首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate models project warmer temperatures for the north‐west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater‐dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff‐dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross‐correlation between precipitation and discharge in the groundwater‐dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter‐annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater‐dominated streams makes them more sensitive than runoff‐dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Remote sensing is an important source of snow‐cover extent for input into the Snowmelt Runoff Model (SRM) and other snowmelt models. Since February 2000, daily global snow‐cover maps have been produced from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS). The usefulness of this snow‐cover product for streamflow prediction is assessed by comparing SRM simulated streamflow using the MODIS snow‐cover product with streamflow simulated using snow maps from the National Operational Hydrologic Remote Sensing Center (NOHRSC). Simulations were conducted for two tributary watersheds of the Upper Rio Grande basin during the 2001 snowmelt season using representative SRM parameter values. Snow depletion curves developed from MODIS and NOHRSC snow maps were generally comparable in both watersheds: satisfactory streamflow simulations were obtained using both snow‐cover products in larger watershed (volume difference: MODIS, 2·6%; NOHRSC, 14·0%) and less satisfactory streamflow simulations in smaller watershed (volume difference: MODIS, −33·1%; NOHRSC, −18·6%). The snow water equivalent (SWE) on 1 April in the third zone of each basin was computed using the modified depletion curve produced by the SRM and was compared with in situ SWE measured at Snowpack Telemetry sites located in the third zone of each basin. The SRM‐calculated SWEs using both snow products agree with the measured SWEs in both watersheds. Based on these results, the MODIS snow‐cover product appears to be of sufficient quality for streamflow prediction using the SRM in the snowmelt‐dominated basins. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Mountain headwater catchments in the semi‐arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. This study examined subsurface runoff in two hillslopes, one aspen dominated, the other conifer dominated, adjacent to a first order stream in snow‐driven northern Utah. Snow accumulation, soil moisture, trenchflow and streamflow were examined in hillslopes and their adjacent stream. Snow water equivalents (SWEs) were greater under aspen stands compared to conifer, the difference increasing with higher annual precipitation. Semi‐variograms of shallow spatial soil moisture patterns and transects of continuous soil moisture showed no increase in soil moisture downslope, suggesting the absence of subsurface flow in shallow (~12 cm) soil layers of either vegetation type. However, a clear threshold relationship between soil moisture and streamflow indicated hillslope–stream connectivity, deeper within the soil profile. Subsurface flow was detected at ~50 cm depth, which was sustained for longer in the conifer hillslope. Soil profiles under the two vegetation types varied, with deep aspen soils having greater water storage capacity than shallow rocky conifer soils. Though SWEs were less under the conifers, the soil profile had less water storage capacity and produced more subsurface lateral flow during the spring snowmelt. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
L. Li  S. P. Simonovic 《水文研究》2002,16(13):2645-2666
This study uses a system dynamics approach to explore hydrological processes in the geographic locations where the main contribution to flooding is coming from the snowmelt. Temperature is identified as a critical factor that affects watershed hydrological processes. Based on the dynamic processes of the hydrologic cycle occurring in a watershed, the feedback relationships linking the watershed structure, as well as the climate factors, to the streamflow generation were identified prior to the development of a system dynamics model. The model is used to simulate flood patterns generated by snowmelt under temperature change in the spring. Model structure captures a vertical water balance using five tanks representing snow, interception, surface, subsurface and groundwater storage. Calibration and verification results show that temperature change and snowmelt play a key role in flood generation. Results indicate that simulated values match observed data very well. The goodness‐of‐fit between simulated and observed peak flow data is measured using coefficient of efficiency, coefficient of determination and square of the residual mass curve coefficient. For the Assiniboine River all three measures were in the interval between 0·92 and 0·96 and for the Red River between 0·89 and 0·97. The model is capable of capturing the essential dynamics of streamflow formation. Model input requires a set of initial values for all state variables and the time series of daily temperature and precipitation information. Data from the Red River Basin, shared by Canada and the USA, are used in the model development and testing. