首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vegetative filter strips (VFSs) can effectively trap sediment in overland flow, but little information is available on its performance in controlling high‐concentration sediment and the runoff hydraulics in VFS. Flume experiments were conducted to investigate the sediment deposition, hydraulics of overland flow and their relationships in simulating VFS under a great range of sediment concentrations with four levels of vegetation cover (bare slope and 4%, 11% and 17%) and two flow rates (15 and 30 L min?1). Sediment concentrations varied from 30 to 400 kg m?3 and slope gradient was 9°. Both the deposited sediment load and deposition efficiency in VFS increased as the vegetation cover increased. Sediment concentration had a positive effect on the deposited load but no effect on deposition efficiency. A lower flow rate corresponded to greater deposition efficiency but had little effect on deposited load. Flow velocities decreased as vegetation cover increased. Sediment concentration had a negative effect on the mean velocity but no effect on surface velocity. Hydraulic resistance increased as the vegetation cover and sediment concentration increased. Sediment deposition efficiency had a much more pronounced relationship with overland flow hydraulics compared with deposited load, especially with the mean flow velocity, and there was a power relationship between them. Flow regime also affected the sediment deposition efficiency, and the efficiency was much higher under subcritical than supercritical flow. The results will be useful for the design of VFS and the control of sediment flowing into rivers in areas with serious soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Vegetated filter strips (VFSs) are a best management practice (BMP) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents present in agricultural runoff. Although they have been widely adopted, insufficient data exist to understand their short and long-term effectiveness. High inter-event variability in performance has been observed, yet the majority of studies report average removal efficiencies over observed or simulated events, ignoring the disproportional effects of loads into and out of VFSs over longer periods of time. We argue that due to positively correlated sediment concentration-discharge relationships, disproportional contribution of runoff events transporting sediment over the course of a year (i.e., temporal inequality), decreased performance with increasing flow rates, and effects of antecedent moisture condition, VFS removal efficiencies over annual time scales may be significantly lower than reported per-event averages. By applying a stochastic approach, we investigated the extent of disparity between reporting average efficiencies from each runoff event over the course of 1 year versus the total annual load reduction. Additionally, we examined the effects of soil texture, concentration-discharge relationship, and VFS slope in contributing to this disparity, with the goal of revealing potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that ignoring temporal inequality can lead to overestimation of annual performance by as little as < 2% and to as much as > 20%, with the greatest disparities observed for soils with high clay content.  相似文献   

3.
Saturation‐excess runoff is the major runoff mechanism in humid well‐vegetated areas where infiltration rates often exceed rainfall intensity. Although the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, it predicts runoff based mainly on soil and land use characteristics, and is implicitly an infiltration‐excess runoff type of model. Previous attempts to incorporate the saturation‐excess runoff mechanism in SWAT fell short due to the inability to distribute water from one hydrological response unit to another. This paper introduces a modified version of SWAT, referred to as SWAT‐Hillslope (SWAT‐HS). This modification improves the simulation of saturation‐excess runoff by redefining hydrological response units based on wetness classes and by introducing a surface aquifer with the ability to route interflow from “drier” to “wetter” wetness classes. Mathematically, the surface aquifer is a nonlinear reservoir that generates rapid subsurface stormflow as the water table in the surface aquifer rises. The SWAT‐HS model was tested in the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region of New York, USA. SWAT‐HS predicted discharge well with a Nash‐Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to the original SWAT model, SWAT‐HS predicted less surface runoff and groundwater flow and more lateral flow. The saturated areas predicted by SWAT‐HS were concentrated in locations with a high topographic index and were in agreement with field observations. With the incorporation of topographic characteristics and the addition of the surface aquifer, SWAT‐HS improved streamflow simulation and gave a good representation of saturated areas on the dates that measurements were available. SWAT‐HS is expected to improve water quality model predictions where the location of the surface runoff matters.  相似文献   

