首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined simulation–genetic algorithm (GA) optimization model is developed to determine optimal reservoir operational rule curves of the Nam Oon Reservoir and Irrigation Project in Thailand. The GA and simulation models operate in parallel over time with interactions through their solution procedure. A GA is selected as an optimization model, instead of traditional techniques, owing to its powerful and robust performance and simplicity in combining with a simulation technique. A GA is different from conventional optimization techniques in the way that it uses objective function information and does not require its derivatives, whereas in real‐world optimization problems the search space may include discontinuities and may often include a number of sub‐optimum peaks. This may cause difficulties for calculus‐based and enumerative schemes, but not in a GA. The simulation model is run to determine the net system benefit associated with state and control variables. The combined simulation–GA model is applied to determine the optimal upper and lower rule curves on a monthly basis for the Nam Oon Reservoir, Thailand. The objective function is maximum net system benefit subject to given constraints for three scenarios of cultivated areas. The monthly release is calculated by the simulation model in accordance with the given release policy, which depends on water demand. The optimal upper and lower rule curves are compared with the results of the HEC‐3 model (Reservoir System Analysis for Conservation model) calculated by the Royal Irrigation Department, Thailand, and those obtained using the standard operating policy. It was found that the optimal rule curves yield the maximum benefit and minimum damages caused by floods and water shortages. The combined simulation–GA model shows an excellent performance in terms of its optimization results and efficient computation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
基于模拟优化与正交试验的库塘联合灌溉系统水资源调控   总被引:1,自引:1,他引:0  
依托灌溉试验站田间降水-作物耗水-土壤水相互转化的长序列试验成果,构建灌区田间尺度水量蓄-耗-灌-排全过程的水资源模拟模块,结合系统仿真方法,建立库塘联合灌溉系统水量分配仿真模拟模型,以保障灌区基本需水(包括农村生活需水与生态环境需水)供水安全前提下的经济效益最大化为目标,运用正交试验选优原理,构建了库塘联合灌溉系统水资源优化调控模型,形成了基于仿真模拟与正交试验优化的库塘联合灌溉系统水资源优化调控技术体系,并应用于巢湖流域大官塘水库灌区,明确了灌区合理的工程布局规格与规模,确定了适宜的节水灌溉技术模式与灌溉制度,制定了塘坝和水库科学的调度规则,提出了具有可操作性的作物种植结构调整规则,提高了灌区径流拦蓄利用率,提升了塘坝和水库年际调蓄供水能力,增强了抗旱减灾能力,为巢湖流域水库灌区综合治理、库塘联合灌区水量分配方案、水库和塘坝调度规则及作物灌溉制度等地制定提供理论依据.  相似文献   

3.
Flushing sediment through a reservoir has been practiced successfully and found to be inexpensive in many cases. However, the great amount of water consumed in the flushing operation might affect the water supply. To satisfy the water demand and water consumed in the flushing operation, two models combining the reservoir simulation model and the sediment flushing model are established. In the reservoir simulation model, the genetic algorithm (GA) is used to optimize and determine the flushing operation rule curves. The sediment‐flushing model is developed to estimate the amount of the flushed sediment volume, and the simulated results update the elevation‐storage curve, which can be taken into account in the reservoir simulation model. The models are successfully applied to the Tapu reservoir, which has faced serious sedimentation problems. Based on 36 years historical sequential data, the results show that (i) the simulated flushing operation rule curves model has superior performance, in terms of lower shortage index (SI) and higher flushing efficiency (FE), than that by the original reservoir operation; (ii) the rational and riskless flushing schedule for the Tapu reservoir is suggested to be set within an interval of every 2 or 4 years in the months of May or June. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
IINTRODUCTIONReservoirsedimentationisannuallydecreasingconstT[lctedworldwidewaterstoragebyanestimatedonepercent(Mahmood,1987).Lossesinaridregionsaredoubled,reducingtheaverageusefulreservoirlifeto20-30years(Bruk,1996).Atthisrateofstorageloss,hydroelectricityasanenergysourcecanhardlybecalledrenewable(Nordin,1993).Reservoirsaregenerallyfillingwithsedimentmorerapidlythananticipated.Forexample,datafromindiaindicatethataCtllalsedimentdeliveryishigherthanpredictedin24of27reservoirs,rangingfro…  相似文献   

