首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seepage meters modified for use in flowing water were used to directly measure rates of exchange between surface and subsurface water in a gravel‐ and cobble bed river in western Pennsylvania, USA (Allegheny River, Qmean = 190 m3/s) and a sand‐ and gravel‐bed river in Colorado, USA (South Platte River, Qmean = 9·7 m3/s). Study reaches at the Allegheny River were located downstream from a dam. The bed was stable with moss, algae, and river grass present in many locations. Median seepage was + 0·28 m/d and seepage was highly variable among measurement locations. Upward and downward seepage greatly exceeded the median seepage rate, ranging from + 2·26 (upward) to ? 3·76 (downward) m/d. At the South Platte River site, substantial local‐scale bed topography as well as mobile bedforms resulted in spatial and temporal variability in seepage greatly in exceedence of the median groundwater discharge rate of 0·24 m/d. Both upward and downward seepage were recorded along every transect across the river with rates ranging from + 2·37 to ? 3·40 m/d. Despite a stable bed, which commonly facilitates clogging by fine‐grained or organic sediments, seepage rates at the Allegheny River were not reduced relative to those at the South Platte River. Seepage rate and direction depended primarily on measurement position relative to local‐ and meso‐scale bed topography at both rivers. Hydraulic gradients were small at nearly all seepage‐measurement locations and commonly were not a good indicator of seepage rate or direction. Therefore, measuring hydraulic gradient and hydraulic conductivity at in‐stream piezometers may be misleading if used to determine seepage flux across the sediment‐water interface. Such a method assumes that flow between the well screen and sediment‐water interface is vertical, which appears to be a poor assumption in coarse‐grained hyporheic settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A thin layer of fine‐grained sediment commonly is deposited at the sediment–water interface of streams and rivers during low‐flow conditions, and may hinder exchange at the sediment–water interface similar to that observed at many riverbank‐filtration (RBF) sites. Results from a numerical groundwater‐flow model indicate that a low‐permeability veneer reduces the contribution of river water to a pumping well in a riparian aquifer to various degrees, depending on simulated hydraulic gradients, hydrogeological properties, and pumping conditions. Seepage of river water is reduced by 5–10% when a 2‐cm thick, low‐permeability veneer is present on the bed surface. Increasing thickness of the low‐permeability layer to 0·1 m has little effect on distribution of seepage or percentage contribution from the river to the pumping well. A three‐orders‐of‐magnitude reduction in hydraulic conductivity of the veneer is required to reduce seepage from the river to the extent typically associated with clogging at RBF sites. This degree of reduction is much larger than field‐measured values that were on the order of a factor of 20–25. Over 90% of seepage occurs within 12 m of the shoreline closest to the pumping well for most simulations. Virtually no seepage occurs through the thalweg near the shoreline opposite the pumping well, although no low‐permeability sediment was simulated for the thalweg. These results are relevant to natural settings that favour formation of a substantial, low‐permeability sediment veneer, as well as central‐pivot irrigation systems, and municipal water supplies where river seepage is induced via pumping wells. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

3.
Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.  相似文献   

4.
Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain‐size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman‐Kozeny) commonly used to estimate hydraulic conductivity from grain‐size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1 m/day for the beach subgroups, 3.4 to 7.1 m/day for dune subgroups, and 2.2 to 11 m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23 m/day.  相似文献   

5.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Variations in lake seepage were studied along a 130 m shoreline of Mirror Lake NH. Seepage was downward from the lake to groundwater; rates measured from 28 seepage meters varied from 0 to ?282 cm/d. Causes of this variation were investigated using electrical resistivity surveys and lakebed sediment characterization. Two‐dimensional (2D) resistivity surveys showed a transition in lakebed sediments from outwash to till that correlated with high‐ and low‐seepage zones, respectively. However, the 2D survey was not able to predict smaller scale variations within these facies. In the outwash, fast seepage was associated with permeability variations in a thin (2 cm) layer of sediments at the top of the lakebed. In the till, where seepage was slower than that in the outwash, a three‐dimensional resistivity survey mapped a point of high seepage associated with heterogeneity (lower resistivity and likely higher permeability). Points of focused flow across the sediment–water interface are difficult to detect and can transmit a large percentage of total exchange. Using a series of electrical resistivity geophysical methods in combination with hydrologic data to locate heterogeneities that affect seepage rates can help guide seepage meter placement. Improving our understanding of the causes and types of heterogeneity in lake seepage will provide better data for lake budgets and prediction of mass transfer of solutes or contaminants between lakes and groundwater.  相似文献   

