首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Catchment hydrology is influenced by land‐use change through alteration of rainfall partitioning processes. We compared rainfall partitioning (throughfall, stemflow and interception) and soil water content in three land‐use types (primary forest, secondary forest and agriculture) in the Santa Fe region of Panama. Seasonal patterns were typified by larger volumes of throughfall and stemflow in the wet season, and the size of precipitation events was the main driver of variation in rainfall redistribution. Land‐use‐related differences in rainfall partitioning were difficult to identify due to the high variability of throughfall. However, annual throughfall in agricultural sites made up a larger proportion of gross precipitation than throughfall in forest sites (94 ± 1, 83 ± 6 and 81 ± 1% for agriculture, primary and secondary forests, respectively). Proportional throughfall (% of gross precipitation becoming throughfall) was consistent throughout the year for primary forest, but for secondary forest, it was larger in the dry season than the wet season. Furthermore, proportional stemflow in the dry season was larger in secondary forest than primary forest. Stemflow, measured only in primary and secondary forests, ranged between 0.9 and 3.2% of gross precipitation. Relative soil moisture content in agricultural plots was generally elevated during the first half of the dry season in comparison to primary and secondary forests. Because throughfall is elevated in agricultural plots, we suggest careful management of the spatial distribution and spread of this land‐use type to mitigate potential negative impacts in the form of floods and high erosion rates in the catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Measurements are reported of rainfall, throughfall, stemflow, and derived interception losses made on a daily basis during two consecutive rainy seasons in a 4–5 year old and rapidly growing plantation forest of Acacia auriculiformis in a humid tropical environment. During the first observation period throughfall, stemflow, and interception loss amounted to respectively 81, 8, and 11 per cent of gross precipitation, whilst corresponding values for the second observation period were 75, 7, and 18 per cent. All three components correlated strongly with amounts of daily rainfall, but slopes of linear regression equations differed significantly between seasons for each component. Such differences are thought to reflect a 20 per cent increase in foliar mass as well as a certain instrumental bias introduced by the use of a fixed grid of throughfall troughs that differed between seasons. Tests did not reveal any effects of differences in rainfall characteristics although the two observation periods differed markedly in this respect. Although the present results fell within the (lower part of the) range reported for other sites in Southeast Asia application of Gash's analytical model suggested the results obtained during the second observation period to be anomalous. The model was tested with data from the second halves of the two observation periods, using parameters derived from the corresponding first halves. Discrepancies between estimated and observed losses were +9·4 and ?14·3 per cent for the two periods respectively. The bulk of the interception loss consisted of evaporation from a saturated canopy (69–80 per cent) and of evaporation after rainfall had ceased (25 and 15 per cent for the two periods respectively). Although the results were encouraging it would seem that a major difficulty in applying the analytical model to the humid tropics lies in obtaining a reliable estimate of the evaporation rate from a saturated canopy.  相似文献   

