首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A detailed 90,000-year tephrostratigraphic framework of Aso Volcano, southwestern Japan, has been constructed to understand the post-caldera eruptive history of the volcano. Post-caldera central cones were initiated soon after the last caldera-forming pyroclastic-flow eruption (90 ka), and have produced voluminous tephra and lava flows. The tephrostratigraphic sequence preserved above the caldera-forming stage deposits reaches a total thickness of 100 m near the eastern caldera rim. The sequence is composed mainly of mafic scoria-fall and ash-fall deposits but 36 silicic pumice-fall deposits are very useful key beds for correlation of the stratigraphic sequence. Explosive, silicic pumice-fall deposits that fell far beyond the caldera have occurred at intervals of about 2500 years in the post-caldera activity. Three pumice-fall deposits could be correlated with lava flows or an edifice in the western part of the central cones, although the other silicic tephra beds were erupted at unknown vents, which are probably buried by the younger products from the present central cones. Most of silicic eruptions produced deposits smaller than 0.1 km3, but bulk volumes of two silicic eruptions producing the Nojiri pumice (84 ka) and Kusasenrigahama pumice (Kpfa; 30 ka) were on the order of 1 km3 (VEI 5). The largest pyroclastic eruption occurred at the Kusasenrigahama crater about 30 ka. This catastrophic eruption began with a dacitic lava flow and thereafter produced Kpfa (2.2 km3). Total tephra volume in the past 90,000 years is estimated at about 18.1 km3 (dense rock equivalent: DRE), whereas total volume for edifices of the post-caldera central cones is calculated at about 112 km3, which is six times greater than the former. Therefore, the average magma discharge rate during the post-caldera stage of Aso Volcano is estimated at about 1.5 km3/ky, which is similar to the rates of other Quaternary volcanoes in Japan.  相似文献   

2.
The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W-Fall (130 +16/−14 ka) and I-Fall eruptions (56 +8.2/−7.7 ka), which under- and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for >80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI > 8), which confirms the LCY eruption as the first-ever recognized supereruption in Central America.  相似文献   

3.
Accurate and precise morphometric modelling can be extended to past eruptions after a careful palaeogeomorphological reconstruction of volcanic landforms in an oceanic island. This reconstruction was used to derive the pre-, post-eruption and present-day digital elevation models (DEM). The correct pixel size, interpolation method and quality of these DEMs are discussed. The process in a Geographical Information System framework of the geological information of cone, lava flow and tephra fall deposits together and the aforementioned DEMs allowed the determination of main morphological features of these volcanic landforms and their derivatives. The calibration and validation of morphometric modelling were performed on simulated volcanic landforms, and verified by a case study: a typical Holocene monogenetic basaltic eruption at Gran Canaria Island (Spain).  相似文献   

4.
We report tephrochronological and geochemical data on early Holocene activity from Plosky volcanic massif in the Kliuchevskoi volcanic group, Kamchatka Peninsula. Explosive activity of this volcano lasted for ~1.5 kyr, produced a series of widely dispersed tephra layers, and was followed by profuse low-viscosity lava flows. This eruptive episode started a major reorganization of the volcanic structures in the western part of the Kliuchevskoi volcanic group. An explosive eruption from Plosky (M~6), previously unstudied, produced tephra (coded PL2) of a volume of 10–12 km3 (11–13 Gt), being one of the largest Holocene explosive eruptions in Kamchatka. Characteristic diagnostic features of the PL2 tephra are predominantly vitric sponge-shaped fragments with rare phenocrysts and microlites of plagioclase, olivine and pyroxenes, medium- to high-K basaltic andesitic bulk composition, high-K, high-Al and high-P trachyandesitic glass composition with SiO2 = 57.5–59.5 wt%, K2O = 2.3–2.7 wt%, Al2O3 = 15.8–16.5 wt%, and P2O5 = 0.5–0.7 wt%. Other diagnostic features include a typical subduction-related pattern of incompatible elements, high concentrations of all REE (>10× mantle values), moderate enrichment in LREE (La/Yb ~ 5.3), and non-fractionated mantle-like pattern of LILE. Geochemical fingerprinting of the PL2 tephra with the help of EMP and LA-ICP-MS analyses allowed us to map its occurrence in terrestrial sections across Kamchatka and to identify this layer in Bering Sea sediment cores at a distance of >600 km from the source. New high-precision 14C dates suggest that the PL2 eruption occurred ~10,200 cal BP, which makes it a valuable isochrone for early Holocene climate fluctuations and permits direct links between terrestrial and marine paleoenvironmental records. The terrestrial and marine 14C dates related to the PL2 tephra have allowed us to estimate an early Holocene reservoir age for the western Bering Sea at 1,410 ± 64 14C years. Another important tephra from the early Holocene eruptive episode of Plosky volcano, coded PL1, was dated at 11,650 cal BP. This marker is the oldest geochemically characterized and dated tephra marker layer in Kamchatka to date and is an important local marker for the Younger Dryas—early Holocene transition. One more tephra from Plosky, coded PL3, can be used as a marker northeast of the source at a distance of ~110 km.  相似文献   

