首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of physicochemical variables and selected dissolved elements was performed on the Apure River waters for 15 months. The variables pH, alkalinity, dissolved O2, conductivity and Na, Ca, Mg and Cd concentrations showed maximum values during low water, whereas K, Si, Fe, Al, Mn, Zn, Cu, Cr and dissolved organic carbon (DOC) showed maximum concentrations during rising and high water. Five important factors were found to control the amount and temporal variability of the dissolved elements: lithology, hydrology, vegetation–floodplain processes, redox conditions and organic complexation. Weathering of silicates, carbonates and evaporites in the Andes provides most of the proportion of Na, Ca, Mg and HCO3? to waters. The temporal variability of these ions is controlled by a dilution process. Although Si can be taken up by the biomass, Si and K can be leached from the floodplain by weathering of clays. Microbial decay of the submerged plants in the floodplain during the inundation periods provides DOC and K to river waters and changes the redox conditions in water. The changing redox conditions control the solubility of Mn, Zn and Fe. Dissolved Mn is a function of pH‐dependent redox process, whereas Zn solubility is controlled by scavenging of Zn during the oxidation of Mn2+ to MnO2. Positive relationships between Al, Fe, Cu, Cr and DOC suggest that these elements are complexed by organic colloids generated in the floodplain. Moreover, the binding capacity of Fe with DOC increases under reducing conditions. Although Cd seems to be provided by weathering in the Andes, several processes can affect the mobility of Cd during transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This study addresses the changes in dissolved major and trace element concentrations along the Orinoco River, including the mixing zone between the Orinoco and Apure Rivers. Water samples from the Apure and Orinoco Rivers were collected monthly in four sectors over a period of 15 months. Auxiliary parameters (pH, dissolved oxygen, conductivity, and temperature), total suspended sediments, dissolved organic carbon (DOC), and major (Na, K, Ca, Mg, and Si) and trace (Al, Fe, Mn, Zn, Cu, and Cr) element concentrations were measured in all sectors. The relative contribution of both rivers after the Apure–Orinoco confluence was determined using Ca as a tracer. Moreover, a mixing model was developed to determine whether dissolved species exhibit a conservative behavior during mixing. The results indicate that DOC is removed from waters during the Apure–Orinoco mixing, probably due to absorption of DOC on mineral phases supplied by the Apure River. Dissolved Na, Ca, and Mg behave conservatively during the mixing processes, and their concentrations are controlled by a dilution process. The anomaly in the temporal pattern of K in the Orinoco is caused by the input of biogenic K originating from the Apure River during the high‐water stage. The loss of dissolved Si during the low‐water stage can be explained by the uptake of Si by diatoms. Dissolved Mn, Zn, Al, and Fe showed a non‐conservative behavior during the Apure–Orinoco mixing. The removal of Mn and Zn from the dissolved phase can be explained by the formation of Mn‐oxyhydroxides and the scavenging of Zn onto Mn oxides. Dissolved Fe is controlled by redox processes, although the removals of Fe and Al due to the preferential adsorption of large organometallic complexes by mineral surfaces after the Apure–Orinoco confluence can affect the mobility of both elements during transport. The conservative behavior shown by Cu and Cr can be related to the tendency of both elements to be complexed with small organic colloids, which are not preferentially adsorbed by clays.  相似文献   

3.
Laboratory incubation experiments were carried out on sediment cores collected from Esthwaite Water, U.K., during April 1987, when the sediments displayed a characteristic surface (1.5 to 2 cm) oxide floc. The experiments were undertaken at 10°C, in the dark, under variable redox and pH conditions for periods of ~ 720 h (30 d). In some cases, realistic amounts of decomposing lake algae were added to simulate the deposition of an algal bloom. Pore waters and overlying waters were obtained from the incubated sediment cores at various time intervals and the samples analysed for pH and dissolved Fe, Mn, Zn and Cu by AAS. The results demonstrated that trace metal concentrations at the sediment-water interface can show rapid, pulsed responses to episodic events associated with controlling factors such as algal deposition and mixing conditions. The variations in dissolved Fe and Mn concentrations could generally be explained by their well known redox behaviour. Appreciable loss of Mn from solution under conditions of well-developed anoxia was consistent with adsorption of Mn2+ by FeS. Cu and Zn were both rapidly (24 h) released into solution during incubation of sediment cores prior to the development of anoxia in the overlying waters. Their most likely sources were the reductive remobilization of Mn oxides and the decomposition of organic matter. The addition of decomposing algae to a series of cores resulted in even higher interfacial dissolved concentrations of Cu and Zn, probably through acting as a supplementary source of the metals and through increased oxide dissolution. Switching from anoxic to oxic conditions also rapidly increased dissolved Cu and Zn concentrations, possibly due to their release during the oxidation of metal sulphides. The enhanced releases of dissolved Cu and Zn were generally short-lived with removal being attributed to the formation of sulphides during anoxia and to adsorption by Fe and Mn oxides under oxic conditions.  相似文献   