5.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   

6.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

7.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Methods for measuring throughfall, stemflow and, hence, interception in the tropical rainforests of the Wet Tropics region of North Queensland, Australia, were tested at three sites for between 581 and 787 days. The throughfall system design was based on long troughs mounted beneath the canopy and worked successfully under a range of rainfall conditions. Comparison of replicated systems demonstrated that the methodology is capable of capturing the variability in throughfall exhibited beneath our tropical rainforest canopies. Similarly, the stemflow system design which used spiral collars attached to sample trees worked well under a range of rainfall conditions and also produced similar estimates of stemflow in replicated systems. Higher altitude rainforests (>1000 m) in North Queensland can receive significant extra inputs of water as the canopy intercepts passing cloud droplets. This additional source of water is referred to as ‘cloud interception’ and an instrument for detecting this is described. The results obtained from this gauge are compared with cloud interception estimates made using a canopy water balance method. This method is based on stemflow and throughfall measurements and provides an alternative means to fog or cloud interception gauge calibration techniques used in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Many studies have focused on the amount of stemflow in different forests and for different rainfall events, but few studies have focused on how stemflow intensity varies during events or the infiltration of stemflow into the soil. Stemflow may lead to higher water delivery rates at the base of the tree compared with throughfall over the same area and fast and deeper infiltration of this water along roots and other preferential flow pathways. In this study, stemflow amounts and intensities were measured and blue dye experiments were conducted in a mature coniferous forest in coastal British Columbia to examine double funnelling of stemflow. Stemflow accounted for only 1% of precipitation and increased linearly with event total precipitation. Funnelling ratios ranged from less than 1 to almost 20; smaller trees had larger funnelling ratios. Stemflow intensity generally was highest for periods with high‐intensity rainfall later in the event. The maximum stemflow intensities were higher than the maximum precipitation intensities. Dye tracer experiments showed that stemflow infiltrated primarily along roots and was found more frequently at depth than near the soil surface. Lateral flow of stemflow was observed above a dense clay layer for both the throughfall and stemflow experiments. Stemflow appeared to infiltrate deeper (122 cm) than throughfall (85 cm), but this difference was in part a result of site‐specific differences in maximum soil depth. However, the observed high stemflow intensities combined with preferential flow of stemflow may lead to enhanced subsurface stormflow. This suggests that even though stemflow is only a very minor component of the water balance, it may still significantly affect soil moisture, recharge, and runoff generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
CHANGYUAN TANG 《水文研究》1996,10(11):1427-1434
Interception and recharge processes beneath a Pinus elliotii forest were considered in an integrated study. In the study area, annual rainfall was divided into throughfall (74.45%), stemflow (9.37%) and interception (16.28%). Throughfall and stemflow infiltrate into the soil in different ways. The results show that trees can affect the recharge characteristics by providing throughfall as a non-point source and stemflow as a point source, and also through their influence on infiltration processes by making the hydraulic conductivity of soil heterogeneous. In the root zone there was a divergent zero flux plane recharged by macropore flow during heavy rain and a convergent zero flux plane caused by transpiration during dry periods.  相似文献   

11.
Since 1986 the multiple benefits of moso-bamboo forest, a special forest type found mainly in south China, have been investigated in a small 11.7 ha watershed in Fenyi County, Jiangxi Province. The mean annual precipitation in the study area is 1593.3 mm. For the 0–60 cm soil layer the average soil bulk density is 1.00 g/cm3, and the mean values for other soil properties are: total porosity 71.74%; non-capillary porosity 5.81%; and water retention capacity 430 mm. The maximum effective water retention capacity of 313 mm is 28% higher than that for Chinese fir (Cunninghamia lanceolata) plantations and natural broadleaved forest in the neighbouring area. The parameters f0, fc and k, in Horton's infiltration equation, measured using the double-ring method under drought conditions, are 29.10 mm/min, 8.28 mm/min and 0.2391, respectively. These infiltration properties are more favourable than those under nearby Chinese fir plantations. Compared with a Chinese fir plantation, the canopy interception ratio of moso-bamboo is lower, but the stemflow ratio is higher. The annual canopy interception ratio is 11.1%. Because of snowfall, the interception ratios in January, February and March are higher, with values of 12.1–17.2%, whereas during the period of leaf fall in April, May and June the interception ratios are lower with values of 9.2–9.5%. During the other months they are relatively constant. The annual stemflow ratio is 4.4%. Again, because of snowfall, the stemflow ratios in January, February and March are lower with values of 2.8–2.9%, whereas during the remaining months they are fairly constant. Runoff analysis shows that the annual runoff ratio in this research watershed is 54.8%, but the ratio for quick runoff, composed of direct runoff and surface runoff, is only 0.8%. The upper interflow ratio is 15% and the ratio for the slow runoff composed of deeper interflow and underflow is 39%. The moso-bamboo forest is very effective in reducing peak runoff and increasing low flows. The annual nutrient element inputs (kg/ha) to the moso-bamboo forest ecosystem associated with throughfall and stemflow are N 17.7, P 0.38, K 56.5, Ca 31.,4, Mg 4.8 and SiO2 26.2, respectively. All the measured element inputs, with the exception of P, are higher than those associated with precipitation in the open, where typical values are N 10.1, P 0.89, K 18.8, Ca 25.8, Mg 3.1 and SiO2 10.1. The annual outputs in streamflow are N 3.0, P 0.28, K 16.6, Ca 38.9, Mg 8.3 and SiO2 125.7, indicating that for N, P and K the moso-bamboo forest ecosystem is an accumulating system, whereas for Ca, Mg and SiO2 the reverse applies. All the pH values associated with precipitation in the open, throughfall, stemflow, surface runoff from runoff plots and streamflow in the research watershed vary between 6.45 and 7.60 and are close to neutral.  相似文献   

