共查询到18条相似文献,搜索用时 0 毫秒
1.
2.
The Xiaohongshilazi deposit located in central Jilin Province, Northeast China, is a newly discovered and medium‐scale Pb–Zn–(Ag) deposit with ore reserves of 34,968 t Pb, 100,150 t Zn, and 158 t Ag. Two‐stage mineralization has been identified in this deposit. Stratiform volcanic‐associated massive sulfide (VMS) Pb–Zn mineralization interbedding with the marine volcanic rocks of the Late Carboniferous–Early Permian Daheshen Formation was controlled by the premineralization E–W‐trending faults. Vein‐type Pb–Zn–(Ag) mineralization occurs within or parallel to the granodiorite and diorite porphyries controlled by the major‐mineralization N–S‐trending faults that cut the stratiform mineralization and volcanic rocks. To constrain the age of vein‐type Pb–Zn–(Ag) mineralization and determine the relationship between mineralization and magmatism, we conducted LA–ICP–MS U–Pb dating on zircon from the ore‐bearing granodiorite and diorite porphyries and Rb–Sr dating on metal sulfide. Granodiorite and diorite porphyries yield zircon U–Pb weighted‐mean 206Pb/238U ages of 203.6 ± 1.8 Ma (Mean Standard Weighted Deviation [MSWD] = 1.8) and 225.6 ± 5.1 Ma (MSWD = 2.3), respectively. Sulfides from four vein‐type ore samples yield a Rb–Sr isochron age of 195 ± 17 Ma (MSWD = 4.0). These results indicate a temporal relationship between the granodiorite porphyry and vein‐type Pb–Zn–(Ag) mineralization. The granodiorite associated with vein‐type mineralization has high SiO2 (68.99–70.49 wt.%) and Na2O (3.9–4.2 wt.%; Na2O/K2O = 1.07–1.10) concentrations, and A/CNK values of 0.95–1.04; consequently, the intrusion is classified as a high‐K, calc‐alkaline, metaluminous I‐type granite. The granodiorite porphyry is enriched in large‐ion lithophile elements (e.g. Rb, Th, U, and K) and light REE and is depleted in high‐field‐strength elements (e.g. Nb, Ta, P, and Ti) and heavy REE, indicating that it represents a subduction‐related rock that formed at an active continental margin. Furthermore, the granodiorite porphyry has Mg# values of 31–34, indicating a lower crustal source. Based on petrological and geochemical features, we infer that the ore‐bearing granodiorite porphyry was derived from the partial melting of the lower crust. In summary, mineralization characteristics, cross‐cutting relationships, geochronological data, and regional tectonic evolution indicate that the region was the site of VMS Pb–Zn mineralization that produced stratiform orebodies within the Late Carboniferous–Early Permian marine volcanic rocks of the Daheshen Formation, followed by mesothermal magmatic hydrothermal vein‐type Pb–Zn–(Ag) mineralization associated with granodiorite porphyry induced by the initial subduction of the Paleo‐Pacific Plate beneath the Eurasia Plate during the Late Triassic–Early Jurassic. 相似文献
3.
The left-lateral Amanos Fault follows a 200-km-long and up to 2-km-high escarpment that bounds the eastern margin of the Amanos mountain range and the western margin of the Karasu Valley in southern Turkey, just east of the northeastern corner of the Mediterranean Sea. Regional kinematic models have reached diverse conclusions as to the role of this fault in accommodating relative motion between either the African and Arabian, Turkish and African, or Turkish and Arabian plates. Local studies have tried to estimate its slip rate by K–Ar dating Quaternary basalts that erupted within the Amanos Mountains, flowed across it into the Karasu Valley, and have since become offset. However, these studies have yielded a wide range of results, ranging from 0.3 to 15 mm a−1, which do not allow the overall role and significance of this fault in accommodating crustal deformation to be determined. We have used the Cassignol K–Ar method to date nine Quaternary basalt samples from the vicinity of the southern part of the Amanos Fault. These basalts exhibit a diverse chemistry, which we interpret as a consequence varying degrees of partial melting of their source combined with variable crustal contamination. This dating allows us to constrain the Quaternary slip rate on the Amanos fault to 1.0 to 1.6 mm a−1. The dramatic discrepancies between past estimates of this slip rate are partly due to technical difficulties in K–Ar dating of young basalts by isotope dilution. In addition, previous studies at the key locality of Hacılar have unwittingly dated different, chemically distinct, flow units of different ages that are juxtaposed. This low slip rate indicates that, at present, the Amanos Fault takes up a small proportion of the relative motion between the African and Arabian plates, which is transferred southward to the Dead Sea Fault Zone. It also provides strong evidence against the long-standing view that its slip continues offshore to the southwest along a hypothetical left-lateral fault zone located south of Cyprus. 相似文献
4.