5.
Genetic algorithms, founded upon the principle of evolution, are applicable to many optimization problems, especially popular for solving parameter optimization problems. Reservoir operating rule curves are the most common way for guiding and managing the reservoir operation. These rule curves traditionally are derived through intensive simulation techniques. The main aim of this study is to investigate the efficiency and effectiveness of two genetic algorithms (GAs), i.e., binary coded and real coded, to derive multipurpose reservoir operating rule curves. The curves are assumed to be piecewise linear functions where the coordinates of their inflection points are the unknowns and we want to optimize system performance. The applicability and effectiveness of the proposed methods are tested on the operation of the Shih‐Men reservoir in Taiwan. The current M‐5 operating curves of the Shih‐Men reservoir are also evaluated. The results show that the GAs provide an adequate, effective and robust way for searching the rule curves. Both sets of operating rule curves obtained from GAs have better performance, in terms of water release deficit and hydropower, than the current M‐5 operating rule curves, while the real‐coded GA is more efficient than the binary‐coded GA. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
An understanding of the temporal variation in reservoir sedimentation and identification of the main sources of sediment are necessary for the maintenance of sustainable reservoirs. For this purpose, field measurements, sampling, and fingerprinting of reservoir sediment were undertaken from July 2005 to November 2007. Source fingerprinting of reservoir sediment was conducted using cesium‐137 (137Cs). The relative contributions of gully bank and forest road, and forest floor material to reservoir sediment were calculated using a mixing model. Bank and forest road material, estimated to make up about 96% of the reservoir sediment, was the dominant source. Enormous reservoir sedimentation, which amounted to about 60% of the total reservoir sedimentation during the observation period, occurred during a heavy rainstorm with an 80‐year recurrence time. To maintain the sustainability of the reservoir in this study, therefore, temporal and spatial preparation strategies for heavy rainstorms and bank and forest road erosion should be considered. However, spatial information on sediment sources from 137Cs fingerprinting is limited. To better identify the sediment sources spatially and temporally, further studies applying soil erosion models and more detailed field studies are needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
An attempt of using stochastic hydrologic technique to assess the intrinsic risk of reservoir operation is made in this study. A stochastic simulation model for reservoir operation is developed. The model consists of three components: synthetic generation model for streamflow and sediment sequences, one-dimensional delta deposit model for sediment transport processes in reservoirs, and simulation model for reservoir operation. This kind of integrated simulation model can be used to simulate not only the inflow uncertainty of streamflow and sedimentation, but also the variation in operation rules of reservoirs. It is herein used for the risk assessment of a reservoir, and the simulation is performed for different operation scenarios. Simulation for the 100-year period of sediment transport and deposition in the river-reservoir system indicates that the navigation risk is much higher than that of hydropower generation or sediment deposition in the reservoir. The risk of sediment deposition at the river-section near the backwater profile is also high thereby the navigation at the river-segment near this profile takes high risk because of inadequate navigation depth.  相似文献   

8.
All reservoirs are subjected to sediment inflow and deposition up to a certain extent leading to reduction in their capacity. Thus, the important practical problem related to the life of reservoir is the estimation of sedimentation quantity in the reservoirs. Large number of methods and models are available for estimation of reservoir sedimentation process. However, each model differs greatly in terms of their complexity, inputs and other requirements. In the simplest way, the fraction of sediment deposit in the reservoir can be determined through the knowledge of its trap efficiency. Trap efficiency (Te) is the proportion of the incoming sediment that is deposited or trapped in a reservoir. Most of the Te estimation methods define a relationship of the T, of the reservoir to their capacity and annual inflow, generally through curves. In this study, the empirical relationships given by Brune and Brown were used and compared for estimating the trap efficiency of Gobindsagar Reservoir (Bhakra Dam) on Satluj River in Bilaspur district of Himachal Pradesh, in the Himalayan region of India. A new set of regression equations has been developed for Brune's method and compared with Brown and other available Brune's equations. It has been found that Brune's equations developed in the present study estimated better than the other Brune's equations reported in literature. Later, in the present study it was found that Brown's approach was over estimating the T,. Hence it was again modified for Gobindsagar reservoir. It was also identified that sediments coming to this particular reservoir were mainly of coarse nature.  相似文献   