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Two‐component hydrograph separations were performed for three, nested, snowmelt‐dominated catchments in Sequoia National Park. The purpose of the hydrograph separations was to: (i) differentiate between the old and new water contributions to discharge during snowmelt using δ18O signatures; (ii) identify the fraction of snowmelt that travelled through the subsurface (reactive) compartment during the snowmelt period using silica or sodium; and (iii) investigate the impact of changing end‐member signatures on the separations. ‘Old’ water refers to water that was stored in the watershed during the previous year, whereas ‘new’ water is current snowmelt. Hydrograph separations were performed for both a high‐accumulation (1998, annual precipitation 2·4 m) and an average year (1999, 1·3 m). The proportion of old water contribution to discharge during the rising limb of the hydrograph was 10–20%, with 80–100% of snowmelt being reactive, i.e. passing through soil and talus. Estimates of old and new soil water and direct snowmelt entering the stream varied among the catchments in 1999. Differences between these components were minimal in 1998, regardless of varying topography and differing proportions of soil, rock and talus. Using time‐dependent rather than constant δ18O meltwater and silica soil‐water signatures made a meaningful impact on both new and old water, and reactive and unreactive, estimates. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The snow treatment becomes an important component of Soil and Water Assessment Tool (SWAT)’s hydrology when spring flows are dominated by snow melting. However, little is known about SWAT's snow hydrology performance because most studies using SWAT were conducted in rainfall‐driven catchments. To fill this gap, the present study aims to evaluate the ability of SWAT in simulating snow‐melting‐dominated streamflow in the Outardes Basin in Northern Quebec. SWAT performance in simulating snowmelt is evaluated against observed streamflow data and compared to simulations from the operationally used Streamflow Synthesis and Reservoir Regulation (SSARR) model over that catchment. The SWAT 5‐year calibration showed a satisfactory performance at the daily and seasonal time scales with low volume biases. The SWAT validation was conducted over two (17‐year and 15‐year) periods. Performances were similar to the calibration period in simulating the daily and seasonal streamflows again with low model biases. The spring‐snowmelt‐generated peak flow was accurately simulated by SWAT both in magnitude and timing. When SWAT's results are compared to SSARR, similar performances in simulating the daily discharges were observed. SSARR simulates more accurately streamflow generated at the snowmelt onset whereas SWAT better predicts streamflow in summer, fall and winter. SWAT provided reasonable streamflow simulations for our snow‐covered catchment, but refinement of the process‐driven baseflow during the snowmelt onset could improve spring performances. Therefore, SWAT becomes an attractive tool for evaluating water resources management in Nordic environments when a distributed model is preferred or when water quality information (e.g. temperature) is required. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
An understanding of surface and subsurface water contributions to streamflow is essential for accurate predictions of water supply from mountain watersheds that often serve as water towers for downstream communities. As such, this study used the end‐member mixing analysis technique to investigate source water contributions and hydrologic flow paths of the 264 km2 Boulder Creek Watershed, which drains the Colorado Front Range, USA. Four conservative hydrochemical tracers were used to describe this watershed as a 3 end‐member system, and tracer concentration reconstruction suggested that the application of end‐member mixing analysis was robust. On average from 2009 to 2011, snowmelt and rainwater from the subalpine zone and groundwater sampled from the upper montane zone contributed 54%, 22%, and 24% of the annual streamflow, respectively. These values demonstrate increased rainwater and decreased snow water contributions to streamflow relative to area‐weighted mean values derived from previous work at the headwater scale. Young water (2.3 ± 0.8 months) fractions of streamflow decreased from 18–22% in the alpine catchment to 8–10% in the lower elevation catchments and the watershed outlet with implications for subsurface storage and hydrological connectivity. These results contribute to a process‐based understanding of the seasonal source water composition of a mesoscale watershed that can be used to extrapolate headwater streamflow generation predictions to larger spatial scales.  相似文献   

14.