4.
基于多植物生长模式的SWAT模型的修正与有效性初探   总被引:1,自引:1,他引:0  
以农林系统的非点源污染模拟为目标,通过研究建立变化密度及多种类混杂的森林生长模型,修正了SWAT模型采用平均森林植被密度和单一植物生长模式估算生物累积量的问题,并建立了与之相适应的森林优势组份丰度遥感反演模型、叶面积指数和消光系数遥感反演模型以获取森林生长模型的相关参数.同时,根据间作套种下的辐射能利用Keating方程,引入间作套种指数变量,修正SWAT原有的单一生物量日积累模型,探讨了作物复种指数、间作套种指数遥感反演方法和以此为基础的作物间作套种生长模型.以亚热带季风湿润区红壤背景下的鄱阳湖流域子流域梅江流域为试验区,以野外实测数据为基础,探讨修正SWAT模型的有效性.结果表明:修正后的SWAT模型与原始SWAT模型相比,在模拟流量和营养盐负荷方面,得到了较好的改善.在模拟流量方面,有效性提高了7.8%,流量峰值的模拟也得到了改善,能更好地反映地表蓄流方面的实际情况;在模拟营养盐负荷方面,有效性提高了6.4%(总磷)和6.1%(总氮).  相似文献   

5.
Validation of a vegetated filter strip model (VFSMOD)   总被引:2,自引:0,他引:2  
Vegetated filter strips (VFS) are designed to reduce sediment load and other pollutants into water bodies. However, adaptation of VFS in the field has been limited owing to lack of data about their efficiency and performance under natural field conditions. A number of models are available that simulate sediment transport and trapping in VFS, but there is a general lack of confidence in VFS models owing to limited validation studies and model limitations that prevent correct application of these models under field conditions. The objective of this study is to test and validate a process‐based model (VFSMOD) that simulates sediment trapping in VFS. This model links three submodels: modified Green–Ampt's infiltration, Quadratic overland flow submodel based on kinematic wave approximation and University of Kentucky sediment filtration model. A total of 20 VFS, 2, 5, 10 and 15 m long and with various vegetation covers, were tested under simulated sediment and runoff conditions. The results of these field experiments were used to validate the VFS model. The model requires 25 input parameters distributed over five input files. All input parameters were either measured or calculated using experimental data. The observed sediment trapping efficiencies varied from 65% in the 2‐m long VFS to 92% in the 10‐m long filters. No increase in sediment removal efficiency was observed at higher VFS length. Application of the VFS model to experimental data was satisfactory under the condition that actual flow widths are used in the model instead of the total filter width. Predicted and observed sediment trapping efficiencies and infiltration volume fitted very well, with a coefficient of determination (R2) of 0·9 and 0·95, respectively. Regression analyses revealed that the slope and intercept of the regression lines between predicted versus observed infiltration volume and trapping efficiency were not significantly different than the line of perfect agreement with a slope of 1·0 and intercept of 0·0. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
There is a growing opinion that poorly managed plantation forests in Japan are contributing to increased storm runoff and erosion. Here we present evidence to the contrary from runoff plots at two scales (hillslope and 0·5 × 2 m plots) for several forest conditions in the Mie and Nariki catchments. Runoff coefficients from small plots in untended hinoki forests were variable but typically higher than from better managed or deciduous forests during small storms at Nariki; at Mie, runoff during small events was highly variable from all small plots but runoff coefficients were similar for hinoki plots with and without understory vegetation, while the deciduous plot had lower runoff coefficients. Storm runoff was less at the hillslope scale than the plot scale in Mie; these results were more evident at sites with better ground cover. During the largest storms at both sites, differences in runoff due to forest condition were not evident regardless of scale. Dynamic soil moisture tension measurements at Nariki indicated that during a large storm, flow in the upper organic‐rich and root‐permeated soil horizons was 3·2 times higher than measured overland runoff from a small hinoki plot with poor ground cover and 8·3 times higher than runoff from a deciduous forest plot. On the basis of field observations during storms, at least a portion of the monitored ‘Hortonian overland flow’ was actually occurring in this near‐surface ‘biomat’. Therefore our field measurements in both small and large plots potentially included biomat flow in addition to short‐lived Hortonian runoff. Because overland flow decreased with increasing scale, rill erosion did not occur on hillslopes. Additionally, runoff coefficients were not significantly different among cover conditions during large storms; thus, the ‘degraded’ forest conditions appear not to greatly enhance peak flows or erosion potential at larger scales, especially when biomat flow is significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Soil moisture dynamics have a significant effect on overland flow generation. Catchment aspect is one of the major controlling factors of overland flow and soil moisture behaviour. A few experimental studies have been carried out in the uneven topography of the Himalayas. This study presents plot‐scale experiments using portable rainfall simulator at an altitude of 1,230 m above mean sea level and modelling of overland flow using observed datasets. Two plots were selected in 2 different aspects of Aglar watershed of Lesser Himalaya; the agro‐forested (AF) plot was positioned at the north aspect whereas the degraded (DE) plot was located at the south aspect of the hillslope. HS flumes and rain gauges were installed to measure the runoff at the outlet of the plot and the rainfall depth during rainfall simulation experiments. Moreover, 10 soil moisture sensors were installed at upslope and downslope locations of both the plots at 5, 15, 25, 35, and 45 cm depth from ground level to capture the soil moisture dynamics. The tests were conducted at intensities of 79.8 and 75 mm/hr in AF plot and 82.2 and 72 mm/hr in the DE plot during Test 1 and Test 2, respectively. The observed data indicate the presence of reinfiltration process only in the AF plot. The high water holding capacity and the presence of reinfiltration process results in less runoff volume in the AF plot compared with the DE plot. The Hortonian overland flow mechanism was found to be the dominant overland flow mechanism as only a few layers of top soil get saturated during all of the rainfall–runoff experiments. The runoff, rainfall, and soil moisture data were subsequently used to calibrate the parameters of HYDRUS‐2D overland flow module to simulate the runoff hydrograph and soil moisture. The components of hydrograph were evaluated in terms of peak discharge, runoff volume and time of concentration, the results were found to be within the satisfactory range. The goodness of fit of simulated hydrographs were more than 0.85 and 0.95 for AF and DE plot, respectively. The model produced satisfactory simulation results of soil moisture for all of the rainfall–runoff experiments. The HYDRUS‐2D overland flow module was found promising to simulate the runoff hydrograph and soil moisture in plot‐scale research.  相似文献   