9.
Construction of large dams is attractive because of their great benefits in flood control,hydropower generation,water resources utilization,navigation improvement,etc.However,dam construction may bring some negative impacts on sediment transport and channel dynamics adjustments.Due to the effects of recent water and soil conservation projects,sediment retention in the newly constructed large upstream reservoirs,and other factors,the sedimentation in the Three Gorges Reservoir(TGR)is quite different from the amount previously predicted in the demonstration stage.Consequently,based on the measured data,characteristics of sedimentation and the related channel deformation in the TGR were analyzed.The results imply that sediment transport tended to be reduced after the Three Gorges Project(TGP).Sedimentation slowed dramatically after 2013 and indicated obvious seasonal characteristics.Due to the rising water level in the TGR in the flood season,the yearly sediment export ratio(Eratio)was prone to decrease.The water level near the dam site should be reasonably regulated according to the flow discharge to improve the sediment delivery capacity and reduce sedimentation in the TGR,and to try to avoid situations where the flood retention time is close to 444 h.The depositional belt was discontinuous in the TGR and was mainly distributed in the broad reaches,and only slight erosion or deposition occurred in the gorge reaches.Sedimentation in the broad and gorge reaches accounted for 93.8% and 6.2% of the total sedimentation,respectively.The estuarine reach located in the fluctuating backwater area experienced alternate erosion-deposition,with a slight accumulative deposition in the curved reach.Sedimentation mainly occurred in the perennial backwater area.The insight gained in this study can be conducive to directly understanding of large reservoir sedimentation and mechanism of channel adjustment in the reservoir region in the main channel of large river.  相似文献   

10.
Casey Lee  Guy Foster 《水文研究》2013,27(10):1426-1439
In‐stream sensors are increasingly deployed as part of ambient water quality‐monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in‐stream flow and water quality monitoring stations were coupled with the two‐dimensional hydrodynamic CE‐QUAL‐W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east‐central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two‐dimensional model was used to estimate the residence time of 55 equal‐volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in‐stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a numerical model for sedimentation in Fenhe Reservoir and the adjoining reaches has been presented on the basis of the theory of non-equilibrium sediment transport. The model is calibrated by using a part of the sediment data collected for Fenhe Reservoir and checked by simulating the remaining data. Moreover, the method of optimization in nonlinear programming has been applied to determine the basic parameters of the model applying a concept of fuzzy mathematics to formulate the objective functions. The computed amounts of reservoir deposition and channel deformation arc found to be substantially in agreement with the values observed.  相似文献   

12.
中国的水库泥沙淤积问题   总被引:18,自引:2,他引:16  
由于我国有许多河流是含沙最高、输沙量大的多泥沙河流,水库泥沙淤积问题异常严重.主要表现在:淤积数量大,淤积速率快.据统计,截止到1981年底全国水库总淤积量达115×10~8m~3.占统计水库总库容的14.2%.年平均库容损失率达2.3%,高于世界各国.水库的严重淤积,不仅影响水库兴利效益的发挥,严重威胁水库的使用寿命,而且还造成一系列在进行水库规划时未曾充分估计到的环境问题.本文重点从河流水文泥沙特性、我国水库淤积问题的严重性、水库淤积引起的问题及水库防淤减淤措施等4个方面作一较全面的分析和探讨.  相似文献   