Anderson J. Maraschin Ana Maria Mizusaki Horst Zwingmann Geraldo Norberto C. Sgarbi 《Geological Journal》2016,51(1):77-91
K–Ar dating was applied on authigenic potassic minerals which are abundant in sandstones from the south of the Sanfranciscana Basin, Western Minas Gerais State, central Brazil. The Quintinos Member fluvial sandstones (Três Barras Formation, Areado Group) contain significant amounts of authigenic K‐feldspar as microcrystals of adularia and sanidine habits. The ages of these microcrystals cluster into three groups: 106.1 ± 2.2, 89.9 ± 1.9 and 88.8 ± 1.8 Ma (from Albian to Coniacian). The older age of 106.1 ± 2.2 Ma was obtained from the coarse fraction analysed (10–20 µm) that can contain a mixture of detrital potassic minerals (K‐feldspar, muscovite, biotite and illite) and different authigenesis of K‐feldspar (overgrowths and microcrystals). Thus, only the younger ages were interpreted as precipitation of K‐feldspar microcrystals during the Late Cretaceous into the Quintinos Member sandstones. Moreover, these ages can document the formation of microcrystals within a few million years after deposition of the sandstones. The ages of authigenic illite from the Capacete Formation epiclastic sandstones (Mata da Corda Group) range from 88.5 ± 1.9 to 71.5 ± 1.9 Ma (Coniacian–Campanian). These results suggest the timing of the illitization event in these sandstones as well as a synchrony with K‐feldspar authigenesis in the Quintinos Member sandstones. These results are well constrained and are in agreement with stratigraphic, biostratigraphic and radiometric ages previously reported for the Sanfranciscana Basin. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
The ‘Red Clay’ is an important deposit underlying the Quaternary loess–palaeosol sequence in the Chinese Loess Plateau, being regarded as an excellent record of palaeoclimate changes in the late Tertiary. Several properties of the ‘Red Clay’ have been measured previously in order to derive climatic information. However, the sedimentary processes involved and the origin of the materials remain controversial. Here we present results of grain‐size analyses of the ‘Red Clay’ from four representative sites in the Chinese Loess Plateau. In particular their grain‐size distribution is compared with that of typical Quaternary aeolian loess–palaeosol, as well as lacustrine and fluvial sediments. It appears from the sedimentological evidence that the major part of the ‘Red Clay’ is of aeolian origin. It is rather similar in some of its properties to the Quaternary loessic palaeosols. The dust forming the ‘Red Clay’ was transported by a wind system that was weaker than that involved in the accretion of the Quaternary loess. Furthermore, the ‘Red Clay’ sediment has been modified by post‐depositional weathering. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
6.