8.
Abstract

The effect of using two distributed hydrological models with different degrees of spatial aggregation on the assessment of climate change impact on river runoff was investigated. Analyses were conducted in the Narew River basin situated in northeast Poland using a global hydrological model (WaterGAP) and a catchment-scale hydrological model (SWAT). Climate change was represented in both models by projected changes in monthly temperature and precipitation between the period 2040–2069 and the baseline period, resulting from two general circulation models: IPSL-CM4 and MIROC3.2, both coupled with the SRES A2 emissions scenario. The degree of consistency between the global and the catchment model was very high for mean annual runoff, and medium for indicators of high and low runoff. It was observed that SWAT generally suggests changes of larger magnitude than WaterGAP for both climate models, but SWAT and WaterGAP were consistent as regards the direction of change in monthly runoff. The results indicate that a global model can be used in Central and Eastern European lowlands to identify hot-spots where a catchment-scale model should be applied to evaluate, e.g. the effectiveness of management options.

Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Piniewski, M., Voss, F., Bärlund, I., Okruszko, T., and Kundzewicz. Z.W., 2013. Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrological Sciences Journal, 58 (4), 737–754.  相似文献   

9.
Z. X. Xu  J. P. Pang  C. M. Liu  J. Y. Li 《水文研究》2009,23(25):3619-3630
The Soil and Water Assessment Tool (SWAT) was used to simulate the transport of runoff and sediment into the Miyun Reservoir, Beijing in this study. The main objective was to validate the performance of SWAT and the feasibility of using this model as a simulator of runoff and sediment transport processes at a catchment scale in arid and semi‐arid area in North China, and related processes affecting water quantity and soil erosion in the catchment were simulated. The investigation was conducted using a 6‐year historical streamflow and sediment record from 1986 to 1991; the data from 1986 to 1988 was used for calibration and that from 1989 to 1991 for validation. The SWAT generally performs well and could accurately simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily, with a Nash‐Sutcliffe coefficient of greater than 0·6, 0·9 and a coefficient of determination 0·75, 0·9 at two outlet stations (Xiahui and Zhangjiafen stations) during calibration. These values were 0·6, 0·85 and 0·6, 0·9 during validation. For sediment simulation, the efficiency is lower than that for runoff. Even so, the Nash‐Sutcliffe coefficient and coefficient of determination were greater than 0·48 and 0·6 for monthly sediment yield during calibration, and these values were greater than 0·84 and 0·95 during validation. Sensitivity analysis shows that sensitive parameters for the simulation of discharge and sediment yield include curve number, base flow alpha factor, soil evaporation compensation factor, soil available water capacity, soil profile depth, surface flow lag time and channel re‐entrained linear parameter, etc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Four seasonal rainfall simulations in 2009 and 2010 were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied then halted 60 min after initiation of runoff, with plot‐scale monitoring of runoff every 5 min during that period. Runoff was simulated with the Kinematic Runoff and Erosion/Simulator of Transport with Infiltration and Runoff (KINEROS2/STWIR) field‐scale model, whose hydrodynamics are based on the kinematic wave equation. Because of the non‐linear nature of the model and a highly parameterized model with respect to the available data, several approaches were investigated to upscale nine runoff‐related parameters from a series of small monitored plots to the field scale. Inverse modeling was performed using the model‐independent Parameter ESTimation (PEST) algorithm to individually calibrate the nine KINEROS2/STWIR parameters on 36 plots. The parameters were averaged, and bootstrapping was used to assess uncertainty of the parameters via estimation of confidence intervals (CI). A Monte Carlo simulation using the bootstrap results showed reasonable field‐scale representation of flow rates. Median values of calibrated parameters were within the 95% CI obtained with bootstrapping. The simulated results for the median values associated with the 90% CI flow rates produced similar trends as those exhibited with the observed data, suggesting that median values of the calibrated parameters from the PEST inverse modeling could be used to represent the field scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The impact of vegetated filter strips (VFS) on sediment removal from runoff has been studied extensively in recent years. Vegetation is believed to increase water infiltration and decrease water turbulence thus enhancing sediment deposition within filter media. In the study reported here, field experiments have been conducted to examine the efficiency of vegetated filter strips for sediment removal from cropland runoff. Twenty filters with varying length, slope and vegetated cover were used under simulated runoff conditions with an average sediment concentration of 2700 mg/L. The filters were 2, 5, 10 and 15 m long with a slope of 2·3 and 5% and three types of vegetation. Three other strips with bare soil were used as a control. The experimental results showed that the average sediment trapping efficiency of all filters was 84% and ranging from 68% in a 2‐m filter to as high as 98% in a 15‐m long filter compared with only 25% for the control. The length of filter has been found to be the predominant factor affecting sediment deposition in VFS up to 10 m. Increasing filter length to 15 m did not improve sediment trapping efficiency under the present experimental conditions. The rate of incoming flow and vegetation cover percentage has a secondary effect on sediment deposition in VFS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Model calibration and validation are necessary before applying it for scenario assessment and watershed management.This study presented the methodology of evaluating Soil and Water Assessment Tool(SWAT) and tested the feasibility of SWAT on runoff and sediment load simulation in the Zhifanggou watershed located in hilly-gullied region of China.Daily runoff and sediment event data from 1998-2008 were used in this study;data from 1998-2003 were used for calibration and 2004-2008 for validation.The evaluation statistics for the daily runoff simulation showed that the model results were acceptable,but the model underestimated the runoff for high-flow events.For sediment load simulation,the SWAT performed well in capturing the trend of sediment load,while the model tended to underestimate sediment load during both the calibration and validation periods. The disparity between observed and simulated data most likely resulted from limitations of the existing SCS-CN and MUSLE methods in the model.This study indicated that the modification of SWAT components is needed to take rainfall intensity and its duration into account to enhance the model performance on peak flow and sediment load simulation during heavy rainfall season.  相似文献   