5.
Dawson tephra, recently recognized in the Klondike area of Yukon Territory, records one of the largest Quaternary volcanic eruptions in Beringia. Its composition is similar to that of Old Crow tephra, indicating a source in the Aleutian arc-Alaska Peninsula region of southwestern Alaska. Its primary thickness in central Yukon is nearly twice that of Old Crow tephra, which has an estimated eruption volume of >50 km3. The distribution of Dawson tephra is still poorly known, but based on its source area and occurrence in central Yukon, it should be widespread across southern Alaska, Yukon and the Gulf of Alaska. New radiocarbon ages indicate the eruption occurred at about 24,000 14C yr BP (ca 27,000 cal yr BP). The Dawson tephra is a valuable marker bed for correlating late Pleistocene records across large areas of eastern Beringia and adjacent marine records.  相似文献   

6.
The Ebisutoge–Fukuda tephra (Plio‐Pleistocene boundary, central Japan) has a well‐recorded eruptive style, history, magnitude and resedimentation styles, despite the absence of a correlative volcanic edifice. This tephra was ejected by an extremely large‐magnitude and complex volcanic eruption producing more than 400 km3 total volume of volcanic materials (volcanic explosivity index=7), which extended more than 300 km away from the probable eruption centre. Remobilization of these ejecta occurred progressively after the completion of a series of eruptions, resulting in thick resedimented volcaniclastic deposits in spatially separated fluvial basins, more than 100 km from the source. Facies analysis of resedimented volcaniclastic deposits was carried out in distal fluvial basins. The distal tephra (≈100–300 km from the source) comprises two different lithofacies, primary pyroclastic‐fall deposits and reworked volcaniclastic deposits. The resedimented volcaniclastic succession shows five distinct sedimentary facies, interpreted as debris‐flow deposits (facies A), hyperconcentrated flow deposits (facies B), channel‐fill deposits (facies C), floodplain deposits with abundant flood‐flow deposits (facies D) and floodplain deposits with rare flood deposits (facies E). Resedimented volcaniclastic materials at distal locations originated from unconsolidated deposits of a climactic, large ignimbrite‐forming eruption. Factors controlling inter‐ and intrabasinal facies changes are (1) temporal change of introduced volcaniclastic materials into the basin; (2) proximal–distal relationship; and (3) distribution pattern of pyroclastic‐flow deposits relative to drainage basins. Thus, studies of the Ebisutoge–Fukuda tephra have led to a depositional model of volcaniclastic resedimentation in distal areas after extremely large‐magnitude eruptions, an aspect of volcaniclastic deposits that has often been ignored or poorly understood.  相似文献   