Run-Sheng Han Cong-Qiang Liu Zhi-Long Huang Jin Chen De-Yun Ma Li Lei Geng-Sheng Ma 《Ore Geology Reviews》2007,31(1-4):360
The Huize Zn–Pb–(Ag) district, in the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region, contains significant high-grade, Zn–Pb–(Ag) deposits. The total metal reserve of Zn and Pb exceeds 5 Mt. The district has the following geological characteristics: (1) high ore grade (Zn + Pb ≥ 25 wt.%); (2) enrichment in Ag and a range of other trace elements (Ge, In, Ga, Cd, and Tl), with galena, sphalerite, and pyrite being the major carriers of Ag, Ge, Cd and Tl; (3) ore distribution controlled by both structural and lithological features; (4) simple and limited wall-rock alteration; (5) mineral zonation within the orebodies; and (6) the presence of evaporite layers in the ore-hosting wall rocks of the Early Carboniferous Baizuo Formation and the underlying basement.Fluid-inclusion and isotope geochemical data indicate that the ore fluid has homogenisation temperatures of 165–220 °C, and salinities of 6.6–12 wt.% NaCl equiv., and that the ore-forming fluids and metals were predominantly derived from the Kunyang Group basement rocks and the evaporite-bearing rocks of the cover strata. Ores were deposited along favourable, specific ore-controlling structures. The new laboratory and field studies indicate that the Huize Zn–Pb–(Ag) district is not a carbonate-replacement deposit containing massive sulphides, but rather the deposits can be designated as deformed, carbonate-hosted, MVT-type deposits. Detailed study of the deposits has provided new clues to the localisation of concealed orebodies in the Huize Zn–Pb–(Ag) district and of the potential for similar carbonate-hosted sulphide deposits elsewhere in NE Yunnan Province, as well as the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region. 相似文献
7.
Yonggang Sun Bile Li Fengyue Sun Qingfeng Ding Baiyi Wang Yujin Li Kun Wang 《Resource Geology》2020,70(3):254-272
The Great Xing'an Range (GXR), Northeast (NE) China, is a major polymetallic metallogenic belt in the eastern segment of the Central Asian Orogenic Belt. The newly discovered Xiaokele porphyry Cu (–Mo) deposit lies in the northern GXR. Field geological and geochronological studies have revealed two mineralization events in this deposit: early porphyry‐type Cu (–Mo) mineralization, and later vein‐type Cu mineralization. Previous geochronological studies yielded an age of ca. 147 Ma for the early Cu (–Mo) mineralization. Our 40Ar/39Ar dating yielded 40Ar/39Ar plateau ages of 124.8 ± 0.4 to 124.3 ± 0.4 Ma on K‐feldspar in altered Cu‐mineralized diorite porphyrite dikes that represent the overprinting vein‐type Cu mineralization, consistent with zircon U–Pb ages of the diorite porphyrite (126.4 ± 0.5 to 125.0 ± 0.5 Ma). The Cr and Ni contents and Mg# of the Xiaokele diorite porphyrites are high. The diorite porphyrites at Xiaokele are enriched in light rare‐earth elements (REEs), and large‐ion lithophile elements (e.g., Rb, Ba, and K), are depleted in heavy REEs and high‐field‐strength elements (e.g., Nb, Ta, and Ti), and have weak negative εHf(t) values (+0.29 to +5.27) with two‐stage model ages (TDM2) of 1,164–845 Ma. Given the regional tectonic setting in Early Cretaceous, the ore‐bearing diorite porphyrites were likely formed in an extensional environment related to lithospheric delamination and asthenospheric upwelling induced by subduction of the Paleo‐Pacific Plate. These tectonic events caused large‐scale magmatic activity, ore mineralization, and lithospheric thinning in NE China. 相似文献
8.