13.
The slope effects on sediment trapping process in vegetative filter strips (VFS) are usually neglected in current modelling practices for VFS operation, which hamper the VFS design and performance evaluation, especially on steep slopes. To fill the knowledge gap, 12 laboratory experiments of sediment trapping in VFS were conducted with three different inflow discharge (80, 100, and 120 ml s−1) and four slope angles (5,10, 15, and 20°). The experimental results show that, on steep slopes (10, 15, and 20°), a part of trapped sediment particles in VFS can be eroded again and then dragged to the downstream as bed load, whilst they do not move on gentle slope (5°). To describe the complex processes, a simple and effective modelling framework was developed for sloped VFS by coupling the slope infiltration, runoff, and modified sediment transport model. The model was tested against the experimental results and good agreements between the modelled and observed results were found in both runoff and sediment transport processes for all cases. On steep slopes, the sediment trapping performance of VFS decreases significantly because the erosion of deposited sediment particles can account for more than 60% of the sediment load in the outflow. The slope effect on sediment trapping efficiency of VFS varies greatly with soil, VFS, and slope properties. The model was compared with previous sediment transport equation and found that both methods can satisfactorily predict the sediment trapping of VFS on gentle slopes, but previous sediment transport equation is likely to overestimate the sediment trapping efficiency in VFS on steep slopes. This model is expected to provide a more realistic and accurate method for predicting runoff and sediment reduction in VFS on sloping surfaces.  相似文献   

14.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
《水文科学杂志》2013,58(6):953-970
Abstract

The 5000 km2 topographically closed Estancia basin in central New Mexico has been the focus of several palaeoclimatic studies based on changes in the level of late Pleistocene Lake Estancia. A large, unknown volume of surface runoff and groundwater from adjacent mountains contributed to the hydrological balance during highstands and lowstands. The US Department of Agriculture hydrological model SWAT (Soil and Water Assessment Tool) and the US Geological Survey groundwater flow model MODFLOW, with the LAK2 package, were used in this study to estimate runoff and water balance under present climate. A Geographic Information Systems (GIS) interface was used for SWAT, digitized data were applied for soils and vegetation, and limited streamflow data were used to obtain an approximate calibration for the model. Simulated streamflow is generally within 30% of observed values, and simulated runoff for the entire basin is about 8% of the annual inflow volume needed to support lowstands of the former Lake Estancia. Results from the combined models suggest application to other palaeoclimate investigations in semiarid lake basins.  相似文献   

