首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen Sun  Li Ren 《水文研究》2013,27(8):1200-1222
Quantitative assessment of surface water resources (SWRs) and evapotranspiration (ET) is essential and significant for reasonably planning and managing water resources in the Haihe River basin which is facing severe water shortage. In this study, a distributed hydrological model of the Haihe River basin was constructed using the Soil and Water Assessment Tool, well considering the reservoirs and agricultural management practices for reasonable simulation. The crop parameters were independently calibrated with the observed crop data at six experimental stations. Then, sensitivity ranks of hydrological parameters were analysed, which suggested the important parameters used for calibration. The model was successfully calibrated using the monthly observed data of discharge in around 1970–1991 and actual ET (ETa) in 2002–2004 for the mountainous area and Haihe plain, respectively. Meanwhile, good agreements between the simulated and statistical crop yields in 1985–2005 further verified the model's appropriateness. Finally, the calibrated model was used to assess SWRs and ETa in time and space during 1961–2005. Results showed that the average annual natural SWRs and the ETa were about 17.5 billion cubic metre and 542 mm, respectively, both with a slight downward trend. The spatial distributions of both SWRs and ETa were significantly impacted by variations of precipitation and land use. Moreover, the reservoir in operation was the main factor for the noticeable decline of actual SWRs. In the Haihe plain, the ETa with irrigation was increased by 46% compared with that under rainfed conditions. In addition, this study identified the regions with potential to improve the irrigation effects on water use. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Using the defined sensitivity index, the sensitivity of streamflow, evapotranspiration and soil moisture to climate change was investigated in four catchments in the Haihe River basin. Climate change contained three parts: annual precipitation and temperature change and the change of the percentage of precipitation in the flood season (Pf). With satisfying monthly streamflow simulation using the variable infiltration capacity model, the sensitivity was estimated by the change of simulated hydrological variables with hypothetical climatic scenarios and observed climatic data. The results indicated that (i) the sensitivity of streamflow would increase as precipitation or Pf increased but would decrease as temperature increased; (ii) the sensitivity of evapotranspiration and soil moisture would decrease as precipitation or temperature increased, but it to Pf varied in different catchments; and (iii) hydrological variables were more sensitive to precipitation, followed by Pf, and then temperature. The nonlinear response of streamflow, evapotranspiration and soil moisture to climate change could provide a reference for water resources planning and management under future climate change scenarios in the Haihe River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

4.
This study investigates the impact of climate change on rainfall, evapotranspiration, and discharge in northern Taiwan. The upstream catchment of the Shihmen reservoir in northern Taiwan was chosen as the study area. Both observed discharge and soil moisture were simultaneously adopted to optimize the HBV‐based hydrological model, clearly improving the simulation of the soil moisture. The delta change of monthly temperature and precipitation from the grid cell of GCMs (General Circulation Models) that is closest to the study area were utilized to generate the daily rainfall and temperature series based on a weather generating model. The daily rainfall and temperature series were further inputted into the calibrated hydrological model to project the hydrological variables. The studies show that rainfall and discharge will be increased during the wet season (May to October) and decreased during the dry season (November to April of the following year). Evapotranspiration will be increased in the whole year except in November and December. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Climate change may have significant consequences for water resources availability and management at the basin scale. This is particularly true for areas already suffering from water stress, such as the Mediterranean area. This work focused on studying these impacts in the Llobregat basin supplying the Barcelona region. Several climate projections, adapted to the spatiotemporal resolution of the study, were combined with a daily hydrological model to estimate future water availability. Depending on the scenario and the time period, different assessment indicators such as reliability and resilience showed a future decrease in water resources (up to 40%), with drought periods becoming more frequent. An additional uncertainty analysis showed the high variability of the results (annual water availability ranging from 147 hm3/year to 274 hm3/year), thus making accurate projections difficult. Finally, the study illustrates how climate change could be taken into account to provide adaptive measures for the future.
Editor M.C. Acreman; Associate editor J. Thompson  相似文献   