Jian-Bo Zhou Simon A. Wilde Guo-Chun Zhao Chang-Qing Zheng Wei Jin Xing-Zhou Zhang Hong Cheng 《Precambrian Research》2008,160(3-4):323-340
Archean basement gneisses and supracrustal rocks, together with Neoproterozoic (Sinian) metasedimentary rocks (the Penglai Group) occur in the Jiaobei Terrane at the southeastern margin of the North China Craton. SHRIMP U–Pb zircon dating of an Archean TTG gneiss gave an age of 2541 ± 5 Ma, whereas metasedimentary rocks from the Neoproterozoic Penglai Group yielded a range in zircon ages from 2.9 to 1.8 Ga. The zircons can be broadly divided into three age populations, at: 2.0–1.8 Ga, 2.45–2.1 Ga and >2.5 Ga. Detrital zircon grains with ages >2.6 Ga are few in number and there are none with ages <1.8 Ga. These results indicate that most of the detrital material comes from a Paleoproterozoic source, most likely from the Jianshan and Fenzishan groups, with some material coming from Archean gneisses in the Jiaobei Terrane. An age of 1866 ± 4 Ma for amphibolite-facies hornblende–plagioclase gneiss, forming part of a supracrustal sequence within the Archean TTG gneiss, indicates Late Paleoproterozoic metamorphism. Both the Archean gneiss complex and Penglai metasedimentary rocks resemble previously described components of the Jiao-Liao-Ji orogenic belt and suggest that the Jiaobei Terrane has a North China Craton affinity; they also suggest that the time of collision along the Jiao-Liao-Ji Belt was at 1865 Ma. 相似文献
9.
Yusheng Wan Dunyi Liu Simon A. Wilde Jianjin Cao Bin Chen Chunyan Dong Biao Song Lilin Du 《Journal of Asian Earth Sciences》2010,37(2):140-153
The Yunkai Terrane is one of the most important pre-Devonian areas of metamorphosed supracrustal and granitic basement rocks in the Cathaysia Block of South China. The supracrustal rocks are mainly schist, slate and phyllite, with local paragneiss, granulite, amphibolite and marble, with metamorphic grades ranging from greenschist to granulite facies. Largely on the basis of metamorphic grade, they were previously divided into the Palaeo- to Mesoproterozoic Gaozhou Complex, the early Neoproterozoic Yunkai ‘Group’ and early Palaeozoic sediments. Granitic rocks were considered to be Meso- and Neoproterozoic, or early Palaeozoic in age. In this study, four meta-sedimentary rock samples, two each from the Yunkai ‘Group’ and Gaozhou Complex, together with three granite samples, record metamorphic and magmatic zircon ages of 443–430 Ma (Silurian), with many inherited and detrital zircons with the ages mainly ranging from 1.1 to 0.8 Ga, although zircons with Archaean and Palaeoproterozoic ages have also been identified in several of the samples. A high-grade sillimanite–garnet–cordierite gneiss contains 242 Ma metamorphic zircons, as well as 440 Ma ones. Three of the meta-sedimentary rocks show large variations in major element compositions, but have similar REE patterns, and have tDM model ages of 2.17–1.91 Ga and εNd (440 Ma) values of −13.4 to −10.0. Granites range in composition from monzogranite to syenogranite and record tDM model ages of 2.13–1.42 Ga and εNd (440 Ma) values of −8.4 to −1.2. It is concluded that the Yunkai ‘Group’ and Gaozhou Complex formed coevally in the late Neoproterozoic to early Palaeozoic, probably at the same time as weakly to un-metamorphosed early Palaeozoic sediments in the area. Based on the detrital zircon population, the source area contained Meso- to Neoproterozoic rocks, with some Archaean material. Palaeozoic tectonothermal events and zircon growth in the Yunkai Terrane can be correlated with events of similar age and character known throughout the Cathaysia Block. The lack of evidence for Palaeo- and Mesoproterozoic rocks at Yunkai, as stated in earlier publications, means that revision of the basement geology of Cathaysia is necessary. 相似文献
10.
