首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A probabilistic approach to lifetime assessment of seismic resilience of deteriorating concrete structures is presented. The effects of environmental damage on the seismic performance are evaluated by means of a methodology for lifetime assessment of concrete structures in aggressive environment under uncertainty. The time‐variant seismic capacity associated with different limit states, from damage limitation up to collapse, is assumed as functionality indicator. The role of the deterioration process on seismic resilience is then investigated over the structural lifetime by evaluating the post‐event residual functionality and recovery of the deteriorating system as a function of the time of occurrence of the seismic event. The proposed approach is applied to a three‐story concrete frame building and a four‐span continuous concrete bridge under corrosion. The results show the combined effects of structural deterioration and seismic damage on the time‐variant system functionality and resilience and indicate the importance of a multi‐hazard life‐cycle‐oriented approach to seismic design of resilient structure and infrastructure systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Over the last two decades, the probabilistic assessment of reinforced concrete (RC) structures under seismic hazard has been developed rapidly. However, little attention has been devoted to the assessment of the seismic reliability of corroded structures. For the life‐cycle assessment of RC structures in a marine environment and earthquake‐prone regions, the effect of corrosion due to airborne chlorides on the seismic capacity needs to be taken into consideration. Also, the effect of the type of corrosive environment on the seismic capacity of RC structures has to be quantified. In this paper, the evaluation of the displacement ductility capacity based on the buckling model of longitudinal rebars in corroded RC bridge piers is established, and a novel computational procedure to integrate the probabilistic hazard associated with airborne chlorides into life‐cycle seismic reliability assessment of these piers is proposed. The seismic demand depends on the results of seismic hazard assessment, whereas the deterioration of seismic capacity depends on the hazard associated with airborne chlorides. In an illustrative example, an RC bridge pier was modeled as single degree of freedom (SDOF). The longitudinal rebars buckling of this pier was considered as the sole limit state when estimating its failure probability. The findings show that the life‐cycle reliability of RC bridge piers depends on both the seismic and airborne chloride hazards, and that the cumulative‐time failure probabilities of RC bridge piers located in seismic zones can be dramatically affected by the effect of airborne chlorides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A decision methodology for the management of seismic risk of a single building is presented. The decision criterion aims at minimizing the expected life‐cycle cost, including the initial cost of the design and the expected cost of damage due to future earthquakes. The expected life‐cycle cost of each design alternative is formulated using a renewal model for the occurrence of earthquakes in a seismic source, which accounts for the temporal dependence between the occurrence of ‘characteristic’ earthquakes. The formulation involves the expected damage cost from an earthquake of specified magnitude in a given source. This term is estimated by simulating the processes of fault rupture, elastic wave propagation, surface soil amplification, dynamic structural response and generation of damage costs. As an example, the methodology is applied to an actual office building in Tokyo. A simple decision problem between two design alternatives is set: a bare steel moment frame, and the same frame equipped with oil dampers. Through this case study, the installation of the oil dampers is demonstrated to be effective in reducing the life‐cycle cost of the building under consideration. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The lack of direct correspondence between control objectives and hazard risks over the lifetime of systems is a key shortcoming of current control techniques. This along with the inability to objectively analyze the benefits and costs of control solutions compared with conventional methods has hindered widespread application of control systems in seismic regions. To address these gaps, this paper offers 2 new contributions. First, it introduces risk‐based life cycle–cost (LCC) optimal control algorithms, where LCC is incorporated as the performance objective in the control design. Two strategies called risk‐based linear quadratic regulator and unconstrained risk‐based regulator are subsequently proposed. The considered costs include the initial cost of the structure and control system, LCC of maintenance, and probabilistically derived estimates of seismic‐induced repair costs and losses associated with downtime, injuries, and casualties throughout the life of the structure. This risk‐based framework accounts for uncertainties in both system properties and hazard excitations and uses outcrossing rate theory to estimate fragilities for various damage states. The second contribution of this work is a risk‐based probabilistic framework for LCC analysis of existing and proposed control strategies. The proposed control designs are applied to the nonlinear model of a 4‐story building subjected to seismic excitations. Results show that these control methods reduce the LCC of the structure significantly compared with the status quo option (benefits of up to $1 351 000). The advancements offered in this paper enhance the cost‐effectiveness of control systems and objectively showcase their benefits for risk‐informed decision making.  相似文献   

5.