Changes in the seasonality and timing of annual peak streamflow in the north‐central USA are likely because of changes in precipitation and temperature regimes. A source of long‐term information about flood events across the study area is the U.S. Geological Survey peak streamflow database. However, one challenge of answering climate‐related questions with this dataset is that even in snowmelt‐dominated areas, it is a mixed population of snowmelt/spring rain generated peaks and summer/fall rain generated peaks. Therefore, a process was developed to divide the annual peaks into two populations, or seasons, snowmelt/spring, and summer/fall. The two series were then tested for the hypotheses that because of changes in precipitation regimes, the odds of summer/fall peaks have increased and, because of temperature changes, snowmelt/spring peaks happen earlier. Over climatologically and geographically similar regions in the north‐central USA, logistic regression was used to model the odds of getting a summer/fall peak. When controlling for antecedent wet and dry conditions and geographical differences, the odds of summer/fall peaks occurring have increased across the study area. With respect to timing within the seasons, trend analysis showed that in northern portions of the study region, snowmelt/spring peaks are occurring earlier. The timing of snowmelt/spring peaks in three regions in the northern part of the study area is earlier by 8.7– 14.3 days. These changes have implications for water interests, such as potential changes in lead‐time for flood forecasting or changes in the operation of flood‐control dams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Impacts of forest harvesting on groundwater properties, water flowpaths and streamflow response were examined 4 years after the harvest using a paired‐basin approach during the 2001 snowmelt in a northern hardwood landscape in central Ontario. The ability of two metrics of basin topography (Beven and Kirkby's ln(a/tan β) topographic index (TI) and distance to stream channel) to explain intra‐basin variations in groundwater dynamics was also evaluated. Significant relationships between TI and depth to potentiometric surface for shallow groundwater emerged, although the occurrence of these relationships during the melt differed between harvested and control basins, possibly as a result of interbasin differences in upslope area contributing to piezometers used to monitor groundwater behaviour. Transmissivity feedback (rapid streamflow increases as the water table approaches the soil surface) governed streamflow generation in both basins, and the mean threshold depths at which rapid streamflow increases corresponded to small rises in water level were similar for harvested (0·41 ± 0·05 m) and forested (0·38 ± 0·04 m) basins. However, topographic properties provided inconsistent explanations of spatial variations in the relationship between streamflow and depth to water at a given piezometer for both basins. Streamflow from the harvested basin exceeded that from the forested basin during the 2001 melt, and hydrometric and geochemical tracer results indicated greater runoff from the harvested basin via surface and near‐surface pathways. These differences are not solely attributable to harvesting, since the difference in spring runoff from the harvested basin relative to the forested control was not consistently larger than under pre‐harvest conditions. Nevertheless, greater melt rates following harvesting appear to have increased the proportion of water delivery to the stream channel via surface and near‐surface pathways. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi‐variable and multi‐site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11‐year historical flow record (1990–2000); 1990–94 was used for calibration and 1995–2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash–Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub‐basins, and subcatchments). The use of an integrated multi‐variable and multi‐site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The mid‐ to high‐boreal forest in Canada occupies the discontinuous permafrost zone, and is often underlain by glaciolacustrine sediments mantled by a highly porous organic mat. The result is a poorly drained landscape dominated by wetlands. Frost‐table dynamics and surface storage conditions help to control runoff contributions from various landscape elements, hydrological linkages between these elements, and basin streamflow during spring snowmelt. Runoff components and pathways in a forested peatland basin were assessed during two spring snowmelts with contrasting input and basin conditions. Runoff from relatively intense melt (up to 16 mm day?1) on slopes with limited soil thawing combined with large pre‐melt storage in surface depressions to produce high flows composed primarily of meltwater (78% of the 0·29 m3 s?1 peak discharge) routed over wetland surfaces and through permeable upper peat layers. Melt intensity was less in the subsequent year (maximum of 10 mm day?1) and active layer development was relatively greater (0·2 m deeper at the end of spring melt), resulting in less slope runoff. Coupling of reduced slope contributions with lower storage levels in basin wetlands led to relatively subdued streamflows dominated by older water (73% of the 0·09 m3 s?1 peak discharge) routed through less‐permeable deeper peat layers and mineral soil. Interannual differences in runoff conditions provide important insight for the development of distributed hydrological models for boreal forest basins and into potential influences on biogeochemical cycling in this landscape under a warming climate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号