Stefan Jung Soenke Brandt Rebecca Bast Erik E. Scherer Jasper Berndt 《Journal of Metamorphic Geology》2019,37(1):41-69
Migmatites comprise a minor volume of the high‐grade part of the Damara orogen of Namibia that is dominated by granite complexes and intercalated metasedimentary units. Migmatites of the Southern Central Zone of the Damara orogen consist of melanosomes with garnet+cordierite+biotite+K‐feldspar, and leucosomes, which are sometimes garnet‐ and cordierite‐bearing. Field evidence, petrographic observations, and pseudosection modelling suggest that, in contrast to other areas where intrusion of granitic magmas is more important, in situ partial melting of metasedimentary units was the main migmatite generation processes. Pseudosection modelling and thermobarometric calculations consistently indicate that the peak‐metamorphic grade throughout the area is in the granulite facies (~5 kbar at ~800°C). Cordierite coronas around garnet suggest some decompression from peak‐metamorphic conditions and rare andalusite records late, near‐isobaric cooling to <650°C at low pressures of ~3 kbar. The inferred clockwise P–T path is consistent with minor crustal thickening through continent–continent collision followed by limited post‐collisional exhumation and suggests that the granulite facies terrane of the Southern Central Zone of the Damara orogen formed initially in a metamorphic field gradient of ~35–40°C/km at medium pressures. New high‐precision Lu–Hf garnet‐whole rock dates are 530 ± 13 Ma, 522.0 ± 0.8 Ma, 520.8 ± 3.6 Ma, and 500.3 ± 4.3 Ma for the migmatites that record temperatures of ~800°C. This indicates that high‐grade metamorphism lasted for c. 20–30 Ma, which is compatible with previous estimates using Sm–Nd garnet‐whole rock systematics. In previous studies on Damara orogen migmatites where both Sm–Nd and Lu–Hf chronometers have been applied, the dates (c. 520–510 Ma) agree within their small uncertainties (0.6–0.8% for Sm–Nd and 0.1–0.2% for Lu–Hf). This implies rapid cooling after high‐grade conditions and, by implication, rapid exhumation at that time. The cause of the high geothermal gradient inferred from the metamorphic conditions is unknown but likely requires some extra heat that was probably added by intrusion of magmas from the lithospheric mantle, i.e., syenites that have been recently re‐dated at c. 545 Ma. Some granites derived from the lower crust at c. 545 Ma are the outcome rather than the cause of high‐T metamorphism. In addition, high contents of heat‐producing elements K, Th, and U may have raised peak temperatures by 150–200°C at the base of the crust, resulting in the widespread melting of fertile crustal rocks. The continuous gradation from centimetre‐scale leucosomes to decametre‐scale leucogranite sheets within the high‐grade metamorphic zone suggests that leucosome lenses coalesced to form larger bodies of anatectic leucogranites, thereby documenting a link between high‐grade regional metamorphism and Pan‐African magmatism. In view of the close association of the studied high‐T migmatites with hundreds of synmetamorphic high‐T granites that invaded the terrane as metre‐ to decametre‐wide sills and dykes, we postulate that crystallization of felsic lower crustal magma is, at least partly, responsible for heat supply. Late‐stage isobaric cooling of these granites may explain the occurrence of andalusite in some samples. 相似文献
11.
Annually resolved June–July–August (JJA) temperatures from ca. 570 BC to AD 120 (±100 a; approximately 690 varve years) were quantified from biogenic silica and chironomids (Type II regression; Standard Major Axis calibration‐in‐time) preserved in the varved sediments of Lake Silvaplana, Switzerland. Using 30 a (climatology) moving averages and detrended standard deviations (mean–variability change, MVC), moving linear trends, change points and wavelets, reconstructed temperatures were partitioned into a warmer (+0.3°C; ca. 570–351 BC), cooler (?0.2°C; ca. 350–16 BC) and moderate period (+0.1°C; ca. 15 BC to AD 120) relative to the reconstruction average (10.9°C; reference AD 1950–2000 = 9.8°C). Warm and variable JJA temperatures at the Late Iron Age–Roman Period transition (approximately 50 BC to AD 100 in this region) and a cold anomaly around 470 BC (Early–Late Iron Age) were inferred. Inter‐annual and decadal temperature variability was greater from ca. 570 BC to AD 120 than the last millennium, whereas multi‐decadal and lower‐frequency temperature variability were comparable, as evident in wavelet plots. Using MVC plots of reconstructed JJA temperatures from ca. 570 BC to AD 120, we verified current trends and European climate model outputs for the 21st century, which suggest increased inter‐annual summer temperature variability and extremes in a generally warmer climate (heteroscedasticity; hotspot of variability). We compared these results to MVC plots of instrumental and reconstructed temperatures (from the same sediment core and proxies but a different study) from AD 1177 to AD 2000. Our reconstructed JJA temperatures from ca. 570 BC to AD 120 showed that inter‐annual JJA temperature variability increased rapidly above a threshold of ~10°C mean JJA temperature. This increase accelerated with continued warming up to >11.5°C. We suggest that the Roman Period serves with respect to inter‐annual variability as an analogue for warmer 21st‐century JJA temperatures in the Alps. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
12.