In this study life‐cycle cost (LCC) assessment of structural frames is performed. Two different materials, reinforced concrete (RC) and reinforced engineered cementitious composites (ECC), with different response characteristics are used to model the frames. ECC is characterized by high tensile ductility and energy absorption and reduced crack widths when compared to conventional concrete. However, the material is more expensive than conventional concrete; therefore, in order to quantify the potential benefits that could be obtained by replacing concrete with ECC, the life‐cycle performance is evaluated in an optimization framework. Three different structural frames are considered: an RC only frame, an ECC only frame and a multi‐material (MX) frame in which ECC is selectively applied at the potential plastic hinge locations while the remainder of the frame is made of RC. The structural capacity and earthquake demand are evaluated using rigorous analysis methods to capitalize on different characteristics of concrete and ECC, and both aleatory and epistemic uncertainties are incorporated into the LCC formulation. It is found that both the initial and LCC of frames that use ECC are lower due to savings in material and labor cost of transverse reinforcement for the former and due to increased capacity and reduced demand for the latter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Deteriorating highway bridges in the United States and worldwide have demonstrated susceptibility to damage in earthquake events, with considerable economic consequences due to repair or replacement. Current seismic loss assessment approaches for these critical elements of the transportation network neglect the effects of aging and degradation on the loss estimate. However, the continued aging and deterioration of bridge infrastructure could not only increase susceptibility to seismic damage, but also have a significant impact on these economic losses. Furthermore, the contribution of individual aging components to system‐level losses, correlations between these components, and uncertainty modeling in the risk assessment and repair modeling are all crucial considerations to enhance the accuracy and confidence in bridge loss estimates. In this paper, a new methodology for seismic loss assessment of aging bridges is introduced based on the non‐homogeneous Poisson process. Statistical moments of seismic losses can be efficiently estimated, such as the expected value and variance. The approach is unique in its account for time‐varying seismic vulnerability, uncertainty in component repair, and the contribution of multiple correlated aging components. A representative case study is presented with two fundamentally distinct highway bridges to demonstrate the effects of corrosion deterioration of different bridge components on the seismic losses. Using the proposed model, a sensitivity study is also conducted to assess the effect of parameter variations on the expected seismic losses. The results reveal that the seismic losses estimated by explicitly considering the effects of deterioration of bridge components is significantly higher than that found by assuming time‐invariant structural reliability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Fragility curves are found to be useful tools for predicting the extent of probable damage. They show the probability of highway structure damage as a function of strong motion parameters, and they allow the estimation of a level of damage probability for a known ground motion index. In this study, an analytical approach was adopted to develop the fragility curves for highway bridges based on numerical simulation. Four typical RC bridge piers and two RC bridge structures were considered, of which one was a non‐isolated system and the other was an isolated system, and they were designed according to the seismic design code in Japan. From a total of 250 strong motion records, selected from Japan, the United States, and Taiwan, non‐linear time history analyses were performed, and the damage indices for the bridge structures were obtained. Using the damage indices and ground motion parameters, fragility curves for the four bridge piers and the two bridge structures were constructed assuming a lognormal distribution. It was found that there was a significant effect on the fragility curves due to the variation of structural parameters. The relationship between the fragility curve parameters and the over‐strength ratio of the structures was also obtained by performing a linear regression analysis. It was observed that the fragility curve parameters showed a strong correlation with the over‐strength ratio of the structures. Based on the observed correlation between the fragility curve parameters and the over‐strength ratio of the structures, a simplified method was developed to construct the fragility curves for highway bridges using 30 non‐isolated bridge models. The simplified method may be a very useful tool to construct the fragility curves for non‐isolated highway bridges in Japan, which fall within the same group and have similar characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Many bridges located in seismic hazard regions suffer from serious foundation exposure caused by riverbed scour. Loss of surrounding soil significantly reduces the lateral strength of pile foundations. When the scour depth exceeds a critical level, the strength of the foundation is insufficient to withstand the imposed seismic demand, which induces the potential for unacceptable damage to the piles during an earthquake. This paper presents an analytical approach to assess the earthquake damage potential of bridges with foundation exposure and identify the critical scour depth that causes the seismic performance of a bridge to differ from the original design. The approach employs the well-accepted response spectrum analysis method to determine the maximum seismic response of a bridge. The damage potential of a bridge is assessed by comparing the imposed seismic demand with the strengths of the column and the foundation. The versatility of the analytical approach is illustrated with a numerical example and verified by the nonlinear finite element analysis. The analytical approach is also demonstrated to successfully determine the critical scour depth. Results highlight that relatively shallow scour depths can cause foundation damage during an earthquake, even for bridges designed to provide satisfactory seismic performance.  相似文献   

9.