12.
A. Iroum  A. Huber 《水文研究》2002,16(12):2347-2361
For a 26 month period, between 1 February 1998 and 31 March 2000, total precipitation, throughfall, stemflow and interception losses were measured for two different forest covers, one a managed broadleaved native forest and the other a Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) plantation. Regressions between throughfall and stemflow and total precipitation (P) for individual storms and forest covers were computed and also for values of interception losses (expressed as a percentage of P) and P for each forest cover and period of development of the forest vegetation. Results obtained demonstrate the importance of forest canopies in rainfall distribution processes and for the availability of water resources. Also, that these forests generate particular interception patterns not strongly associated with the variation in crown cover throughout the year. These patterns are more closely related to the characteristics of rainfall and meteorological conditions during the growing and dormant periods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper a simple technique for field measurement of rain water loss arising from interception and water flows associated with species of small Mediterranean shrub is described: the ‘interception flow collection box’. This technique solves the problem of installing devices to control stemflow in species with a multiple trunk and demonstrates its efficiency through the results obtained from the data observed for three species of semi-arid Mediterranean shrub: Juniperus oxycedrus, Rosmarinus officinalis and Thymus vulgaris. Finally, the empirical equations for the prediction of throughfall, stemflow and rain water loss through interception are presented for the three selected species and the validity of the technique employed is established. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
In environmental studies, numerical simulation models are valuable tools for testing hypothesis about systems functioning and to perform sensitivity studies under scenarios of land use or climate changes. The simulations depend upon parameters which are not always measurable quantities and must be calibrated against observations, using for instance inverse modelling. Due to the scarcity of these observations, it has been found that parameter sets allowing a good matching between simulated and measured quantities are often non-unique, leading to the problem of equifinality. This can lead to non-physical values, erroneous fluxes and misleading sensitivity analysis. Therefore, a simple but robust inverse method coined the Linking Test is presented to determine if the parameters are linked. Linked parameters are then sub-divided into classes according to their impact on water fluxes. The Linking Test establishes the causes of non-uniqueness of parameter sets and the feasibility of the inverse modelling.  相似文献   

15.
《Journal of Hydrology》1999,214(1-4):103-110
During the growing season of 1995, canopy water fluxes were measured within a northern hardwood stand in southern Ontario, Canada. Observed canopy interception loss, throughfall, and stemflow fluxes from the stand were 19.3±3.5%, 76.4±2.9%, and 4.3±2.0% of incident precipitation, respectively. Both the original and revised Gash analytical rainfall interception loss models simulated these fluxes within the standard error of the observed estimates, suggesting that the analytical model may be appropriate for further applications within this forest type. The revised Gash model is recommended for further applications as it is better physically based. Both the original and revised models suggest that ∼60% of interception loss during the study period was evaporation from the canopy once rainfall has ceased while evaporation from the saturated canopy during rainfall accounted for ∼27%–33% of interception loss. Additional components of interception (e.g., evaporation from trunks) were computed to be minor contributors to total canopy interception loss.  相似文献   