7.
A suite of deep‐sea cores were collected along transects up to 100 km across the fore‐arc and back‐arc regions of the predominantly submarine Kermadec arc near Raoul and Macauley islands, southwest Pacific. The cores reveal a macroscopic tephra record extending back >50 ka. This is a significant addition to the dated record of volcanism, previously restricted to fragmented late Holocene records exposed on the two islands. The 27 macroscopic tephra layers display a wide compositional diversity in glass (~50–78 wt% SiO2). Many tephra layers comprise silicic shards with a subordinate mafic shard population. This could arise from magma mingling and may reflect mafic triggering of the silicic eruptions. Broadly, the glass compositions can be distinguished on diverging high‐K and low‐K trends, most likely arising from different source volcanoes. This distinction is also reflected in the tephra records exposed on Raoul (low‐K) and Macauley (high‐K) islands, the likely source areas. Heterogeneous tephra comprising shards of both high‐ and low‐K affinity, silicic and mafic compositions, and more homogeneous tephra with subordinate outlier shard compositions, are best explained by post‐depositional mixing of separate eruption deposits or contemporaneous eruptions. Evidently, the slow sedimentation rates of the calcareous oozes (~101–102 mm ka?1) were insufficient to adequately separate and preserve closely spaced eruption deposits. This exemplifies the difficulty in assessing eruption frequencies and magmatic trends, and erecting a tephrostratigraphy, using geochemical fingerprinting in such environments. Despite these difficulties, the ca. 5.7 ka Sandy Bay Tephra erupted from Macauley Island can be correlated over a distance of >100 km, extending east and west of the island, showing that the mostly submerged volcanoes are capable of wide tephra dispersal. Hence there is potential for developing chronostratigraphies for the southwest Pacific beyond the region covered by the extensive rhyolite marker beds from the Taupo Volcanic Zone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
We present in this work a tephrostratigraphic record from a sediment piston core (JO 2004) from Lake Ohrid. Five tephra layers were recognised, all from explosive eruptions of southern Italy volcanoes. A multidisciplinary study was carried out, including stratigraphy, AMS 14C chronology and geochemistry. The five tephra layers were correlated with terrestrial proximal counterparts and with both marine and lacustrine tephra layers already known in the central Mediterranean area. The oldest is from Pantelleria Island (P11, 131 ka BP). Other three tephra layers are from Campanian volcanoes: X6, Campanian Ignimbrite-Y5 and SMP1-Y3 (107, 39 and 31 ka BP respectively). The youngest tephra layer corresponds to the FL eruption from Etna Volcano (3.4 ka BP). In three cases these recognitions confirm previous findings in the Balkans, while two of them were for the first time recognised in the area, with a significant enlargement of the previous assessed dispersal areas.  相似文献   

9.
The Longgang volcanic field, located in northeastern China, is volcanically active with a number of eruptions during the Quaternary but the chronology of the eruptions is poorly defined. Some tephra layers are well preserved in the annually laminated sediments of maar lakes in the region, and facilitate the construction of a much improved chronological framework for the volcanic history of the area. The results of our investigations reveal that three basaltic explosive eruptions occurred at AD 460, 11460 cal yr BP and 14000 cal yr BP, respectively. The largest explosive basaltic eruption (AD 460) produced a thick black scoria layer in the Longgang volcanic field, including lakes. The tephra distribution and chronological data suggest that this eruption is likely to be from the Jinlongdingzi volcano. Two basaltic flood eruptions occurred at Jinlongdingzi. The earlier basaltic eruption produced a lava flow that spread over a forest and encased standing trees. Two radiocarbon ages obtained from charcoal samples collected from the burned remains of these trees are 1828–1989 cal yr BP and 2164–2359 cal yr BP. In the most recent stage of volcanism, the lava flow extended only ca. 2 km, and flowed into Lake Dalongwan. From the present status of the forest ecosystem, which has not yet reached the fully mature successional stage, we estimate that this lava is very young (ca. a few hundreds years old). Jinlongdingzi is a potentially dangerous volcano. Monitoring and assessment of the potential hazards in the Longgang volcanic field should be carried out in the future.  相似文献   

10.
Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present‐day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked‐eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under‐saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma‐Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
《Quaternary Science Reviews》2005,24(1-2):211-222
Determinations of cosmogenic 3He exposure ages and erosion rates in volcanic rocks older than a few hundred thousand years are complicated by the presence of radiogenic He in addition to the magmatic and cosmogenic He, in phenocryst minerals. However, by analysing microphenocrysts (that crystallised on or immediately prior to eruption) that have not trapped magmatic He, the three-component problem can be eliminated and accurate determinations of cosmogenic 3He made. In this study, we perform three experiments using pyroxene microphenocrysts in basaltic clasts in the Pliocene Ayacata Formation breccias, Gran Canaria, that demonstrate they are free of magmatic He. Exposure ages and erosion rates calculated from the cosmogenic 3He concentrations are combined with a geomorphological study, to produce a tentative interpretation of landscape evolution in the mountainous interior of Gran Canaria. Long-term steady-state erosion rates of 14–24 mm ka−1 are recorded from bedrock erosional surfaces on a high plateau. Headwall retreat rates for a major drainage system of 1.6 m ka−1 have been constrained from the ca 225 ka exposure age of a boulder emplaced on slopes beneath the headwall. Strath terraces and boulders in a small canyon system yield much younger exposure ages of 47–43 ka.  相似文献   