Cable‐stayed bridges require a careful consideration of the lateral force exerted by the deck on the towers under strong earthquakes. This work explores the seismic response of cable‐stayed bridges with yielding metallic dampers composed of triangular plates that connect the deck with the supports in the transverse direction. A design method based on an equivalent single‐degree of freedom approximation is proposed. This is proved valid for conventional cable‐stayed bridges with 200‐ and 400‐m main spans, but not 600 m. The height of the plates is chosen to (1) achieve a yielding capacity that limits the maximum force transmitted from the deck to the towers, and to (2) control the hysteretic energy that the dampers dissipate by defining their design ductility. In order to select the optimal ductility and the damper configuration, a multi‐objective response factor that accounts for the energy dissipation, peak damper displacement and low‐cycle fatigue is introduced. The design method is applied to cable‐stayed bridges with different spans and deck–support connections. The results show that the dissipation by plastic deformation in the dampers prevents significant damage in the towers of the short‐to‐medium‐span bridges under the extreme seismic actions. However, the transverse response of the towers in the bridge with a 600‐m main span is less sensitive to the dampers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In Italy, as in other high seismic risk countries, many bridges, nowadays deemed ‘strategic’ for civil protection interventions after an earthquake, were built without antiseismic criteria, and therefore their seismic assessment is mandatory. Accordingly, the development of a seismic assessment procedure that gives reliable results and, at the same time, is sufficiently simple to be applied on a large population of bridges in a short time is very useful. In this paper, a displacement‐based procedure for the assessment of multi‐span RC bridges, satisfying these requirements and called direct displacement‐based assessment (DDBA), is proposed. Based on the direct displacement‐based design previously developed by Priestley et al., DDBA idealizes the multi DOF bridge structure as an equivalent SDOF system and hence defines a safety factor in terms of displacement. DDBA was applied to hypothetical bridge configurations. The same structures were analyzed also using standard force‐based approach. The reliability of the two methods was checked performing IDA with response spectrum compatible accelerograms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The present study evaluates seismic resilience of highway bridges that are important components of highway transportation systems. To mitigate losses incurred from bridge damage during seismic events, bridge retrofit strategies are selected such that the retrofit not only enhances bridge seismic performance but also improves resilience of the system consisting of these bridges. To obtain results specific to a bridge, a reinforced concrete bridge in the Los Angeles region is analyzed. This bridge was severely damaged during the Northridge earthquake because of shear failure of one bridge pier. Seismic vulnerability model of the bridge is developed through finite element analysis under a suite of time histories that represent regional seismic hazard. Obtained bridge vulnerability model is combined with appropriate loss and recovery models to calculate seismic resilience of the bridge. Impact of retrofit on seismic resilience is observed by applying suitable retrofit strategy to the bridge assuming its undamaged condition prior to the Northridge event. Difference in resilience observed before and after bridge retrofit signified the effectiveness of seismic retrofit. The applied retrofit technique is also found to be cost‐effective through a cost‐benefit analysis. First order second moment reliability analysis is performed, and a tornado diagram is developed to identify major uncertain input parameters to which seismic resilience is most sensitive. Statistical analysis of resilience obtained through random sampling of major uncertain input parameters revealed that the uncertain nature of seismic resilience can be characterized with a normal distribution, the standard deviation of which represents the uncertainty in seismic resilience. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
After the occurrence of various destructive earthquakes in Japan, extensive efforts have been made to improve the seismic performance of bridges. Although improvements to the ductile capacities of reinforced concrete (RC) bridge piers have been developed over the past few decades, seismic resilience has not been adequately ensured. Simple ductile structures are not robust and exhibit a certain level of damage under extremely strong earthquakes, leading to large residual displacements and higher repair costs, which incur in societies with less-effective disaster response and recovery measures. To ensure the seismic resilience of bridges, it is necessary to continue developing the seismic design methodology of RC bridges by exploring new concepts while avoiding the use of expensive materials. Therefore, to maximize the postevent operability, a novel RC bridge pier with a low-cost sliding pendulum system is proposed. The seismic force is reduced as the upper component moves along a concave sliding surface atop the lower component of the RC bridge pier. No replaceable seismic devices are included to lengthen the natural period; only conventional concrete and steel are used to achieve low-cost design solutions. The seismic performance was evaluated through unidirectional shaking table tests. The experimental results demonstrated a reduction in the shear force transmitted to the substructure, and the residual displacement decreased by establishing an adequate radius of the sliding surface. Finally, a nonlinear dynamic analysis was performed to estimate the seismic response of the proposed RC bridge pier.  相似文献   

13.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

14.