16.
The delicate balance between human utilization and sustaining its pristine biodiversity in the Mara River basin (MRB) is being threatened because of the expansion of agriculture, deforestation, human settlement, erosion and sedimentation and extreme flow events. This study assessed the applicability of the Soil and Water Assessment Tool (SWAT) model for long‐term rainfall–runoff simulation in MRB. The possibilities of combining/extending gage rainfall data with satellite rainfall estimates were investigated. Monthly satellite rainfall estimates not only overestimated but also lacked the variability of observed rainfall to substitute gage rainfall in model simulation. Uncertainties related to the quality and availability of input data were addressed. Sensitivity and uncertainty analysis was reported for alternative model components and hydrologic parameters used in SWAT. Mean sensitivity indices of SWAT parameters in MRB varied with and without observed discharge data. The manual assessment of individual parameters indicated heterogeneous response among sub‐basins of MRB. SWAT was calibrated and validated with 10 years of discharge data at Bomet (Nyangores River), Mulot (Amala River) and Mara Mines (Mara River) stations. Model performance varied from satisfactory at Mara Mines to fair at Bomet and weak at Mulot. The (Nash–Sutcliff efficiency, coefficient of determination) results of calibration and validation at Mara Mines were (0.68, 0.69) and (0.43, 0.44), respectively. Two years of moving time window and flow frequency analysis showed that SWAT performance in MRB heavily relied on quality and abundance of discharge data. Given the 5.5% area contribution of Amala sub‐basin as well as uncertainty and scarcity of input data, SWAT has the potential to simulate the rainfall runoff process in the MRB. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The objective of this study is to incorporate a time‐dependent Soil Moisture Accounting (SMA) based Curve Number method (SMA_CN) in Soil and Water Assessment Tool (SWAT) and compare its performance with the existing CN method in SWAT by simulating the hydrology of two agricultural watersheds in Indiana, USA. Results show that fusion of the SMA_CN method causes decrease in runoff volume and increase in profile soil moisture content, associated with larger groundwater contribution to the streamflow. In addition, the higher amount of moisture in the soil profile slightly elevates the actual evapotranspiration. The SMA‐based SWAT configuration consistently produces improved goodness‐of‐fit scores and less uncertain outputs with respect to streamflow during both calibration and validation. The SMA_CN method exhibits a better match with the observed data for all flow regimes, thereby addressing issues related to peak and low flow predictions by SWAT in many past studies. Comparison of the calibrated model outputs with field‐scale soil moisture observations reveals that the SMA overhauling enables SWAT to represent soil moisture condition more accurately, with better response to the incident rainfall dynamics. While the results from the modification of the CN method in SWAT are promising, more studies including watersheds with various physical and climatic settings are needed to validate the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Using a mass balance algorithm, this study develops an extension module that can be embedded in the commonly used Soil and Water Assessment Tool (SWAT). This module makes it possible to assess effects of riparian wetlands on runoff and sediment yields at a watershed scale, which is very important for aquatic ecosystem management but rarely documented in the literature. In addition to delineating boundaries of a watershed and its subwatersheds, the module groups riparian wetlands within a subwatershed into an equivalent wetland for modelling purposes. Further, the module has functions to compute upland drainage area and other parameters (e.g. maximum volume) for the equivalent wetland based on digital elevation model, stream network, land use, soil and wetland distribution GIS datasets. SWAT is used to estimate and route runoff and sediment generated