12.
Summary ¶Large-scale volcanic plumes, either generated by discharge of material directly from a vent or developed from the top of pyroclastic flows, produce laterally spreading umbrella-shaped clouds that disperse pyroclastic material over large areas. During plinian eruptions followed by pyroclastic flows, an enormous quantity of ash particles produced both by sustained plumes and by the buoyant portion of pyroclastic flows settle far from the source and form widespread fall deposits. To fully evaluate the magnitude of the plinian phase for this kind of eruptions is fundamental for distinguishing between the different sources of fine ash. In this paper we demonstrate that the plinian and ignimbrite contribution to the distal ash fall can be discriminated based on thickness versus distance relationships. The Campanian Ignimbrite eruption (CI; 39,000 yr B.P.) in southern Italy, provides an important case study. This was a huge ignimbrite-forming explosive event preceded by a plinian outburst. We present a new distribution of the thick, stratified pumice fall deposit formed immediately before the emplacement of the ignimbrite and reconstruct the distribution of the CI-correlated tephra fall dispersed in eastern Europe and in the eastern Mediterranean Sea over an area exceeding 3×106km2. The volumes calculated for the proximal plinian, co-plinian and co-ignimbrite deposits of the CI eruption are respectively: 4km3, 16km3 and almost 100km3.Received March 3, 2002; revised version accepted June 4, 2003  相似文献   

13.
A tephra record is presented for a sediment core from Llyn Llech Owain, south Wales, spanning the early- to mid-Holocene. Seven cryptotephra deposits are discovered with three thought to correlate with known eruptions and the remaining four considered to represent previously undocumented events. One deposit is suggested to correlate with the ~6.9 cal ka bp Lairg A tephra from Iceland, whereas more distant sources are proposed as the origin for two of the tephra deposits. A peak of colourless shards in early-Holocene sediments is thought to tentatively correlate with the ~9.6 cal ka bp Fondi di Baia tephra (Campi Flegrei) and a second cryptotephra is tentatively correlated with the ~3.6 cal ka bp Aniakchak (CFE) II tephra (Alaska). The Fondi di Baia tephra has never been recorded beyond proximal sites and its discovery in south Wales significantly extends the geographical distribution of ash from this eruption. The remaining four cryptotephra deposits are yet to be correlated with known eruptions, demonstrating that our current understanding of widespread tephra deposits is incomplete. This new tephra record highlights the potential for sites at more southerly and westerly locations in northwest Europe to act as repositories for ash from several volcanic regions.  相似文献   

14.
Volcanic ash (tephra) erupted from the frequently active Campi Flegrei volcano forms layers in many palaeoenvironmental archives across Italy and the Mediterranean. Proximal deposits of 50 of the post-15 ka eruptions have been thoroughly sampled and analysed to produce a complete database of glass compositions (>1900 analyses) to aid identification of these units. The deposits of individual eruptions are compositionally diverse and this variability is often greater than that observed between different units. Many of the tephra units do not have a unique glass chemistry, with compositionally similar tephra often erupted over long periods of time (1000s years). Thus, glass chemistry alone is not enough to robustly correlate most of the tephra from Campi Flegrei, especially in the last 10 kyrs. In order to reliably correlate the eruption units it is important to take into account the stratigraphy, chronology, magnitude, and dispersal of the eruptions, which has been collated to aid identification. An updated chronology is also presented, which was constrained using Bayesian analysis (OxCal) of published radiocarbon dates and 40Ar/39Ar ages. All the data presented can be employed to help correlate post-15 ka tephra units preserved in archaeological and Holocene palaeoenvironmental archives. The new database of proximal glass compositions has been used to correlate proximal volcanic deposits through to distal tephra layers in the Lago di Monticchio record (Wulf et al., 2004, Wulf et al., 2008) and these correlations provide information on eruption stratigraphy and the tempo of volcanism at Campi Flegrei.  相似文献   