The Eastern Tianshan Orogenic Belt (ETOB) in NW China is composed of the Dananhu–Tousuquan arc belt, the Kanggurtag belt, the Aqishan–Yamansu belt and the Central Tianshan belt from north to south. These tectonic belts have formed through arc–continent or arc–arc collisions during the Paleozoic. A number of Fe(‐Cu) deposits in the Aqishan–Yamansu belt, including the Heifengshan, Shuangfengshan and Shaquanzi Fe(‐Cu) deposits, are associated with Carboniferous–Early Permian volcanic rocks and are composed of vein‐type magnetite ores. Metallic minerals are dominated by magnetite and pyrite, with minor chalcopyrite. Calcite, chlorite, and epidote are the dominant gangue minerals. Pyrite separates of ores from those three deposits have relatively high and variable Re contents ranging from 3.7 to 184 ppb. All pyrite separates have very low common Os, allowing us calculation of single mineral model ages for each sample. Pyrite separates from the Heifengshan Fe deposit have an 187Re–187Os isochron age of 310 ± 23 Ma (MSWD = 0.04) and a weighted mean model age of 302 ± 5 Ma (MSWD = 0.17). Those from the Shuangfengshan Fe deposit have an isochron age of 295 ± 7 Ma (MSWD = 0.28) and a weighted mean model age of 292 ± 5 Ma (MSWD = 0.33). The Shaquanzi Fe‐Cu deposit has pyrite with an isochron age of 295 ± 7 Ma (MSWD = 0.26) and a weighted mean model age of 295 ± 6 Ma (MSWD = 0.23). Pyrite separates from these Fe(‐Cu) deposits have δ34SCDT ranging from ?0.41‰ to 4.7‰ except for two outliers. Calcite from the Heifengshan Fe deposit and Shaquanzi Fe‐Cu deposit have similar C and O isotope compositions with δ13CPDB and δ18OSMOW ranging from ?5.5‰ to ?1.0‰ and from 10‰ to 12.7‰, respectively. These stable isotopic data suggest that S, C, and O are magmatic‐hydrothermal in origin. The association of low‐Ti magnetite and Fe/Cu‐sulfides resembles those of Iron–Oxide–Copper–Gold (IOCG) deposits elsewhere. Our reliable Re–Os ages of pyrite suggest that the Fe(‐Cu) deposits in the Aqishan–Yamansu belt formed at ~296 Ma, probably in a back‐arc extensional environment. 相似文献
13.
The Shabaosi deposit is the only large lode gold deposit in the northern Great Xing'an Range. The gold ore bodies are hosted by sandstone and siltstone of the Middle Jurassic Ershi'erzhan Formation, and are controlled by three N–S‐trending altered fracture zones. The gold ore bodies are composed of auriferous quartz veinlets and altered rocks. Fluid inclusion studies indicate that the ore‐forming fluids belong to a H2O–NaCl–CO2–CH4 system, with salinities between 0.83 and 8.28 wt% NaCl eq., and homogenization temperatures ranging from 180 to 320 °C. The δ34S values of sulphides show a large variation from −16.9‰ to 8.5‰. The Pb isotope compositions of sulphides are characterized by a narrow range of ratios: 18.289 to 18.517 for 206Pb/204Pb, 15.548 to 15.625 for 207Pb/204Pb, and 38.149 to 38.509 for 208Pb/204Pb. The μ values range from 9.36 to 9.51. These results suggest that the ore‐forming fluids/materials were mainly of magmatic hydrothermal origin, derived from magmas produced by partial melting of the lower crust. The 40Ar/39Ar age of auriferous quartz veinlets from the Shabaosi gold deposit is about 130 Ma. The Shabaosi gold deposit has counterparts in similar orogenic gold deposits, and was formed during the post‐collisional setting of the Mongolia–Okhotsk Orogen. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
14.