16.
Rainfall interception loss plays an important role in ecohydrological processes in dryland shrub ecosystems, but its drivers still remain poorly understood. In this study, a statistical model was developed to simulate interception loss based on the mass balance measurements arising from the partitioning of rainfall in 2 dominant xerophytic shrub (Hippophae rhamnoides and Spiraea pubescens) communities in the Loess Plateau. We measured throughfall and stemflow in the field under natural rainfall, calculated the canopy storage capacity in the laboratory, and identified key factors controlling these components for the 2 shrubs. We quantified and scaled up the stemflow and the canopy storage capacity measurements from the branches and/or leaves to stand level. The average interception loss, throughfall, and stemflow fluxes account for 24.9%, 72.2%, and 2.9% of the gross rainfall for Hrhamnoides, and 19.2%, 70.7%, and 10.1% for Spubescens, respectively. Throughfall increased with increasing rainfall for both shrubs; however, it was only correlated with the leaf area index for Spubescens. For stemflow measured from individual branches, we found that the rainfall amount and basal diameter are the best predictors for Hrhamnoides, whereas rainfall amount and branch biomass appear to be the best predictors for Spubescens. At the stand level, stemflow production is affected by the rainfall amount for Hrhamnoides, and it is affected by both the rainfall amount and the leaf area index for Spubescens. The canopy storage capacity of Hrhamnoides (1.07–1.28 mm) was larger than Spubescens (0.88–1.07 mm), and it is mainly determined by the branches and stems of Hrhamnoides and the leaves of Spubescens. The differences in interception loss between the 2 shrub stands are mainly attributed to different canopy structures that induced differences in stemflow production and canopy storage. We evaluated the effects of canopy structure on rainfall interception loss, and our developed model provides a better understanding of the effects of the canopy structure on the water cycles in dryland shrub ecosystems.  相似文献   

17.
Forest canopies alter the amount and isotopic composition of precipitation reaching the forest floor. Thus retention, evaporation and transport processes in forest canopies, and their effects on water isotopes, are key to understanding forest water cycling. Using a two-year isotope dataset from a mixed beech/spruce forest in Zurich, Switzerland, we assessed the isotopic offsets between precipitation, throughfall and stemflow. We also analysed how these offsets affect estimates of the fraction of soil water that is derived from winter precipitation. Throughfall was typically enriched in heavy isotopes compared to precipitation, but isotopically lighter than stemflow, with average δ2H of −64.3 ‰, −59.9 ‰ and − 56.3 ‰ in precipitation, throughfall and stemflow, respectively. The differences between beech and spruce were rather small compared to the seasonal differences in precipitation isotopes. Isotopic offsets between precipitation and throughfall/stemflow were smaller during the spring and summer months (March through August) than during fall and winter (September through February). Bulk and mobile soil waters at 10 and 40 cm showed smaller seasonal variations than those in precipitation, throughfall and stemflow, and were isotopically lighter than recent precipitation, with the largest offsets occurring during the summer months (June through August) for bulk soil waters. Thus, bulk soil waters at both depths contain a mixture of precipitation from previous events and seasons, with over-representation of isotopically lighter winter precipitation. Mobile soil waters were more similar to recent precipitation than bulk soil waters were. Throughfall isotopes were slightly heavier than precipitation isotopes, resulting in different sinusoidal fits for seasonal isotopic cycles in precipitation and throughfall. These differences lead to small underestimates in the fraction of soil water originating from winter precipitation, when open-field precipitation rather than throughfall is used as the input data. Together our results highlight the importance of isotope measurements in throughfall and stemflow for the assessment of precipitation seasonality and water cycling across forested landscapes.  相似文献   

18.
A seven year event-based study partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Resulting information will be of use for process modelling. Stemflow was influenced by event type, rain angle having a major effect; and the yields of the different species are compared. Tree characteristics that influenced stemflow yields are outlined and discussed. The canopy storage capacity of the eucalypt forest was determined and the influence of species composition is shown. The likely influence of climate variations is discussed. The canopy storage capacity is compared to the interception values estimated for continuous events of various sizes. The interception of the eucalypt forest and the pine plantation are compared on event basis for event size classes and on an annual basis. The comparative interceptions for continuous events are also discussed, while the effect of thinning the pine plantation on throughfall, stemflow, and interception is shown. The hydrological consequences of this study are: more informed judgment can be made about techniques for measurement of throughfall, tree structural characteristics (species related) can more adequately be considered when selecting trees for measurement of stemflow, and the stemflow yields can in some cases be better understood from the information about effect of event type. This paper deals with the influence of measurement method, species composition, and tree characteristics on the estimation of throughfall in the eucalypt forest. The site is near Canberra, lat. 35°S, 145°E, with annual rainfall about 650 mm. Two methods of measuring throughfall are compared: randomly placed, 200 mm cylindrical gauges (standard) and 50 mm square opening wedge type gauges (plastic), and randomly placed 5 × 0–22 m troughs. Despite the high placement density (150 to 225 ha?1), throughfall estimates from gauges has high variance and consistently underestimated those of the troughs, which had a total opening equivalent to 2325 raingauges (200 mm diameter) per hectare. Local concentration of stemflow into drip points provided by detaching bark pieces of one smooth barked species, Eucalyptus mannifera, is believed to be the principal cause of the lower collection and greater variance of the gauges. The low leaf area index (1–3) and large wood area of the forest together with a pendulous vertical habit of the leaves also contributed. The presence of E. mannifera is shown to substantially affect the relative values of throughfall as measured by troughs and gauges. The plastic receivers were found to underestimate rainfall or throughfall relative to the standard gauges, particularly for fine drop rainfall in multiperiod events.  相似文献   