7.
The majority of sediment leaving catchments may be from streambank failure. Seepage erosion of unconsolidated sand above a restrictive layer is an important erosion process in incised streams that leads to streambank failure by undercutting banks. The objective of this study was to determine the impact of soil properties on seepage erosion and the resulting streambank failure. Seepage flow and sediment concentrations were measured in situ at eight locations along the banks of a deeply incised stream in northern Mississippi. Using field observations as a guide, the soil profile conditions of a shallow (45 cm) streambank, consisting of 30 cm of topsoil, a 10 cm conductive layer, and a 5 cm restrictive layer, were mimicked in laboratory lysimeter experiments to quantify the hydrologic properties controlling seepage erosion and bank failure under a 40 cm head. The time to flow initiation and the flow rate were linearly related to the slope of the restrictive layer. Seepage erosion began within minutes of flow initiation and resulted in substantial (3 to 34 cm) undercutting of the bank. Sediment concentrations of seeps were as high as 660 g l?1 in situ and 4500 g l?1 in the lysimeters. Sediment concentrations were related to the layer slope, thereby indicating the importance of detailed site characterization. The USDA‐ARS Streambank Stability model demonstrated the increase in instability of banks due to undercutting by seepage erosion, but failed to account for the sediment loss due to sapping for stable banks and overestimated the sediment loads for failed banks. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

8.
Large‐scale flow structures (LSFS) in the streamwise direction are important features of gravel‐bed river flows, because they may contribute to sediment transport and gas exchange. In the present study, these structures are detected using Huang's empirical mode decomposition and reconstructed with phase‐averaging techniques based on a Hilbert transform of the velocity signal. The analysis is based on the fluctuating component of 15 quasi‐instantaneous velocity profiles measured with a three‐dimensional (3D) acoustic Doppler velocity profiler (ADVP) in an armoured gravel‐bed river with a low relative submergence of 2.9 (ratio between flow depth and bed grain diameter). LSFS were identified in most of the measured profiles and consistently showed similar features. We were able to characterize the geometry of these large‐scale coherent structures: the front has a vertical linear shift in the time domain and a vertical profile corresponding to a first quarter moon with the apex situated at z/h ≈ 0.4. In the vertical, the front scales with flow depth h, and in the streamwise direction, LSFS scale with three to seven times the mean flow depth. On the bed, the effect of LSFS is a periodic non‐linear variation of the friction velocity on average between 0.90 and 1.10 times the mean value. A model for the friction velocity cycle resulting from LSFS oscillation is presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy‐bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self‐purging groundwater‐sampling device.  相似文献   

10.
Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment‐water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h—greater than the expected net‐zero flux, but significantly less than theoretical wave‐driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one‐way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments.  相似文献   

11.
There are many field techniques used to quantify rates of hyporheic exchange, which can vary in magnitude and direction spatially over distances of only a few metres, both within and between morphological features. We used in‐stream mini‐piezometers and heat transport modelling of stream and streambed temperatures to quantify the rates and directions of water flux across the streambed interface upstream and downstream of three types of in‐stream geomorphic features: a permanent dam, a beaver dam remnant and a stream meander. We derived hyporheic flux estimates at three different depths at six different sites for a month and then paired those flux rates with measurements of gradient to derive hydraulic conductivity (K) of the streambed sediments. Heat transport modelling provided consistent daily flux estimates that were in agreement directionally with hydraulic gradient measurements and also identified vertical heterogeneities in hydraulic conductivity that led to variable hyporheic exchange. Streambed K varied over an order of magnitude (1·9 × 10?6 to 5·7 × 10?5 m/s). Average rates of hyporheic flux ranged from static (q < ±0·02 m/day) to 0·42 m/day. Heat transport modelling results suggest three kinds of flow around the dams and the meander. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Experimental investigations have been done to analyze turbulent structures in curved sand bed channels with and without seepage. Measures of turbulent statistics such as time‐averaged near‐bed velocities, Reynolds stresses, thickness of roughness sublayer and shear velocities were found to increase with application of downward seepage. Turbulent kinetic energy and Reynolds normal stresses are increased in the streamwise direction under the action of downward seepage, causing bed particles to move rapidly. Analysis of bursting events shows that the relative contributions of all events (ejections, sweeps and interactions) increase throughout the boundary layer, and the thickness of the zone of dominance of sweep events, which are responsible for the bed material movement, increases in the case of downward seepage. The increased sediment transport rate due to downward seepage deforms the cross‐sectional geometry of the channel made of erodible boundaries, which is caused by an increase in flow turbulence and an associated decrease in turbulent kinetic energy dissipation and turbulent diffusion.  相似文献   

