater flow (‘fill‐and‐seep’). Such a shift is possible in the next several hundred years of ground surface warming and may bring about more synchronous water level changes between neighbouring lakes following large flood events. This relationship offers a potentially useful tool, well suited to remote sensing, for identifying long‐term changes in shallow groundwater flow resulting from thawing of permafrost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
气候变化和人类活动导致珠江流域水文变化,变化前后洪水频率分布显著不同.运用滑动秩和(Mann-Whitney U test)结合Brown-Forsythe、滑动T、有序聚类和Mann-Kendall检验法,并用累积距平曲线法获取年最大流量序列详细信息,综合确定样本最佳变化节点,并对水文变化成因做了系统分析.在此基础上,对整体序列、变化前后序列用线性矩法推求广义极值分布参数以及不同重现期设计流量.结果表明:(1)西江大部以及北江流域最佳变化节点在1991年左右;东江流域最佳变化节点与该流域内3大控制性水库建成时间基本吻合;(2)变化后,西江、北江年最大流量持续增加,洪峰强度增大,尤其是西江干流年最大流量显著增加;东江流域年最大流量显著减小,洪峰强度降低;(3)变化后,西江与北江洪水风险增加,尤其是下游珠三角地区本身受人类活动显著影响,加之西江与北江持续增加的洪水强度,珠三角地区发生洪水的强度及频次加剧,而东江洪水风险减小.此研究对于珠江流域在变化环境下的洪水风险评估与防洪抗灾具有重要意义.  相似文献   

4.
Engineered log jams (ELJs) are employed to address river restoration goals and a range of river management problems including coarse sediment movement. In the Bowmont Water, a dynamic wandering gravel‐bed river in the Scottish Borders, 33 previously untested ELJs primarily designed to capture and store coarse sediment, were installed on a trial basis. Using repeated topographical surveys and field observations, the performance of the ELJs in response to a 5–10 year recurrence interval flood that occurred on the 25 September 2012 was evaluated at two reaches with catchment areas of 28 km2 and 57 km2. Three of the structures were damaged due to scour of surrounding material that exposed the pile anchors and all the timbers of one structure were completely displaced downstream. Sixteen structures induced geomorphic responses and only four induced significant deposition (>0.3 m) above that which would occur naturally within the adjacent active gravel bar deposition zones. The placement in gravel bars, minor channel blockage ratio created by the structures and their porous nature limited the hydraulic interference and in turn geomorphic responses. Therefore the ELJ placement goal of increasing sediment storage was not fully met. This study contributes to the empirical evidence base for ELJ performance evaluation of different designs in a range of physiographic settings needed to validate performance and refine design. Using these initial findings and knowledge gained from other studies, recommendations for improving the design and placement strategy are proposed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Nonstationary GEV-CDN models considering time as a covariate are built for evaluating the flood risk and failure risk of the major flood-control infrastructure in the Pearl River basin, China. The results indicate: (1) increasing peak flood flow is observed in the mainstream of the West River and North River basins and decreasing peak flood flow is observed in the East River basin; in particular, increasing peak flood flow is detected in the mainstream of the lower Pearl River basin and also in the Pearl River Delta region, the most densely populated region of the Pearl River basin; (2) differences in return periods analysed under stationarity and nonstationarity assumptions are found mainly for floods with return periods longer than 50 years; and (3) the failure risks of flood-control infrastructure based on failure risk analysis are higher under the nonstationarity assumption than under the stationarity assumption. The flood-control infrastructure is at higher risk of flood and failure under the influence of climate change and human activities in the middle and lower parts of Pearl River basin.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR G. Thirel  相似文献   