4.
Glacial meltwater and sediment at the source of the River Rhône have been analyzed to determine: 1. the partitioning of Al, Cd, Co, Cu, Cr. Fe, Mn, Ni, Pb and Zn between the water and particulate phase. 2. the particle size ranges which affect the dissolved trace metal ion composition of the meltwater and 3. the availability (potential release) of the ten trace metal ions from the sediment. Greater than 80% of the total Cd, Cu, Mn, Ni and Zn were found to be in operationally-defined (0.4 μm) dissolved forms. Fe and Al in the meltwater are primarily associated with particles in the size range 0.4–8 μm, while Cd. Cu, Mn, Ni and Zn occur with particles smaller than 0.1 μm. For the sediment, Cu, Ni and Pb were significantly present as exchangeable forms; only Cu, Ni, Pb and Zn were determined as organicallybound forms.  相似文献   

5.
The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations.  相似文献   

6.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

7.
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea.  相似文献   

8.
Experiments were carried out to simulate the transformations of anaerobic freshwater chemistry at aeration. Quantitative characteristics of the passage from dissolved into suspended state in the course of aeration were obtained for Fe, Mn, Co, Ni, Cu, Zn, Cd, Ag, Rb, Cs, Sr, Ba, Be, Al, Ga, Cr, Ti, Zr, U, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, B, V, Ge, As, Mo, and W. The decrease in the concentration of dissolved forms was found to be maximal for Fe and Mn, reaching 0.03 and 0.2 mg/L, respectively; these values correspond to the solubility of newly-precipitated oxihydrates of those elements. Among other elements, a high degree of removal is typical of elements-hydrolysates (Cr, Zr, Al, Ga, Be, Ti, and the majority of rare-earth elements), some heavy metals (Zn, Ag, Cd, and Co), and W.  相似文献   

9.
Estuarine environments are particularly vulnerable to human impacts. In this study, trace elements in Ruppia megacarpa, Halophila ovalis, sediment and porewater were analysed to assess the potential contamination of the Leschenault Estuary, Western Australia, from a primarily agricultural drain. Sediment concentrations of Cd, Cu, Mn, and Ni and were highest nearest the drain while Al, As, Cr, Fe and Zn and were highest further from the drain. H. ovalis showed greater accumulation of Fe, Al, and As than R. megacarpa. Concentrations of Fe, Al, As, and Ni were generally higher in below-ground plant parts than above, suggesting uptake of these trace elements via the sediment-route pathway. This study suggested that the drain was a source of Cu and Mn, with these elements entering the estuary through water inflows. As and Fe, were highest furthest from the drain suggesting input of trace elements from sources other than the drain under study.  相似文献   

10.
The use of sandhoppers and beachfleas as biomonitors of heavy metals contamination is relatively recent. Using adult individuals of Talitrus saltator from nine localities on the northern Mediterranean Sea, we studied the concentrations of eight trace elements: Al, Cd, Cr, Fe, Hg, Pb, Cu, Zn, both in the substratum and in the individuals. We also carried out a preliminary investigation of the correspondence between the sandhoppers' genetic variability and heavy metal contamination at the sampling sites. T. saltator accumulated Cd, Cu, Zn and Hg (at higher concentrations than in the sand) and also Al and Fe (at lower concentrations than in the sand). It seems that Mediterranean sandhoppers do not accumulate Pb and Cr. An intraspecific comparison between northern European (Baltic) and Mediterranean populations of T. saltator was made. Finally, we observed a tendency to a positive correlation between the sandhoppers' genetic variability and heavy metals contamination.  相似文献   