14.
Streambank erosion is a primary source of suspended sediments in many waterways of the US Atlantic Piedmont. This problem is exacerbated where banks are comprised of fine sediment produced by the intensive land use practices of early European settlers. A stream in this region, Richland Creek incises into banks comprised of three stratigraphic layers associated with historic land use: pre‐European settlement, early European agriculture and development, and water‐powered milldam operation. This study aims to identify the bank processes along a reach of Richland Creek that is eroding towards its pre‐disturbance elevation. The volume of material that has eroded along this stream since the milldam breached was calculated by differencing a reconstructed surface of the pond bed and an aerial lidar digital terrain model (DTM). Immediately downstream from the study reach, the channel is floored by bedrock and immediately upstream the rate of channel erosion approximately doubled along the longitudinal profile of Richland Creek, which indicate that the study reach spans the transition from a channel dominated by vertical incision in the upstream direction to horizontal widening in the downstream direction. The combined hydrometeorological conditions and dominant processes causing reach‐scale cut bank erosion were investigated with analyses of stream stage, precipitation, and streambank volumetric and surfaces change that was measured during nine terrestrial lidar surveys in 2010–2012. The spatial variability of erosion during a simulated precipitation event was examined in a field‐based experiment. Erosion was greatest where mill pond sediment columns detached along vertical desiccation and horizontal seepage cracks. This sediment accumulated on the bank toe throughout the study and was a source of readily‐entrained fine sediment contrary to the upper reaches where depositional accommodation space is more limited. Findings suggest that hotspots of sediment excavation progress upstream, indicating that restoration efforts should focus upon stabilizing banks at these locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
An investigation has been conducted to identify the key parameters that are likely to scale laboratory sediment deposits to the field scale. Two types of bed formation were examined: one where sediment is manually placed and screeded and the second where sediment is fed into a running flume. This later technique created deposits through sequential cycles of sediment transport and deposition. Detailed bed surface topography measurements have been made over a screeded bed and three fed beds. In addition, bulk subsurface porosity and hydraulic conductivity have been measured. By comparing the four beds, results revealed that certain physical properties of the screeded bed were clearly different from those of the fed beds. The screeded bed had a random organization of grains on both the surface and within the subsurface. The fed beds exhibited greater surface and subsurface organization and complexity, and had a number of properties that closely resembled those found for water‐worked gravel beds. The surfaces were water‐worked and armoured and there was preferential particle orientation and direction of imbrication in the subsurface. This suggested that fed beds are able to simulate, in a simplified manner, both the surface and subsurface properties of established gravel‐bed river deposits. The near‐bed flow properties were also compared. It revealed that the use of a screeded bed will typically cause an underestimation in the degree of temporal variability in the flow. Furthermore, time‐averaged streamwise velocities were found to be randomly organized over the screeded bed but were organized into long streamwise flow structures over the fed beds. It clearly showed that caution should be taken when comparing velocity measurements over screeded beds with water‐worked beds, and that the formation of fed beds offers an improved way of investigating intragravel flow and sediment–water interface exchange processes in gravel‐bed rivers at a laboratory scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Hyporheic restoration is of increasing interest given the role of hyporheic zones in supporting ecosystem services and functions. Given the prevalence of sediment pollution to waterways, an emerging restoration technique involves the removal of sediment from the interstices of gravel‐bed streams. Here, we document streambed sediment removal following a large, accidental release of fine sediment into a gravel‐bed river. We use this as a natural experiment to assess the impact of fine sediment removal on reach‐scale measures of transient storage and to document the responses of reaches with contrasting morphology (restored vs. unrestored) to changing discharge one‐field season. We conducted a series of conservative solute tracer experiments in each reach, interpreting both summary statistics for the recovered in‐stream solute tracer time series. Additionally, we applied the transient storage model to interpret the results via model parameters, including a Monte Carlo analysis to measure parameter identifiability and sensitivity in each experiment. Despite the restoration effort resulting in an open matrix gravel bed in the restored reach, we did not find the significant differences in most time series metrics describing reach‐scale transport and transient storage. We hypothesize that this is due to enhanced vertical exchange with the gravel bed in the restored reach replacing lateral exchange with macrophyte beds in the unrestored reach, developing a conceptual model to explain our findings. Consequently, we found that the impact of reach‐scale removal of fine sediment is not measureable using reach‐scale solute tracer studies. We offer recommendations for future studies seeking to measure the impacts of stream restoration at the reach scale.  相似文献   