6.
In this research, the regional extreme‐dry‐spell frequency in the middle reaches of the Yellow River Basin (YRB) is studied by the L‐moments method. The research area has been divided into three subregions (regions 1, 2 and 3), which have been identified as homogenous regions. The results of a goodness‐of‐fit test indicate that a generalized normal distribution is the optimal regional model for regions 1 and 2 whereas a generalized Pareto distribution is the optimal regional model for region 3. The return period analysis figures out that the maximum length‐of‐dry‐spell (MxDS) values increase from south to north in the southern part and increase from northeast to southwest in the northern part of the middle reaches of the YRB under different return periods. The increments of quantiles of dry spell under different return levels indicate that drought risk in region 1 is higher than that in regions 2 and 3. The analysis of the occurrence day of MxDS shows that MxDS mostly occurred during winter of 1998 and spring of 1999 in most stations during the considered period. By comparing summer MxDS events, it can be found that mean MxDS values have slightly increased in regions 1 and 2 during the last five decades. The maximum mean MxDS values appeared in the 2000s for regions 1 and 2 and in the 1990s for region 3. The atmospheric circulation shows that the positive anomaly centre in the west of North China, negative anomaly centre in the east of North China and the strong western Pacific subtropical high led to the decrease of precipitation in North China during the summer of 1997. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
As an alternative to the commonly used univariate flood frequency analysis, copula frequency analysis can be used. In this study, 58 flood events at the Litija gauging station on the Sava River in Slovenia were analysed, selected based on annual maximum discharge values. Corresponding hydrograph volumes and durations were considered. Different bivariate copulas from three families were applied and compared using different statistical, graphical and upper tail dependence tests. The parameters of the copulas were estimated using the method of moments with the inversion of Kendall's tau. The Gumbel–Hougaard copula was selected as the most appropriate for the pair of peak discharge and hydrograph volume (Q‐V). The same copula was also selected for the pair hydrograph volume and duration (V‐D), and the Student‐t copula was selected for the pair of peak discharge and hydrograph duration (Q‐D). The differences among most of the applied copulas were not significant. Different primary, secondary and conditional return periods were calculated and compared, and some relationships among them were obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
To analyse the long‐term water balance of the Yellow River basin, a new hydrological model was developed and applied to the source area of the basin. The analysis involved 41 years (1960–2000) of daily observation data from 16 meteorological stations. The model is composed of the following three sub‐models: a heat balance model, a runoff formation model and a river‐routing network model. To understand the heat and water balances more precisely, the original model was modified as follows. First, the land surface was classified into five types (bare, grassland, forest, irrigation area and water surface) using a high‐resolution land‐use map. Potential evaporation was then calculated using land‐surface temperatures estimated by the heat balance model. The maximum evapotranspiration of each land surface was calculated from potential evaporation using functions of the leaf area index (LAI). Finally, actual evapotranspiration was estimated by regulating the maximum evapotranspiration using functions of soil moisture content. The river discharge estimated by the model agreed well with the observed data in most years. However, relatively large errors, which may have been caused by the overestimation of surface flow, appeared in some summer periods. The rapid decrease of river discharge in recent years in the source area of the Yellow River basin depended primarily on the decrease in precipitation. Furthermore, the results suggested that the long‐term water balance in the source area of the Yellow River basin is influenced by land‐use changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Many civil infrastructures are located near the confluence of two streams, where they may be subject to inundation by high flows from either stream or both. These infrastructures, such as highway bridges, are designed to meet specified performance objectives for floods of a specified return period (e.g. the 100 year flood). Because the flooding of structures on one stream can be affected by high flows on the other stream, it is important to know the relationship between the coincident exceedence probabilities on the confluent stream pair in many hydrological engineering practices. Currently, the National Flood Frequency Program (NFF), which was developed by the US Geological Survey (USGS) and based on regional analysis, is probably the most popular model for ungauged site flood estimation and could be employed to estimate flood probabilities at the confluence points. The need for improved infrastructure design at such sites has motivated a renewed interest in the development of more rigorous joint probability distributions of the coincident flows. To accomplish this, a practical procedure is needed to determine the crucial bivariate distributions of design flows at stream confluences. In the past, the copula method provided a way to construct multivariate distribution functions. This paper aims to develop the Copula‐based Flood Frequency (COFF) method at the confluence points with any type of marginal distributions via the use of Archimedean copulas and dependent parameters. The practical implementation was assessed and tested against the standard NFF approach by a case study in Iowa's Des Moines River. Monte Carlo simulations proved the success of the generalized copula‐based joint distribution algorithm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Hongyan Li  Miao Xie  Shan Jiang 《水文研究》2012,26(18):2827-2837
Mid‐ to long‐term runoff forecasting is important to China. Forecasting based on physical causes has become the trend of this field, and recognition of key factors is central to recent development. Here, global sensitivity analysis based on back‐propagation arithmetic was used to calculate the sensitivity of up to 24 factors that affect runoff in the Nenjiang River Basin. The following five indices were found to be key factors for mid‐ to long‐term runoff forecasting during flood season: Tibetan Plateau B, index of the strength of the East Asian trough, index of the area of the northern hemisphere polar vortex, zonal circulation index over the Eurasian continent and index of the strength of the subtropical high over the western Pacific. The hydrological climate of the study area and the rainfall–runoff laws were then analysed in conjunction with its geographical position and topographic condition. The rationality of the results can be demonstrated from the positive analysis point of view. The results of this study provide a general method for selection of mid‐ to long‐term runoff forecasting factors based on physical causes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   