11.
Measurements of dissolved Cd, Co, Cu, Mn, Ni, Pb, and Zn have been made on a seasonal basis at five stations on a north–south transect across the central English Channel between Cherbourg and the Isle of Wight. Vertical and horizontal distributions of dissolved Cd, Pb, Cu and Zn are relatively uniform except for sampling sites near the English coast. Dissolved Mn and Co show increased concentrations in the English coastal waters, and for Mn the seasonal trend in concentration follows the pattern seen in the Strait of Dover with higher values in the late summer. Ni and Cu are higher in concentration on the English side, which reflects mainly riverine sources. Measurements were also made of particulate forms of the metals above plus particulate Al, Ca, Fe, Mg, Sr and Ti. Water column concentrations of particulate metals broadly follow the distribution of suspended particulate matter, with highest concentrations near the UK coast. Trace metal concentrations have been integrated with modelled data on fluxes of water to provide estimates of fluxes for these elements into the eastern Channel, and an initial comparison is made with data for fluxes of metals through the Strait of Dover obtained during an earlier study. A major influence on the fluxes of particulate metals through the Isle of Wight-Cherbourg transect is the gyre system to the South east to the Isle of Wight, which has important east to west as well as west to east transport components. For those elements where the dissolved form of the metal dominates, the large flow of water in the central Channel waters leads to major fluxes of the metals towards the east and the Strait of Dover. However, the high suspended particulate matter loadings in the coastal waters and impact of the gyre system lead to net east to west fluxes of particulate Al, Fe, Mn and Ti. Comparison of these fluxes with data on the net west to east transport of these materials through the Strait of Dover infers that there must be a significant supply of these particulate metals to the eastern Channel.  相似文献   

12.
Surface sediment samples collected from the inner shelf region of the Bay of Bengal, were analysed for the major elements and total and acetic acid available trace elements (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Si, Zn) to evaluate geochemical processes influencing their distribution. Major elemental analysis showed that the sediments had high concentrations of Si and relatively low concentrations of Al and Fe. Both major elemental and trace metal concentrations indicated that the sediments represent weathered products of granite and charnockite. Normalization of metals to Al indicated relatively high enrichment factors for Pb, Cd, Zn and Cr. The higher proportions of nondetrital Pb (66%), Cd (41%) and Co (28%) reveal metal contamination due to anthropogenic inputs. Factor analysis (FA) identified six possible types of sedimentological and geochemical associations. The dominant factor accounting for 26.9% of the total variance identifies an anthropogenic input and accumulation of nondetrital Cd, Co, Cr, Ni and Pb. Association of these metals with CaCO3 reveals that shell fragments in the surface sediments are likely act as a carrier phase for nondetrital metals. The results are discussed in the context of the sources and pathways of elements in the Bay of Bengal.  相似文献   

13.
The particulate concentrations of 17 trace metals, Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Ag, Sb, Au, Hg, Pb and Th have been measured in the marine atmosphere (58 samples) and in the deep waters (35 samples) of the Tropical North Atlantic. For oceanic suspended matter, our results are similar to those in samples from the Atlantic and the Pacific Oceans collected during the GEOSECS Program. Based on these results, we have made a flux balance for the mixed layer between input via the atmosphere and removal through small and large particles. These data show that the primary flux of suspended aluminosilicates in the Tropical North Atlantic is attributable to the atmospheric input. Elements Sc, Th, Fe, V, Mn, Co and Cr show high correlation with Al in the marine atmosphere. Of these elements, Fe, Mn, V, Co and Cr are influenced by additional processes such as biological, in the marine environment. For elements Ni, Cu, Zn, Se, Ag, Sb, Au, Hg and Pb, we observe high enrichments (relative to average crustal material) in the marine atmosphere which may be due, at least partially, to the influence of anthropogenic sources. These metals also show similar enrichments in deep ocean suspended matter. Model calculations indicate that the atmospheric flux may not control the deep ocean particulate chemistry of Ni, Cu, Zn, Ag, Sb, Au and Hg. Hence it is likely that, for these elements, the enrichment in the ocean is due to processes within the marine regime, for example their involvement in the biological cycle of the ocean. For Se and Pb, the atmospheric source looks to be the dominant contribution to their particulate concentration in seawater. In the deep North Atlantic, particulate Pb appears to be mostly of anthropogenic origin, which is not the case for Se.  相似文献   

14.
Dil Deresi stream is a highly contaminated stream passing through the most heavily industrialized area of Izmit Bay. In this research, surface sediments in the <63-microm fraction collected from 34 sites at western part of Izmit Bay, Northeastern Marmara Sea, Turkey were analyzed by ICP-AES for Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn and Zn. Metal concentrations were compared with the marine sediment quality standards (SQS) and literature data to assess the pollution status of the sediments. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The analysis revealed three groups of elements: (1) Sn is the most enriched element; (2) As, Cd, Pb and Zn are minor enriched elements; and (3) Co, Cr, Cu, Fe, Mg, Mn and Ni are at background concentrations. The distribution maps of the concentrations and enrichment factors for all heavy metals were also produced as a contour plot based on Geographic Information System (GIS) technology.  相似文献   