from upland drainage area. The lateral exchange processes between riparian wetlands and their hydraulically connected streams are simulated by the extension module. The developed module is empirically applied to the 53 km2 Upper Canagagigue Creek watershed located in Southern Ontario of Canada. The simulation results indicate that the module can make SWAT more reasonably predict flow and sediment loads at the outlet of the watershed and better represent the hydrologic processes within it. The simulation is sensitive to errors of wetland parameters and channel geometry. The approach of embedding the module into SWAT enables simulation of hydrologic processes in riparian wetlands, evaluation of wetland effects on regulating stream flow and sediment loading and assessment of various wetland restoration scenarios. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Watershed scale hydrological and biogeochemical models rely on the correct spatial‐temporal prediction of processes governing water and contaminant movement. The Soil and Water Assessment Tool (SWAT) model, one of the most commonly used watershed scale models, uses the popular curve number (CN) method to determine the respective amounts of infiltration and surface runoff. Although appropriate for flood forecasting in temperate climates, the CN method has been shown to be less than ideal in many situations (e.g. monsoonal climates and areas dominated by variable source area hydrology). The CN model is based on the assumption that there is a unique relationship between the average moisture content and the CN for all hydrologic response units (HRUs), and that the moisture content distribution is similar for each runoff event, which is not the case in many regions. Presented here is a physically based water balance that was coded in the SWAT model to replace the CN method of runoff generation. To compare this new water balance SWAT (SWAT‐WB) to the original CN‐based SWAT (SWAT‐CN), two watersheds were initialized; one in the headwaters of the Blue Nile in Ethiopia and one in the Catskill Mountains of New York. In the Ethiopian watershed, streamflow predictions were better using SWAT‐WB than SWAT‐CN [Nash–Sutcliffe efficiencies (NSE) of 0·79 and 0·67, respectively]. In the temperate Catskills, SWAT‐WB and SWAT‐CN predictions were approximately equivalent (NSE > 0·70). The spatial distribution of runoff‐generating areas differed greatly between the two models, with SWAT‐WB reflecting the topographical controls imposed on the model. Results show that a water balance provides results equal to or better than the CN, but with a more physically based approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper examines the potential for improving Soil and Water Assessment Tool (SWAT) hydrologic predictions of root-zone soil moisture, evapotranspiration, and stream flow within the 341 km2 Cobb Creek Watershed in southwestern Oklahoma through the assimilation of surface soil moisture observations using an Ensemble Kalman filter (EnKF). In a series of synthetic twin experiments assimilating surface soil moisture is shown to effectively update SWAT upper-layer soil moisture predictions and provide moderate improvement to lower layer soil moisture and evapotranspiration estimates. However, insufficient SWAT-predicted vertical coupling results in limited updating of deep soil moisture, regardless of the SWAT parameterization chosen for root-water extraction. Likewise, a real data assimilation experiment using ground-based soil moisture observations has only limited success in updating upper-layer soil moisture and is generally unsuccessful in enhancing SWAT stream flow predictions. Comparisons against ground-based observations suggest that SWAT significantly under-predicts the magnitude of vertical soil water coupling at the site, and this lack of coupling impedes the ability of the EnKF to effectively update deep soil moisture, groundwater flow and surface runoff. The failed attempt to improve stream flow prediction is also attributed to the inability of the EnKF to correct for existing biases in SWAT-predicted stream flow components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号