12.
Suspended‐sediment concentration data are a missing link in reconstructions of the River Waal in the early 1800s. These reconstructions serve as a basis for assessing the long‐term effects of major interventions carried out between 1850 AD and the early 20th century. We used a 2D physics‐based morphodynamic model accounting for the influence of floodplain vegetation to fill in this gap. Historical discharge hydrographs were derived from a correlation between flow discharge records at Cologne and water level measurements of the Rhine branches in the Netherlands, taking into account the discharge distribution between the branches. Historical floodplain sedimentation rates were estimated using old cartographic information and recent geomorphologic field work. The computed historical sedimentation rates are found to be within the range of measured data, which suggests that fine suspended sediment concentrations in the early 1800s were comparable to contemporary ones. The computations show also how vegetation enhances the formation of natural levees close to the main channel and at the same time decreases the sedimentation rates in farther areas of the floodplain. A sensitivity analysis shows suspended sediment composition to have a strong influence on the resulting quantities and patterns of floodplain deposition. The reconstruction has also provided validation of the modelling tools to reproduce the effects of vegetation on sediment dynamics, enabling their implementation to study other cases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Flood risk assessment is customarily performed using a design flood. Observed past flows are used to derive a flood frequency curve which forms the basis for a construction of a design flood. The simulation of a distributed model with the 1‐in‐T year design flood as an input gives information on the possible inundation areas, which are used to derive flood risk maps. The procedure is usually performed in a deterministic fashion, and its extension to take into account the design flood‐and flow routing model uncertainties is computer time consuming. In this study we propose a different approach to flood risk assessment which consists of the direct simulation of a distributed flow routing model for an observed series of annual maximum flows and the derivation of maps of probability of inundation of the desired return period directly from the obtained simulations of water levels at the model cross sections through an application of the Flood Level Frequency Analysis. The hydraulic model and water level quantile uncertainties are jointly taken into account in the flood risk uncertainty evaluation using the Generalized Likelihood Uncertainty Estimation (GLUE) approach. An additional advantage of the proposed approach lies in smaller uncertainty of inundation predictions for long return periods compared to the standard approach. The approach is illustrated using a design flood level and a steady‐state solution of a hydraulic model to derive maps of inundation probabilities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
More frequent extreme flood events are likely to occur in many areas in the twenty‐first century due to climate change. The impacts of these changes on sediment transport are examined at the event scale using a 1D morphodynamic model (SEDROUT4‐M) for three tributaries of the Saint‐Lawrence River (Québec, Canada) using daily discharge series generated with a hydrological model (HSAMI) from three global climate models (GCMs). For all tributaries, larger flood events occur in all future scenarios, leading to increases in bed‐material transport rates, number of transport events and number of days in the year where sediment transport occurs. The effective and half‐load discharges increase under all GCM simulations. Differences in flood timing within the tributaries, with a shift of peak annual discharge from the spring towards the winter, compared to the hydrograph of the Saint‐Lawrence River, generate higher sediment transport rates because of increased water surface slope and stream power. Previous research had shown that channel erosion is expected under all GCMs' discharge scenarios. This study shows that, despite lower bed elevations, flood risk is likely to increase as a result of higher flood magnitude, even with falling base level in the Saint‐Lawrence River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