13.
Abstract

Analyses of data from reservoir surveys and sediment rating curves are compared to predict sediment yield in three large reservoir watershed areas in Turkey. Sediment yield data were derived from reservoir sedimentation rates and suspended sediment measurements at gauging stations. The survey data were analysed to provide the volume estimates of sediment, the time-averaged sediment deposition rates, the long-term average annual loss rates in the reservoir storage capacity, and the long-term sediment yield of the corresponding watershed areas. Four regression methods, including linear and nonlinear cases, were applied to rating curves obtained from gauging stations. Application of the efficiency test to a power function form of a rating curve with nonlinear regression yielded the highest efficiency values. Based on the analysis of the sediment rating curves, sediment load fluxes were calculated by using average daily discharge data at each gauging station. Comparison of these two sediment yield values for each reservoir showed that the sediment yields from the suspended sediment measurements, SYGS, are 0.99 to 3.54 times less than those obtained from the reservoir surveys, SYRS. The results from the reservoir surveys indicate that all three reservoirs investigated have lost significant storage capacity due to high sedimentation rates.  相似文献   

14.
Retrogressive erosion, a widespread phenomenon of sediment transport in reservoirs, often impacts on both the reservoir capacity and the sedimentation in the downstream river channel. Based on field data from the Sanmenxia Reservoir and the Lower Yellow River over the past decades, three courses of ret-rogressive erosion with distinctive features were analyzed. The results indicate that retrogressive erosion, especially caused by rapid reduction in the water level till the reservoir is empty, often results in the serious siltation of the lower Yellow River and threatens the safety of the flood control in the Lower Yellow River. Unreasonable operation of the reservoir and incoming hyperconcentrated floods accom-panied by retrogressive erosion also aggravate the siltation of the main channel of the river. However, a reasonable operation mode of the reservoir so named"storing the clear (low sediment concentration) water in the non–flood season, and sluicing the muddy(high sediment concentration) water in the flood season" was found, which might mitigate the deposition in both the reservoir and the Lower Yellow River. This operation mode provides important experience for the design and operation of large reser-voirs in other large rivers carrying huge amounts of sediment.  相似文献   

15.
An analysis of hydrologic and geodetic data from numerous reservoirs lying in different climatic zones, has allowed the two main phases in filling the reservoir during its life to be distinguished, firstly silting of an originally deep reservoir, and secondly silting of a reservoir which has become shallow or initially was not deep. During the first phase, the reservoir plays a role as an accumulator of sediment, so that its trap efficiency for total mineral material is much reduced, and its trap efficiency for suspended load decreases to zero. This phase ends when the mean depth reaches a critical value which is specific for each reservoir. During the second phase, shallowing of the reservoir is much slower, and over short time periods it can play a role as a net exporter of sediment. A general model of reservoir sedimentation is proposed and is tested by data on the long-term and seasonal courses of siltation in selected reservoirs in the Vistula drainage basin, Poland. The rate of sedimentation is analysed for both phases of siltation, and the useful lifetime of a reservoir, which corresponds to the first phase of siltation, has been computed according to a methodology proposed.  相似文献   

16.
Although water and soil conservation activities reduce reservoir sedimentation, it is inevitable that reservoirs fed by rivers transporting high amounts of sediment will experience sedimentation. The Ghezel-Ozan and Shah-Roud rivers, which flow to the Sefld-Roud reservoir dam, are both highly sediment-laden and transport significant amounts of sediment in both bed load and suspended load forms to the reservoir. Hence, it seems that the only practical way to remove the sediment from the reservoir is to flush it out using the Chasse method. In the present paper, field measurements of Chasse operation characteristics taken in previous years are presented, and a numerical model that simulates this process is introduced. After calibrating the model using field measured data, the calculated results (for reservoir pressure flushing and released sediment volume) of the numerical model were compared with other measured data for the same Chasse operation and the results agree well. Finally, using the numerical simulation results, the best approaches to ensure highly effective flushing while conserving reservoir water are presented (at least for the Sefid-Roud dam). The operation of the bottom outlet gates, the shape of the output hydrograph, and the reservoir water level variation during flushing were optimized. In addition, the numerical model and related parameters, which need to be calibrated, are discussed.  相似文献   