The biostratigraphy and sedimentological evolution of the Tournaisian–Viséan (T–V) transitional strata in South China (Guangxi) have been investigated. The sediments were deposited on a carbonate platform and in slope and basinal environments. In the T–V transitional strata, six foraminiferal associations have been distinguished which allow correlation between the shallow and deep water deposits. A careful examination of the evolutionary stages of the foraminifer Eoparastaffella provides a more accurate criterion for the definition of the T–V boundary, but does not significantly modify the historical one. The distinction of two morphotypes is based on the elevation of the last whorl and the peripheral outline. Tournaisian specimens of Eoparastaffella have a well rounded periphery (morphotype 1) contrasting with the subangular periphery of younger Viséan specimens (morphotype 2). A coefficient can be deduced from simple biometric measurements for more precisely defining the T–V boundary. The sequence stratigraphy of the T–V strata in South China has been reconstructed by combining biostratigraphical and sedimentological data. It allowed the correlation of the T–V transitional strata between the platform area and the slope and basinal locations. Late Tournaisian strata were deposited during a highstand systems tract. Near the end of the Tournaisian, a major drop in relative sea-level led to the development of an unconformity in the platform area. Lowstand deposits formed during latest Tournaisian time in the basin where a detailed biostratigraphic framework has been devised. Sediments deposited during the ensuing transgressive systems tract overlie the late Tournaisian highstand sediments in the platform area and the latest Tournaisian lowstand deposits in the basin. A major drop in relative sea-level near the end of the Tournaisian has been recognized worldwide. Therefore, the possibility of using the sequence stratigraphy of the T–V strata in South China for worldwide correlations should be investigated. © 1997 John Wiley & Sons, Ltd. 相似文献
15.
Dominique Gasquet Gilles Levresse Alain Cheilletz Moulay Rachid Azizi-Samir Abdellah Mouttaqi 《Precambrian Research》2005,140(3-4):157-182
New geochronological analyses (U–Pb SIMS zircon ages) have yielded ages of 552 ± 5 Ma for the Bou Madine rhyolitic dome (Ougnat, eastern Anti-Atlas), 543 ± 9 Ma for the Tachkakacht rhyolitic dyke (Saghro–Imiter, eastern Anti-Atlas), and 531 ± 5 Ma for the Aghbar trachytic sill (Bou Azzer, central Anti-Atlas). Inherited zircon cores from the Aghbar trachytic sill and from the Bou Madine rhyolitic dome have been shown to be of Statherian age (ca. 1600–1800 Ma) and Palæoproterozoic (>2100 Ma) age, respectively, suggesting that a significantly older protolith underlies the Pan-African rocks in the Central and Eastern Anti-Atlas. Granodiorites and rhyolites from the Saghro–Imiter area have similar low 87Sr/86Sr (0.702–0.706) and 143Nd/144Nd (0.5116–0.5119) initial ratios, suggesting a mixture of mantle and lower crust sources. This can also be inferred from the low 187Os/188Os ratios obtained on pyrite crystals from the rhyolites.A recently published lithostratigraphic framework has been combined with these new geochemical and geochronological data, and those from the literature to produce a new reconstruction of the complex orogenic front that developed at the northern edge of the Eburnian West African craton during Pan-African times. Three Neoproterozoic magmatic series can be distinguished in the Anti-Atlas belt, i.e., high-K calc-alkaline granites, high-K calc-alkaline to shoshonitic rhyolites and andesites, and alkaline-shoshonitic trachytes and syenites, which have been dated at 595–570, 570–545 and 530 Ma, respectively.The accretion of the Pan-African Anti-Atlas belt to the West African super continent (WAC) was a four-stage event, involving extension, subduction, moderate collision and extension. The calc-alkaline magmatism of the subduction stage was associated with large-scale base metal and gold mineralisation. Metallogenic activity was greatest during the final extensional stage, at the Precambrian–Cambrian boundary. It is characterised by world-class precious metal deposits, base–metal porphyry and SEDEX-type occurrences. 相似文献
16.