This study aims to assess the potential impact of climate change on flood risk for the city of Dayton, which lies at the outlet of the Upper Great Miami River Watershed, Ohio, USA. First the probability mapping method was used to downscale annual precipitation output from 14 global climate models (GCMs). We then built a statistical model based on regression and frequency analysis of random variables to simulate annual mean and peak streamflow from precipitation input. The model performed well in simulating quantile values for annual mean and peak streamflow for the 20th century. The correlation coefficients between simulated and observed quantile values for these variables exceed 0.99. Applying this model with the downscaled precipitation output from 14 GCMs, we project that the future 100-year flood for the study area is most likely to increase by 10–20%, with a mean increase of 13% from all 14 models. 79% of the models project increase in annual peak flow.

Citation Wu, S.-Y. (2010) Potential impact of climate change on flooding in the Upper Great Miami River Watershed, Ohio, USA: a simulation-based approach. Hydrol. Sci. J. 55(8), 1251–1263.  相似文献   

17.
Long hydroclimate records are essential elements for the assessment and management of changing freshwater resources. These records are especially important in transboundary watersheds where international cooperation is required in the joint planning and management process of shared basins. Dendrochronological techniques were used to develop a multicentury record of April 1 snow water equivalent (SWE) for the Stikine River basin in northern British Columbia, Canada, from moisture‐sensitive white spruce (Picea glauca) tree rings. Explaining 43% of the instrumental SWE variability, to our knowledge, this research represents the first attempt to develop long‐term snowpack reconstructions in northern British Columbia. The results indicated that 15 extreme low April 1 SWE events occurred from 1789 to the beginning of the instrumental record in 1974. The reconstruction record also shows that the occurrence of hydrological extremes in the Stikine River basin is characterized by persistent below‐average periods in SWE consistent with phase shifts of the Pacific Decadal Oscillation (PDO). Spectral analyses indicate a very distinct in‐phase (positive) relationship between the multidecadal frequencies of variability (~40 years) extracted from the SWE tree‐ring reconstruction and other reconstructed winter and spring PDO indices. Comparison of the reconstructed SWE record with other tree‐ring‐derived PDO proxy records shows coherence at multidecadal frequencies of variability. The research has significant implications for regional watershed management by highlighting the hydrological response of the Stikine River basin to prior climate changes.  相似文献   

18.
This paper investigates the impact of a 1000‐year flood in August 2002 on floodplains and valley morphology of an Austrian mixed alluvial bed rock river. Discharges with a recurrence interval between 500 and 2000 years caused distinctive overbank scouring and material deposition in the floodplains. After the 1000‐year flood, those morphologically affected areas were at random intervals documented over the whole longitudinal profile. In addition to overbank erosion in curved sections (cut‐offs), the river bed locally widened, floodplain stripping occurred and local overbank scours were documented along straight parts of the river. A hydrodynamic‐numerical model, combined with field measurements, was used to analyse the cause of these erosional landforms. Based on the modelled hydraulic conditions for a one‐year flood (30–78 ms–1) and the catastrophic 2002 event (700–800 ms–1), the numerical results allowed a cause‐effect study with 19 parameters. Deterministic and statistical analysis (ANOVA, discriminant analysis) showed that the morphodynamic effects of the 2002 flood were influenced by the variability of valley morphology of the Kamp River, which led partially to supercritical flow during flood constriction. These processes were in some cases also anthropogenically influenced. Lateral constriction and expansion of the valley geometry over short distances led to scouring and aggradation within the inundated areas during the event. These morphological features were therefore responsible for the elongated scour holes in the floodplains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
三峡水库蓄水前后长江中下游流量特征变化及其对造床作用的影响一直受到学者的关注.采用枝城等6个水文站日均流量资料,分别统计了各站流量的经验频率分布,检验了8种概率密度函数的适用性,并讨论了三峡水库蓄水前后流量频率分布特征与造床流量的关系.研究表明:长江中下游干流洪中枯各级流量的频率分布具有分段特性,无法用皮尔逊Ⅲ型或对数...  相似文献   

20.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号