17.
Observation of the operation of the Sanmenxia Reservoir on the Yellow River has led to the conclusion that to preserve a certain effective storage volume for reservoirs built on heavily silt-laden rivers is feasible if the reservoir is operated according to the principle known as "storing the clear water and discharging the muddy flow". The relative stability of the bed elevation at the end of the backwater and the reservoir's erosion and deposition equilibrium depend on the compatibility of the pool level maintained in non-flood seasons with the conditions of flow and sediment load during flood seasons. Operating the reservoir to regulate the flood and sediment load during flood seasons can reduce the rate of aggradation in the Lower Yellow River. The basic condition for applying the operation mode of "storing the clear water and discharging the muddy flow" is that a sufficient amount of water should be used for discharging sediment during flood seasons. Under the condition of extremely low flow years, reservoir sedimentation cannot be avoided even if this operation mode is adopted.  相似文献   

18.
A comprehensive understanding of the dynamics of erosion and sedimentation in reservoirs under different management conditions is required to anticipate sedimentation issues and implement effective sediment management strategies. This paper describes a unique approach combining fluvial geomorphology tools and morphodynamic modeling for analyzing the sediment dynamics of an elongated hydropower reservoir subjected to management operations: the Génissiat Reservoir on the Rhône River. Functional sub‐reaches representative of the reservoir morphodynamics were delineated by adapting natural river segmentation methods to elongated reservoirs. The segmentation revealed the link between the spatial and temporal reservoir changes and the variability of longitudinal flow conditions during reservoir management operations. An innovative modeling strategy, incorporating the reservoir segmentation into two sediment transport codes, was implemented to simulate the dynamics of erosion and sedimentation at the reach scale during historic events. One code used a bedload approach, based on the Exner equation with a transport capacity formula, and the other used a suspended load approach based on the advection–dispersion equation. This strategy provided a fair quantification of the dynamics of erosion and sedimentation at the reach scale during different management operations. This study showed that the reservoir morphodynamics is controlled by bedload transport in upper reaches, graded suspended load transport of sand in middle reaches and suspended load transport of fine sediments in lower reaches. Eventually, it allowed a better understanding of the impact of dam management on sediment dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
An accurate prediction of sediment distribution may minimize economic losses through proper and timely planning of the functional activities of a reservoir.This study assesses different temporal and spatial factors that affect for sediment deposition in a reservoir and its distribution.This study also focuses on evaluation of two popular distribution prediction methodologies,Area Increment and Empirical Area Reduction,based on experience with sediment distribution in 57 reservoirs in the USA and India.A non-iterative processed empirical distribution model(NPEDM) and a linear regression trend model(LRTM) are proposed to predict sediment distribution.Silt contributing area and inflow entering a reservoir are found to be the most significant factors affecting in reservoir sediment deposition.Compared to the Empirical Area Reduction method,the Area Increment method provided better prediction.The reservoir classification approach and empirical design distribution type curves given by Borland and Miller(1960) are found to be rational.Shape factor values for different periods indicate that reservoir shape(type) changes with time.Thus,long term prediction is not desirable in Type-Ⅱ Ⅲ reservoirs using the Empirical Area Reduction method.Newly developed the NPEDM shows reasonably good prediction of sediment distribution.The NPEDM is very easy to apply and can be used in any reservoir of any size.Extrapolation of the trend of sediment distribution obtained from the LRTM indicates an accurate short term prediction in a few reservoirs as causes of temporal and spatial variations of sediment distribution including the factors of uncertainties of sediment deposition are implicit within the methodology.  相似文献   

20.
ABSTRACT

A set of linked optimization models was used to evaluate planning and operation of the proposed Pamba-Achankovil-Vaippar (PAV) water transfer project in India. The shortage of water for irrigation in the Vaippar basin has led to the need for water import. The project consists of three reservoirs. The models were applied at three levels. At Level-1, the projections of water requirement for irrigation in the Vaippar basin at Reservoir-1 were estimated using an LP model. Level-2 was operated at three sub-levels: the first was the determination of the export requirements from the Pamba basin (Reservoir-2) to the Achankovil basin (Reservoir-1); the second was determining the capability of Reservoir-2 to export and sizing of the three reservoirs to meet the above targets was the third sub-level. Integrated reservoir operation and canal irrigation water distribution were done at Level-3. DP models were employed at levels-2 and 3. The linked LP, DP and simulation models were found effective for planning water transfers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号