19.
The forest canopy affects the water entering the forest ecosystem by intercepting rainfall. This is especially pertinent in forests that depend on rainfall for their ecological water needs, quantifying and simulating interception losses provide critical insights into their ecological hydrological processes. In the semi-arid areas of the Loess Plateau, afforestation has become an effective ecological restoration measure. However, the rainfall interception process of these plantations is still unclear. To quantify and model the canopy interception of these plantations, we conducted a two-year rainfall redistribution measurement experiment in three typical plantations, including a deciduous broadleaf plantation (Robinia pseudoacacia) and two evergreen coniferous plantations (Platycladus orientalis and Pinus tabuliformis). Based on this, the revised Gash model was used to simulate their interception losses, and the model applicability across varying rainfall types was further compared and verified. The experiment clarified the rainfall redistribution in the three plantations, and the proportions of throughfall to gross rainfall in Robinia pseudoacacia, Platycladus orientalis, and Pinus tabuliformis were 84.8%, 70.4%, and 75.6%; corresponding, the stemflow proportions were 2.0%, 2.2%, and 1.8%; the interception losses were 13.2%, 27.4%, and 22.6%, respectively. The dominant rainfall pattern during the experiment was characterized by low-amounts, moderate-intensity, and short-duration, during which the highest interception proportions across the three plantations were observed. We used the Penman-Monteith equation and the regression method, respectively, to estimate the canopy average evaporation rate of the revised Gash model, finding that the latter provides a closer match to the measured cumulative interception (NSE >0.7). When simulating interception under the three rainfall patterns, the model with the regression method better simulated the cumulative interception and event-scale interception for Platycladus orientalis and Pinus tabuliformis plantations under the dominant rainfall pattern. The results contribute valuable information to assess the impact of forest rainfall interception on regional hydrologic processes.  相似文献   

20.
This article presents a comprehensive study of canopy interception in six rainforests in Australia's Wet Tropics for periods ranging between 2 and 3·5 years. Measurements of rainfall, throughfall, stemflow and cloud interception were made at sites characterized by different forest types, canopy structure, altitude, rainfall and exposure to prevailing winds. Throughfall at these sites ranged between 64 and 83% of total precipitation inputs, while stemflow ranged between 2 and 11%. At sites higher than 1000 m, cloud interception was found to contribute up to 66% of the monthly water input to the forest, more than twice the rainfall at these times. Over the entire study period, cloud interception accounted for between 4 and 30% of total precipitation inputs, and was related more to the exposure of sites to prevailing winds than to altitudinal differences alone. Over the duration of the study period, interception losses ranged between 22 and 29% of total water input (rainfall and cloud interception) at all sites except the highest altitude site on Bellenden Ker, where interception was 6% of total water input. This smaller interception loss was the result of extremely high rainfall, prolonged immersion in cloud and a sparser canopy. On a monthly basis, interception losses from the six sites varied between 10 and 88% of rainfall. All sites had much higher interception losses during the dry season than in the wet season because of the differences in storm size and rainfall intensity. The link between rainfall conditions and interception losses has important implications for how evaporative losses from forests may respond to altered rainfall regimes under climate change and/or large‐scale atmospheric circulation variations such as El Niño. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号