17.
Mountain rivers can be subject to strong constraints imposed by changes in gradient and grain size supplied by processes such as glaciation and rockfall. Nonetheless, adjustments in the channel geometry and hydraulics of mountain rivers at the reach scale can produce discernible patterns analogous to those in fully alluvial rivers. Mountain rivers can differ in that imposed reach‐scale gradient is an especially important control on reach‐scale channel characteristics, as indicated by examination of North St Vrain Creek in Colorado. North St Vrain Creek drains 250 km2 of the Rocky Mountains. We used 25 study reaches within the basin to examine controls on reach‐scale channel geometry. Variables measured included channel geometry, large woody debris, grain size, and mean velocity. Drainage area at the study reaches ranged from 2·2 to 245 km2, and gradient from 0·013 to 0·147 m m?1. We examined correlations among (1) potential reach‐scale response variables describing channel bankfull dimension and shape, hydraulics, bedform wavelength and amplitude, grain size, ?ow resistance, standard deviation of hydraulic radius, and volume of large woody debris, and (2) potential control variables that change progressively downstream (drainage area, discharge) or that are likely to re?ect a reach‐speci?c control (bed gradient). We tested the hypothesis that response variables correlate most strongly with local bed gradient because of the segmented nature of mountain channels. Results from simple linear regression analyses indicate that most response variables correlate best with gradient, although channel width and width/depth ratio correlate best with discharge. Multiple regression analyses using Mallow's Cp selection criterion and log‐transformation of all variables produced similar results in that most response variables correlate strongly with gradient. These results suggest that the hypothesis is partially supported: channel bed gradient is likely to be a good predictor for many reach‐scale response variables along mountain rivers, but discharge is also an important predictor for some response variables. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Velocity measurements carried out by an acoustic doppler velocimeter (ADV) in a rectangular laboratory ?ume having a gravel bed are presented. The velocity pro?les are measured in six verticals of the channel cross‐section having an increasing distance (from 4 to 38·5 cm) from the ?ume wall. The experimental runs are carried out for ?ve different bed arrangements, characterized by different concentrations of coarser elements, and for the two conditions of small‐ and large‐scale roughness. For both hydraulic conditions, the velocity measurements are ?rst used to test the applicability of the Dean pro?le and of the logarithmic pro?le corrected by a divergence function proposed in this paper. Then, for each value of the depth sediment ratio h/d84, the non‐dimensional friction factor parameter is calculated by integration of the measured velocity distributions in the different verticals of the cross‐section. Finally a semi‐logarithmic ?ow resistance equation is empirically deduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Discharge of groundwater into lakes (lacustrine groundwater discharge, LGD) can play a major role in water balances of lakes. Unfortunately, studies often neglect this input path because of methodological difficulties in its determination. Direct measurements of LGD are labor‐consuming and prone to error. The present study uses both spatially variable hydraulic‐head data and meteorological data to estimate groundwater input by LGD and lake water output through infiltration. The study sites are two shallow, groundwater‐fed lakes without any surface inflows or outflows. Horizontally interpolated groundwater heads were combined with lake water levels to obtain vertical hydraulic gradients between the aquifer and the lake, which are separated by a thick layer of lake bed sediment which has a much lower hydraulic conductivity than the underlying aquifer. By fitting the hydraulic gradient to the results of a simple mass balance and considering the process of clogging, we were able to estimate the hydraulic conductivity of the lake bed sediments. We calculated groundwater inputs by LGD and lake water outputs by infiltration on an annual basis. Although our method requires several assumptions, the results are reasonable and provide useful information about the exchange between the aquifer and the lake, which can, for example, be used for the calculation of nutrient mass balances.  相似文献   

20.
Traditionally, approaches to account for the effect of the boundary roughness of a gravel‐bed river have used a grain‐size index of the bed surface as a surrogate for hydraulic resistance. The use of a single grain‐size does not take into account the spatial heterogeneity in the bed surface and how this heterogeneity imparts resistance on the flow, nor the way in which this relationship changes with variables such as flow stage. A new technique to remotely quantify hydraulic resistance is proposed. It is based on measuring the dynamics of a river's water surface and relating this to the actual hydraulic resistance created by a rough sediment boundary. The water surface dynamics are measured using a new acoustic technique, grazing angle sound propagation (GRASP). This proposed method to measure hydraulic resistance is based on a greater degree of physical reasoning, and this is discussed in the letter. By measuring acoustically the temporal dynamics of turbulent water surfaces over a water‐worked gravel bed in a laboratory flume, a dependency is demonstrated between the temporal variation in the reflected acoustic pressure and measured hydraulic resistance. It is shown that the standard deviation in acoustic pressure decreases with increasing hydraulic resistance. This is shown to apply for a range of relative submergences and bed slopes that are typical of gravel‐bed rivers. This remote sensing technique is both rapid and inexpensive, and has the potential to be applied to natural river channels and to other environmental turbulent flows, such as overland flows. A whole new class of low‐cost, remote and non‐intrusive instruments could be developed as a result and used in a wide range of hydraulic and hydrological applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号