6.
This paper discusses the analysis and modelling of the hydrological system of the basin of the Kara River, a transboundary river in Togo and Benin, as a necessary step towards sustainable water resources management. The methodological approach integrates the use of discharge parameters, flow duration curves and the lumped conceptual model IHACRES. A Sobol sensitivity analysis is performed and the model is calibrated by applying the shuffled complex evolution algorithm. Results show that discharge generation in three nested catchments of the basin is affected by landscape physical characteristics. The IHACRES model adequately simulates the rainfall–runoff dynamics in the basin with a mean modified Nash-Sutcliffe efficiency measure of 0.6. Modelling results indicate that parameters controlling rainfall transformation to effective rainfall are more sensitive than those routing the streamflow. This study provides insights into understanding the catchment’s hydrological system. Nevertheless, further investigations are required to better understand detailed runoff generation processes.
EDITOR M.C. Acreman; ASSOCIATE EDITOR N Verhoest  相似文献   

7.
ABSTRACT

Climate change alters hydrological processes and results in more extreme hydrological events, e.g. flooding and drought, which threaten human livelihoods. In this study, the large-scale distributed variable infiltration capacity (VIC) model was used to simulate future hydrological processes in the Yarlung Zangbo River basin (YZRB), China, with a combination of the CMIP5 (Coupled Model Intercomparison Project, fifth phase) and MIROC5 (Model for Interdisciplinary Research on Climate, fifth version) datasets. The results indicate that the performance of the VIC model is suitable for the case study, and the variation in runoff is remarkably consistent with that of precipitation, which exhibits a decreasing trend for the period 2046–2060 and an increasing trend for 2086–2100. The seasonality of runoff is evident, and substantial increases are projected for spring runoff, which might result from the increase in precipitation as well as the increase in the warming-induced melting of snow, glaciers and frozen soil. Moreover, evapotranspiration exhibits an increase between 2006–2020 and 2046–2060 over the entire basin, and soil moisture decreases in upstream areas and increases in midstream and downstream areas. For 2086–2100, both evapotranspiration and soil moisture increase slightly in the upstream and midstream areas and decrease slightly in the downstream area. The findings of this study could provide references for runoff forecasting and ecological protection for similar studies in the future.  相似文献   

8.
ABSTRACT

The impact of climate change on hydrology and water salinity of a valuable coastal wetland (Anzali) in northern Iran is assessed using daily precipitation and temperature data from 19 models of Coupled Model Inter-comparison Project Phase 5. The daily data are transiently downscaled using the Long Ashton Research Station Weather Generator to three climatic stations. The temperature is projected to increase by +1.6, +1.9 and +2.7°C and precipitation to decrease by 10.4%, 12.8% and 12.2% under representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, respectively. The wetland hydrology and water salinity are assessed using the water balance approach and mixing equation, respectively. The upstream river flow modelled by the Soil and Water Assessment Tool is projected to reduce by up to 18%, leading to reductions in wetland volume (154 × 106 m3), area (57.47 km2) and depth (2.77 m) by 34%, 21.1% and 20.2%, respectively, under climate change, while the mean annual total dissolved solids (1675 mg/L) would increase by 49%. The reduced volume and raised salinity may affect the wetland ecology.  相似文献   

9.
Climate change adaptation has become the current focus of research due to the remarkable potential of climate change to alter the spatial and temporal distribution of global water availability. Although reservoir operation is a potential adaptation option, earlier studies explicitly demonstrated only its historical quantitative effects. Therefore, this article evaluated the possibility of reservoir operation from an adaptation viewpoint for regulating the future flow using the H08 global hydrological model with the Chao Phraya River basin as a case study. This basin is the largest river system in Thailand and has often been affected by extreme weather challenges in the past. Future climate scenarios were constructed from the bias-corrected outputs of three general circulation models from 2080 to 2099 under RCP4.5 and RCP8.5. The important conclusions that can be drawn from this study are as follows: (i) the operation of existing and hypothetical (i.e., construction under planning) reservoirs cannot reduce the future high flows below the channel carrying capacity, although it can increase low flows in the basin. This indicates that changes in the magnitude of future high flow due to climate change are likely to be larger than those achieved by reservoir operation and there is a need for other adaptation options. (ii) A combination of reservoir operation and afforestation was considered as an adaptation strategy, but the magnitude of the discharge reduction in the wet season was still smaller than the increase caused by warming. This further signifies the necessity of combining other structural, as well as non-structural, measures. Overall, this adaptation approach for assessing the effect of reservoir operation in reducing the climate change impacts using H08 model can be applied not only in the study area but also in other places where climate change signals are robust.  相似文献   