The life‐cycle cost can be regarded as a benchmark variable in decision making problems involving the retrofit and upgrading of existing structures. A critical infrastructure is often subjected to more than one hazard during its lifetime. Therefore, the problem of evaluating the life‐cycle cost involves uncertainties in both loading and structural modeling parameters. The present study is a preliminary study aiming to calculate the expected life‐cycle cost for a critical infrastructure subjected to more than one hazard in its service lifetime. A methodology is presented that takes into account both the uncertainty in the occurrence of future events due to different types of hazard and also the deterioration of the structure as a result of a series of events. In order to satisfy life safety conditions, the probability of exceeding the limit state of collapse is constrained to be smaller than an allowable threshold. Finally, the methodology is implemented in an illustrative numerical example which considers a structure subjected to both seismic hazard and blast hazard in both upgraded and non‐upgraded configurations. It is demonstrated how expected life‐cycle cost can be used as a criterion to distinguish between the two choices while satisfying the life safety constraint. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In the design and assessment of structures, the aspects regarding the future performance are gaining increased attention. A wide range of performance measures is covered by ‘sustainability’ to reflect these aspects. There is the need for well established methods for quantifying the metrics of sustainability. In this paper, a framework for assessing the time‐variant sustainability of bridges associated with multiple hazards considering the effects of structural deterioration is presented. The approach accounts for the effects of flood‐induced scour on seismic fragility. Sustainability is quantified in terms of its social, environmental, and economic metrics. These include the expected downtime and number of fatalities, expected energy waste and carbon dioxide emissions, and the expected loss. The proposed approach is illustrated on a reinforced concrete bridge. The effects of corrosion on reinforcement bars and concrete cover spalling are accounted. The seismic fragility curves at different points in time are obtained through nonlinear finite element analyses. The variation of the metrics of sustainability in time is presented. The effects of flood‐induced scour on both seismic fragility and metrics are also investigated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Modern highway bridges in Illinois are often installed with economical elastomeric bearings that allow for thermal movement of the superstructure, and steel fixed bearings and transverse retainers that prevent excessive movement from service‐level loadings. In the event of an earthquake, the bearing system has the potential to provide a quasi‐isolated response where failure of sacrificial elements and sliding of the bearings can cause a period elongation and reduce or cap the force demands on the substructure. A computational model that has been calibrated for the expected nonlinear behaviors is used to carry out a parametric study to evaluate quasi‐isolated bridge behavior. The study investigates different superstructure types, substructure types, substructure heights, foundation types, and elastomeric bearing types. Overall, only a few bridge variants were noted to unseat for design‐level seismic input in the New Madrid Seismic Zone, indicating that most structures in Illinois would not experience severe damage during their typical design life. However, Type II bearing systems, which consist of an elastomeric bearing and a flat PTFE slider, would in some cases result in critical damage from unseating at moderate and high seismic input. The sequence of damage for many bridge cases indicates yielding of piers at low‐level seismic input. This is caused by the high strength of the fixed bearing element, which justifies further calibration of the quasi‐isolation design approach. Finally, the type of ground motion, pier height, and bearing type were noted to have significant influence on the global bridge response. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In light of recent earthquakes, structures damaged during an initial seismic event (mainshock) may be more vulnerable to severe damage and collapse during a subsequent event (aftershock). In this paper, a framework for the development of aftershock fragilities is presented; these aftershock fragilities define the likelihood that a bridge damaged during an initial event will exhibit a given damage state following one or more subsequent events. The framework is capable of (i) quantifying the cumulative damage of unrepaired bridges subjected to mainshock–aftershock sequences (effect of multiple earthquakes) and (ii) evaluating the effectiveness of column repair schemes such as steel and fiber‐reinforced‐polymer jackets (post‐repair effect of jackets). To achieve this aim, the numerical model of repaired columns is validated using existing experimental results. A non‐seismically designed bridge is chosen as a case study and is modeled for three numerical bridge models: a damaged (but unrepaired) bridge model, and two bridge models with columns repaired with steel and fiber‐reinforced polymer jackets. A series of back‐to‐back dynamic analyses under successive earthquakes are performed for each level of existing damage. Using simulated results, failure probabilities of components for multiple limit states are computed for each bridge model and then are used to evaluate the relative vulnerability of components associated with cumulative damage and column repair. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
王德俊 《华南地震》2019,39(3):89-94
快速评估不规则公路桥梁的地震动参数为桥梁地震响应分析、桥梁安全性设计提供科学依据。研究一种快速、有效的不规则公路桥梁地震动参数评估技术,以C形不规则公路桥梁为原型设计振动台与公路桥梁模型,选取Imperial Valley波作为地震动输入,采用加速度传感器、位移传感器采集桥梁加速度与位移数据;结合已知地震动数据计算地震动持续时长参数,优化衰减模型获取精确的地表峰值加速度参数。分析地表峰值加速度与其他地震动参数关系可知,地表峰值加速度与损坏概率成正比,桥梁结构发生损坏的概率在50%以下;震级越大、震中距越小、地表峰值加速度越大。  相似文献   

19.
Past earthquake experiences indicate that most buildings designed in accordance with modern seismic design codes could survive moderate‐to‐strong earthquakes; however, the financial loss due to repairing cost and the subsequent business interruption can be unacceptable. Designing building structures to meet desired performance targets has become a clear direction in future seismic design practice. As a matter of fact, the performance of buildings is affected by structural as well as non‐structural components, and involves numerous uncertainties. Therefore, appropriate probabilistic approach taking into account structural and non‐structural damages is required. This paper presents a fuzzy–random model for the performance reliability analysis of RC framed structures considering both structural and non‐structural damages. The limit state for each performance level is defined as an interval of inter‐storey drift ratios concerning, respectively, the non‐structural and structural damage with a membership function, while the relative importance of the two aspects is reflected through the use of an appropriate cost function. To illustrate the methodology, herein the non‐structural damage is represented by infill masonry walls. The probabilistic drift limits for RC components and masonry walls from the associated studies are employed to facilitate the demonstration of the proposed model in an example case study. The results are compared with those obtained using classical reliability model based on single‐threshold performance definition. The proposed model provides a good basis for incorporating different aspects into the performance assessment of a building system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
While structural engineers have traditionally focused on individual components (bridges, for example) of transportation networks for design, retrofit, and analysis, it has become increasingly apparent that the economic costs to society after extreme earthquake events are caused at least as much from indirect costs as direct costs due to individual structures. This paper describes an improved methodology for developing probabilistic estimates of repair costs and repair times that can be used for evaluating the performance of new bridge design options and existing bridges in preparation for the next major earthquake. The proposed approach in this paper is an improvement on previous bridge loss modeling studies—it is based on the local linearization of the dependence between repair quantities and damage states so that the resulting model follows a linear relationship between damage states and repair points. The methodology uses the concept of performance groups (PGs) that account for damage and repair of individual bridge components and subassemblies. The method is validated using two simple examples that compare the proposed method to simulation and previous methods based on loss models using a power–law relationship between repair quantities and damage. In addition, an illustration of the method is provided for a complete study on the performance of a common five‐span overpass bridge structure in California. Intensity‐dependent repair cost ratios (RCRs) and repair times are calculated using the proposed approach, as well as plots that show the disaggregation of repair cost by repair quantity and by PG. This provides the decision maker with a higher fidelity of data when evaluating the contribution of different bridge components to the performance of the bridge system, where performance is evaluated in terms of repair costs and repair times rather than traditional engineering quantities such as displacements and stresses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号