15.
《Quaternary Science Reviews》2007,26(13-14):1861-1870
Pyroclastic fall deposits of the paired Rotoiti and Earthquake Flat eruptions from the Taupo Volcanic Zone (New Zealand) combine to form a widespread isochronous horizon over much of northern New Zealand and the southwest Pacific. This horizon is important for correlating climatic and environmental changes during the Last Glacial period, but has been the subject of numerous disparate age estimates between 35.1±2.8 and 71±6 ka (all errors are 1 s.d.), obtained by a variety of techniques. A potassium–argon (K–Ar) age of 64±4 ka was previously determined on bracketing lavas at Mayor Island volcano, offshore from the Taupo Volcanic Zone. We present a new, more-precise 40Ar/39Ar age determination on a lava flow on Mayor Island, that shortly post-dates the Rotoiti/Earthquake Flat fall deposits, of 58.5±1.1 ka. This value, coupled with existing ages from underlying lavas, yield a new estimate for the age of the combined eruptions of 61.0±1.4 ka, which is consistent with U–Th disequilibrium model-age data for zircons from the Rotoiti deposits. Direct 40Ar/39Ar age determinations of plagioclase and biotite from the Rotoiti and Earthquake Flat eruption products yield variable values between 49.6±2.8 and 125.3±10.0 ka, with the scatter attributed to low radiogenic Ar yields, and/or alteration, and/or inheritance of xenocrystic material with inherited Ar. Rotoiti/Earthquake Flat fall deposits occur in New Zealand in association with palynological indicators of mild climate, attributed to Marine Isotope Stage (MIS) 3 and thus used to suggest an age that is post-59 ka. The natures of the criteria used to define the MIS 4/3 boundary in the Northern and Southern hemispheres, however, imply that the new 61 ka age for the Rotoiti/Earthquake Flat eruption deposits will provide the inverse, namely, a more accurate isochronous marker for correlating diverse changes across the MIS 4/3 boundary in the southwest Pacific.  相似文献   

16.
Basaltic fissure eruptions are the most common eruption type on Earth. They are characterised by linear lava fountains that construct pyroclastic cones and expansive lava flow fields. The histories of these eruptions can be notoriously difficult to interpret due to the geochemical homogeneity of the tephra, and due to the fact that many of the early deposits become buried during later stages of the eruption. Furthermore, observing the construction of the pyroclastic cones is inherently difficult and dangerous due to the presence of active lava fountains. However, glacial outbursts in the north of Iceland have dissected the products of a Holocene fissure eruption. Examination of the pyroclastic cones, tephra deposits and a solidified lava lake along the fissure has allowed us to elucidate the complex eruptive processes that occur during these eruptions.  相似文献   

17.
The northeast (NE) Honshu arc was formed by three major volcano-tectonic events resulting from Late Cenozoic orogenic movement: continental margin volcanism (before 21?Ma), seafloor basaltic lava flows and subsequent bimodal volcanism accompanied by back-arc rifting (21 to 14?Ma), and felsic volcanism related to island arc uplift (12 to 2?Ma). Eight petrotectonic domains, parallel to the NE Honshu arc, were formed as a result of the eastward migration of volcanic activity with time. Major Kuroko volcanogenic massive sulfide (VMS) deposits are located within the eastern marginal rift zone (Kuroko rift) that formed in the final period of back-arc rifting (16 to 14?Ma). Volcanic activity in the NE Honshu arc is divided into six volcanic stages. The eruption volumes of volcanic rocks have gradually decreased from 4,600?km3 (per 1?my for a 200-km-long section along the arc) of basaltic lava flows in the back-arc spreading stage to 1,000?C2,000?km3 of bimodal hyaloclastites in the back-arc rift stage, and about 200?km3 of felsic pumice eruptions in the island arc stage. The Kuroko VMS deposits were formed at the time of abrupt decrease in the eruption volume and change in the mode of occurrence of the volcanic rocks during the final period of back-arc rifting. In the area of the Kuroko rift, felsic volcanism changed from aphyric or weakly plagioclase phyric (before 14?Ma), to quartz and plagioclase phyric with minor clinopyroxene (12 to 8?Ma), to hornblende phyric (after 8?Ma), and hornblende and biotite phyric (after 4?Ma). The Kuroko VMS deposits are closely related to the aphyric rhyolitic activity before 14?Ma. The rhyolite was generated at a relatively high temperature from a highly differentiated part of felsic magma seated at a relatively great depth and contains higher Nb, Ce, and Y contents than the post-Kuroko felsic volcanism. The Kuroko VMS deposits were formed within a specific tectonic setting, at a specific period, and associated with a particular volcanism of the arc evolution process. Therefore, detailed study of the evolutional process from rift opening to island arc tectonics is very important for the exploration of Kuroko-type VMS deposits.  相似文献   