10.
Abstract

Climate change will likely have severe effects on water shortages, flood disasters and the deterioration of aquatic systems. In this study, the hydrological response to climate change was assessed in the Wei River basin (WRB), China. The statistical downscaling method (SDSM) was used to downscale regional climate change scenarios on the basis of the outputs of three general circulation models (GCMs) and two emissions scenarios. Driven by these scenarios, the Soil and Water Assessment Tool (SWAT) was set up, calibrated and validated to assess the impact of climate change on hydrological processes of the WRB. The results showed that the average annual runoff in the periods 2046–2065 and 2081–2100 would increase by 12.4% and 45%, respectively, relative to the baseline period 1961–2008. Low flows would be much lower, while high flows would be much higher, which means there would be more extreme events of droughts and floods. The results exhibited consistency in the spatial distribution of runoff change under most scenarios, with decreased runoff in the upstream regions, and increases in the mid- and lower reaches of the WRB.
Editor Z.W. Kundzewicz; Associate editor D. Yang  相似文献   

11.
12.
Abstract

An integrated model, combining a surface energy balance system, an LAI-based interception model and a distributed monthly water balance model, was developed to predict hydrological impacts of land-use/land-cover change (LUCC) in the East River basin, China, with the aid of GIS/RS. The integrated model is a distributed model that not only accounts for spatial variations in basin terrain, rainfall and soil moisture, but also considers spatial and temporal variation of vegetation cover and evapotranspiration (ET), in particular, thus providing a powerful tool for investigating the hydrological impact of LUCC. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time series of precipitation from 170 stations in the basin. The model was calibrated and validated based on river discharge data from three stations in the basin for 21 years. The calibration and validation results suggested that the model is suitable for application in the basin. The results show that ET has a positive relationship with LAI (leaf area index), while runoff has a negative relationship with LAI in the same climatic zone that can be described by the surface energy balance and water balance equation. It was found that deforestation would cause an increase in annual runoff and a decrease in annual ET in southern China. Monthly runoff for different land-cover types was found to be inversely related to ET. Also, for most of the scenarios, and particularly for grassland and cropland, the most significant changes occurred in the rainy season, indicating that deforestation would cause a significant increase in monthly runoff in that season in the East River basin. These results are important for water resources management and environmental change monitoring.
Editor Z.W. Kundzewicz  相似文献   

13.
14.
Dejuan Meng  Xingguo Mo 《水文研究》2012,26(7):1050-1061
Influences of climatic change on the components of global hydrological cycle, including runoff and evapotranspiration are significant in the mid‐ and high‐latitude basins. In this paper, the effect of climatic change on annual runoff is evaluated in a large basin—Songhua River basin which is located in the northeast of China. A method based on Budyko‐type equation is applied to separate the contributions of climatic factors to changes in annual runoff from 1960 to 2008, which are computed by multiplying their partial derivatives by the slopes of trends in climate factors. Furthermore, annual runoff changes are predicted under IPCC SRES A2 and B2 scenarios with projections from five GCMs. The results showed that contribution of annual precipitation to annual runoff change was more significant than that of annual potential evapotranspiration in the Songhua River basin; and the factors contributing to annual potential evapotranspiration change were ranked as temperature, wind speed, vapour pressure, and sunshine duration. In the 2020s, 2050s, and 2080s, changes in annual runoff estimated with the GCM projections exhibited noticeable difference and ranged from ? 8·4 to ? 16·8 mm a?1 (?5·77 to ? 11·53% of mean annual runoff). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Since the 1960s, dramatic changes have taken place in land-use patterns characterized by the persistent expansion of cultivated land and a continuous decrease in natural woodland and grassland in the arid inland river basins of China. It is very important to assess the effects of such land-use changes on the hydrological processes so vital for water resource management and sustainable development on the catchment scale. The Maying River catchment, a typical arid inland watershed located in the middle of the Hexi Corridor in northwest China, was the site chosen to investigate the hydrological responses to land-use changes. The annual runoff, base flow, maximum peak flow, and typical seasonal runoff in both spring and autumn flood periods were selected as the variables in the hydrological processes. Statistical-trend analysis and curvilinear regression were utilized to detect the trends in hydrological variables while eliminating the climatic influence. The relationship between cultivated land-use and hydrological variables was analyzed based on four periods of land-use variation data collected since 1965. A runoff model was established composed of two factors, i.e., cultivated land use and precipitation. The impact of land use changes, especially in the large ar- eas of upstream woodland and grassland turned into cultivated lands since 1967, has resulted in a mean annual runoff decrease of 28.12%, a base flow decline of 35.32%, a drop in the maximum peak discharge of 35.77%, and mean discharge decreases in spring and autumn of 36.05% and 24.87% respectively, of which the contribution of cultivated land expansion to the influence of annual runoff amounts to 77%-80%, with the contribution to the influence of spring discharge being 73%-81%, and that to the influence of base flow reaching 62%-65%. Thus, a rational regulation policy of land use patterns is vitally important to the sustainable use of water resources and the proper development of the entire catchment.  相似文献   