Orthogneisses are the major country rocks hosting eclogites in the Sulu UHP terrane, eastern China. All of the analyzed orthogneiss cores from the main drilling hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) have similar major and trace element compositions and a granite protolith. These rocks have relatively high LREE/HREE ratios, strong negative Eu anomalies (Eu/Eu*=0.20–0.39), and negative Ba anomalies (Ba/Ba*=0.25–0.64). Coesite and coesite-bearing UHP mineral assemblages are common inclusions in zircons separated from orthogneiss, paragneiss, amphibolite, and (retrograded) eclogite of the CCSD-MH. This suggests that the eclogite, together with its country rocks, experienced in situ ultrahigh-pressure (UHP) metamorphism. Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircons from the orthogneisses are zoned and that they have distinct mineral inclusions in the different zones. Most zircons retain early magmatic cores with abundant low-pressure mineral inclusions, which are mantled with metamorphic zircon-containing inclusions of coesite and other UHP minerals. The outermost rims on these grains contain low-pressure mineral inclusions, such as quartz and albite. SHRIMP U–Pb dating of the zoned zircons gives three discrete and meaningful groups of ages: Proterozoic ages for the protolith, 227±2 Ma for the coesite-bearing mantles, and 209±3 Ma for the amphibolite facies retrograde rims. The widespread occurrence of UHP mineral inclusions in zircons from the Sulu metamorphic belt dated at about 227 Ma suggests that voluminous continental crust experienced late Triassic subduction to depths of at least 120 km and perhaps more than 200 km. Eighteen million years later, the terrane was rapidly exhumed to midcrustal levels, and the UHP rocks were overprinted by amphibolite facies metamorphism. The exhumation rate deduced from the zircon age data and previously obtained metamorphic P–T data is estimated to be 5.6–11.0 km/Ma. Such rapid exhumation of the Sulu UHP terrane may be due to the buoyancy forces produced by subduction of low-density continental material into the deep mantle. 相似文献
17.
SUNG KWUN CHOUGH 《Sedimentology》2011,58(6):1530-1572
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform. 相似文献
18.
Yuejun Wang Yuzhi Zhang Guochun Zhao Weiming Fan Xiaoping Xia Feifei Zhang Aimei Zhang 《Precambrian Research》2009,174(3-4):273-286
Elemental, Sr–Nd–Pb isotopic and geochronological data are presented for the Taishan high-mg dioritic rocks (western Shandong) from the Eastern Block of the North China Craton in order to better understand the Archean tectonic evolution and crustal growth of the Craton. The rocks gave the zircon U–Pb age of 2536–2540 Ma. They show low SiO2 and Al2O3 contents, high MgO, mg-number, Cr, Ni, Y, Yb, Sr and Ba, enriched LILEs and LREEs, depleted HFSEs and HREEs with (Nb/La)N of 0.07–0.12. They exhibit Nd(t) values of 1.53–3.30, (206Pb/204Pb)i of 11.20–15.30, (207Pb/204Pb)i of 14.14–14.83 and (208Pb/204Pb)I of 31.10–33.93. Such geochemical features with an affinity to both a mantle- and crust-like source for the Taishan dioritic rocks are similar to those of the typical Archean sanukitoids, suggesting an origination from a sub-arc mantle wedge variably metasomatized by the slab-derived dehydration fluids and melts before 50–100 Ma of the emplacement of the Taishan sanukitoid plutons. It is proposed that the Taishan sanukitoids resulted from the sudden change of the downgoing slab from a flat subduction to subsequently steeper subduction in an active continental margin regime during Neoarchean time. 相似文献