18.
The Tiscapa maar in the center of Managua city formed by a phreatomagmatic eruption <3 ka ago. The eruption excavated a crater deep into the basement exposing a coherent Pleistocene to Holocene volcaniclastic succession that we have divided into four formations. The lowermost, >60 ka old basaltic–andesitic formation F1 comprises mafic ignimbrites and phreatomagmatic tephras derived from the Las Sierras volcanic complex south of Managua. Formation F2 contains the ~60 ka basaltic–andesitic Fontana tephra erupted from the Las Nubes Caldera of the Las Sierras complex 15 km to the S, the 25 ka Upper Apoyo tephra from the Apoyo Caldera 35 km to the SE, and the Lower (~17 ka) and Upper (12.4 ka) Apoyeque tephras from the Chiltepe volcanic complex 15 km to the NW. These tephras are separated by weathering horizons and paleosols indicating dry climatic conditions. Fluvial deposits of a SSW-NNE running paleo-river system build formation F3. The fluvial sediments contain, from bottom to top, scoriae from the ~6 ka basaltic San Antonio tephra, pumice lapilli from the Apoyo and Apoyeque tephras and the 6.1 ka Xiloà tephra, and scoriae derived from the Fontana tephra. The fluvial sediment succession thus reflects progressively deeper carving erosion in the southern highlands (where a large-amplitude regional erosional unconformity exists at the appropriate stratigraphic level) that began after ~6 ka. This suggests that the mid-Holocene tropical high-precipitation climatic phase affected western Nicaragua about a thousand years later than other circum-Caribbean regions. The end of the wet climate phase ~3 ka ago is recorded by a deep weathering zone and paleosol atop formation F3 prior to the Tiscapa eruption. Formation F4 is the Tiscapa tuffring composed of pyroclastic surge and fallout deposits that cover a minimum area of 1.2 km2. The 4 × 109 kg of erupted basaltic magma is compositionally and genetically related to the low-Ti basalts of the N–S striking Nejapa-Miraflores volcanic–tectonic alignment 5 km to the West of Tiscapa. Ascent and eruption mode of the Tiscapa magma were controlled by the Tiscapa fault that has a very active seismic history as it achieved 12 m displacement in about 3000 years. Managua city is thus exposed to continued seismic and volcanic risks.  相似文献   

19.
At least 12 silicic tephra layers (SILK tephras) erupted between ca. 6600 and ca. 1675 yr BP from the Katla volcanic system, have been identified in southern Iceland. In addition to providing significant new knowledge on the Holocene volcanism of the Katla system which typically produces basaltic tephra, the SILK tephras form distinct and precise isochronous marker horizons in a climatically sensitive location close to both the atmospheric and marine polar fronts. With one exception the SILK tephras have a narrow compositional range, with SiO2 between 63 and 67%. Geochemically they are indistinguishable from ocean transported pumice found on beaches in the North Atlantic region, although they differ significantly from the silicic component of the North Atlantic Ash Zone One (NAAZO). Volumes of airborne SILK tephra range from 0.05 to 0.3 km3. We present new isopach maps of the six largest layers and demonstrate that they originate within the Katla caldera. The apparently stable magma system conditions that produced the SILK tephras may have been established as a consequence of the eruption of the silicic component of NAAZO (ca. 10.3 ka) and disrupted by another large‐scale event, the tenth century ad Eldgjá eruption (ca. 1 ka). Despite the current long repose, silicic activity of this type may occur again in the future, presenting hitherto unknown hazards. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
A Middle Pleistocene widespread tephra, defined here as Hegawa-Kasamori 5 tephra (Hgw-Ks5), has been newly recognized over a broad area of Japan. Large-scale pyroclastic flow deposits associated with co-ignimbrite ash fall deposits (CAFDs) of Hgw-Ks5 have been identified in the proximal southern Kyushu area, south-west Japan. Hgw-Ks5 possibly originated from the Aira caldera in southern Kyushu, and it is widely spread and intercalated with deposits of the Kasamori Formation, Honshu Island, more than 1000 km away from the source. In the north-west area of the Aira Caldera, the tephra is sparsely distributed in the form of non-welded ignimbrites, and is exposed stratigraphically above the well-known Kobayashi-Kasamori tephra. Hgw-Ks5 is characterized through petrographic features, major element geochemistry of glass shards, and refractive indices of orthopyroxene. The results of previous stratigraphic isotope studies indicate that the eruptive age of Hgw-Ks5 is 434–458 ka (Marine Isotope Stage 12). Assuming that the CAFDs originating from the Aira Caldera are distributed concentrically, the apparent volume of Hgw-Ks5, estimated from the area of distribution and CAFD thickness, is ~100 km3. Therefore, a volcanic explosivity index of 7 is assigned to the Hgw-Ks5 eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号