16.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Variations in streamflows of five tributaries of the Poyang Lake basin, China, because of the influence of human activities and climate change were evaluated using the Australia Water Balance Model and multivariate regression. Results indicated that multiple regression models were appropriate with precipitation, potential evapotranspiration of the current month, and precipitation of the last month as explanatory variables. The NASH coefficient for the Australia Water Balance Model was larger than 0.842, indicating satisfactory simulation of streamflow of the Poyang Lake basin. Comparison indicated that the sensitivity method could not exclude the benchmark‐period human influence, and the human influence on streamflow changes was overestimated. Generally, contributions of human activities and climate change to streamflow changes were 73.2% and 26.8% respectively. However, human‐induced and climate‐induced influences on streamflow were different in different river basins. Specifically, climate change was found to be the major driving factor for the increase of streamflow within the Rao, Xin, and Gan River basins; however, human activity was the principal driving factor for the increase of streamflow of the Xiu River basin and also for the decrease of streamflow of the Fu River basin. Meanwhile, impacts of human activities and climate change on streamflow variations were distinctly different at different temporal scales. At the annual time scale, the increase of streamflow was largely because of climate change and human activities during the 1970s–1990s and the decrease of streamflow during the 2000s. At the seasonal scale, climate change was the main factor behind the increase of streamflow in the spring and summer season. Human activities increase the streamflow in autumn and winter, but decrease the streamflow in spring. At the monthly scale, different influences of climate change and human activities were detected. Climate change was the main factor behind the decrease of streamflow during May to June and human activities behind the decrease of streamflow during February to May. Results of this study can provide a theoretical basis for basin‐scale water resources management under the influence of climate change and human activities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Combining the temperature and precipitation data from 77 climatological stations and the climatic and hydrological change data from three headstreams of the Tarim River: Hotan, Yarkant, and Aksu in the study area, the plausible association between climate change and the variability of water resources in the Tarim River Basin in recent years was investigated, the long-term trend of the hydrological time series including temperature, precipitation, and stream-flow was detected, and the possible association between the El Nino/Southern Oscillation (ENSO) and these three kinds of time series was tested. The results obtained in this study show that during the past years, the temperature experienced a significant monotonic increase at the speed of 5%, nearly 1℃rise; the precipitation showed a significant decrease in the 1970s, and a significant increase in the 1980s and 1990s, the average annual precipitation was increased with the magnitude of 6.8 mm per decade. A step change occurred in both temperature and  相似文献   

19.
呼伦湖水位、盐度变化(1961-2002年)   总被引:9,自引:5,他引:9  
为重建水文资料缺乏的呼伦湖流域的水文、水质序列,本研究基于长期的气象观测记录,采用彭曼公式估计了湖泊的水面蒸发,并建立一个两参数月水量平衡模型模拟湖周的入流,通过水量平衡计算.建立了42年(1961-2002)的呼伦湖区水量变化序列,并模拟了湖泊月水量、水位、含盐度的变化.模拟的水位、含盐度变化趋势与实际比较接近,模拟精度较好,其误差在可以接受范围内.所重建的42年呼伦湖区水文、含盐度序列,可为该区域的水资源评价管理、开发利用提供科学依据.  相似文献   

20.
Abstract

Most climate change projections show important decreases in water availability in the Mediterranean region by the end of this century. We assess those main climate change impacts on water resources in three medium-sized catchments with varying climatic conditions in northeastern Spain. A combination of hydrological modelling and climate projections with B1 and A2 IPCC emission scenarios is performed to infer future streamflows. The largest reduction (34%) in mean streamflows (for 2076–2100) is expected in the headwaters of the two wettest catchments, while lower decreases (25% of mean value for 2076–2100) are expected in the drier one. In all three catchments, autumn and summer are the seasons with the most notable projected decreases in streamflow, of 50% and 30%, respectively. Thus, ecological flows in the study area might be noticeably influenced by climate change, especially in the headwaters of the wet catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号