15.
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.  相似文献   

16.
The concentrations of 45 elements, and the content of organic substances, amorphous inorganic substances and minerals were determined in 26 samples of Elbe River bottom sediments to determine the correlation between the element composition and the grain size in the £ \le 4, 4--8, 8--16, 16--32, 32--63 7m and bulk samples £ \le 63 7m fractions. The purpose of this study was to obtain information about the role of particle size and their mineral composition as a control of element concentrations in sediments, the potential remobilization of elements under changing environmental conditions, and the chemical speciation of the large excess concentrations of elements in this system.¶About 22--56% of the estimated element yield was associated with sediments with a grain size of less than 4 7m and 82--97% of the element yield was found in the fraction smaller than 32 7m. Sequential extraction carried out for 20 potentially reactive elements in the £ \le 63 7m bulk samples and the £ \le 4 7m fraction showed the increased importance of exchangeable ions in the order Mn = Ni < Mg < Sr < Cu < Zn < Ca < K < Cd < Na < Mo, reducible fractions Zn < Sr < Mo < Co < Cu < Ni < Pb < Mn < Cr < Be < V = Fe < As < Ag, oxidizable chemical phases As = Ca < Cd < K < Sr < Fe = Mn < Zn = Mg < Mo < Co = Ag < Pb < Li < Cu = V < Ni < Cr = Na < Be with small concentrations from lithogenic phases Mn < As < Pb < Sr < Zn = Cu = Na < Be < V < Ni < Cr < Fe < K < Mg < Li. The major accumulative phases were identified for the individual elements.  相似文献   

17.
Baseline levels of a number of trace metals have been determined in samples of water and sediment from Baffin Bay. Concentrations of Cr, Mn, Fe, Ni, Cu and Cd in the waters of Baffin Bay are generally lower than those observed in eastern Canadian coastal waters, levels being close to reported open ocean concentrations. Nearshore sediment samples, analysed for Cr, V, Mn, Ni, Co, Cu, Zn, Hg and Pb, display comparable concentrations to unpolluted muds in eastern Canadian coastal regions. Concentrations of these elements in the deep sediments of central Baffin Bay closely resemble levels in Atlantic Ocean deep-sea clays.  相似文献   

18.
Concentrations and seasonal variations of water chemistry, including dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and Ni in rivers of Primorskii Krai are determined. It is shown that, unlike the macrocomposition, the effect of hydrological regime on the concentration of dissolved metal forms is controversial and depends on anthropogenic load, watershed landscapes, and pH variations. Elevated concentrations of dissolved metal forms are recorded in the beginning of spring flood and during low-water period. Beyond the limits of local impact of wastewater, the concentrations of dissolved forms of Cu, Zn, Ni, Pb, and Cd in river waters of the region insignificantly differ from the clearest rivers of the World.  相似文献   

19.
The dissolved (<0.40 γm) fraction of water samples from Newark Bay, New Jersey was analysed for Zn, Cu and Pb content by differential pulse anodic stripping polarographic techniques. In the dissolved fraction, non-labile forms of Zn, Cu and Pb exist as shown by differential pulse anodic stripping voltammetry analysis on acidified samples and acidified-UV irradiated samples. The particulate fraction (>;0.40 μm) contains metals in the form of sulphides (Fe, Zn, Cu, Mn), oxides and oxyhydroxides (Si, Al, Fe, Cu, Ni, Sn), phosphate (Ca, Ce, La), clay minerals (Fe, Zn, Cu, Ti) and carbonaceous material (Fe, Cu, Zn) as demonstrated by X-ray microanalysis. The solid phases are likely present in colloidal form in the dissolved fraction of the water column as well. The forms of the metals in the water column are partially due to the resuspension of bottom sediments by dredging and natural processes, to sewage outfall and to natural geochemical processes.  相似文献   

20.
A geographic information system (GIS)-based chemometric approach was applied to investigate the spatial distribution patterns of heavy metals in marine sediments and to identify spatial human impacts on global and local scales. Twelve metals (Zn, V, Ni, Mn, Pb, Cu, Cd, Ba, Hg, Fe, Cr and Al) were surveyed twice annually at 59 sites in Hong Kong from 1998 to 2004. Cluster analysis classified the entire coastal area into three areas on a global scale, representing different pollution levels. Backward discriminant analysis, with 84.5% correct assignments, identified Zn, Pb, Cu, Cd, V, and Fe as significant variables affecting spatial variation on a local scale. Enrichment factors indicated that Cu, Cr, and Zn were derived from human impacts while Al, Ba, Mn, V and Fe originated from rock weathering. Principal component analysis further subdivided human impacts and their affected areas in each area, explaining 87%, 84% and 87% of the total variances, respectively. The primary anthropogenic sources in the three areas were (i) anti-fouling paint and domestic sewage; (ii) surface runoff, wastewater, vehicle emissions and marine transportation; and (iii) ship repainting, dental clinics, electronic/chemical industries and leaded fuel, respectively. Moreover, GIS-based spatial analysis facilitated chemometric methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号