共查询到20条相似文献,搜索用时 15 毫秒
1.
Comprehensive snow depth data, collected using georadar and hand probing, were used for statistical analyses of snow depths inside 1 km grid cells. The sub‐grid cell spatial scale was 100 m. Statistical distribution functions were found to have varying parameters, and an attempt was made to connect these statistical parameters to different terrain variables. The results showed that the two parameters mean and standard deviation of snow depth were significantly related to the sub‐grid terrain characteristics. Linear regression models could explain up to 50% of the variation for both of the snowcover parameters mentioned. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
Monitoring and estimation of snow depth in alpine catchments is needed for a proper assessment of management alternatives for water supply in these water resources systems. The distribution of snowpack thickness is usually approached by using field data that come from snow samples collected at a given number of locations that constitute the monitoring network. Optimal design of this network is required to obtain the best possible estimates. Assuming that there is an existing monitoring network, its optimization may imply the selection of an optimal network as a subset of the existing one (if there are no funds to maintain them) or enlarging the existing network by one or more stations (optimal augmentation problem). We propose an optimization procedure that minimizes the total variance in the estimate of snowpack thickness. The novelty of this work is to treat, for the first time, the problem of snow observation network optimization for an entire mountain range rather than for small catchments as done in the previous studies. Taking into account the reduced data available, which is a common problem in many mountain ranges, the importance of a proper design of these observation networks is even larger. Snowpack thickness is estimated by combining regression models to approach the effect of the explanatory variables and kriging techniques to consider the influence of the stakes location. We solve the optimization problems under different hypotheses, studying the impacts of augmentation and reduction, both, one by one and in pairs. We also analyse the sensitivity of results to nonsnow measurements deduced from satellite information. Finally, we design a new optimal network by combining the reduction and augmentation methods. The methodology has been applied to the Sierra Nevada mountain range (southern Spain), where very limited resources are employed to monitor snowfall and where an optimal snow network design could prove critical. An optimal snow observation network is defined by relocating some observation points. It would reduce the estimation variance by around 600 cm2 (15%). 相似文献
3.
We report a methodology for reconstructing the daily snow depth distribution at high spatial resolution in a small Pyrenean catchment using time‐lapse photographs and snow depletion rates derived from an on‐site measuring meteorological station. The results were compared with the observed snow depth distribution, determined on a number of separate occasions using a terrestrial laser scanner (TLS). The time‐lapse photographs were projected onto a digital elevation model of the study site, and converted into snow presence/absence information. The melt‐out date (MOD; first occurrence of melt out after peak snow accumulation) was obtained from the projected photograph series. Commencing the backward reconstruction for each grid cell at the MOD, the method uses simulated snow depth depletion rates using a temperature index approach, which are extrapolated to the grid cells of the domain to arrive at the snow distribution of the previous day. Two variants of the reconstruction techniques were applied (1) using a spatially constant degree day factor (DDF) for calculating the daily expected snow depth depletion rate, and (2) allowing a spatially distributed DDF calculated from two consecutive TLS acquisitions compared to the snow depth depletion rate observed at the meteorological station. Validation revealed that both methods performed well (average R2 = 0.68; standard RMSE = 0.58), with better results obtained from the spatially distributed approach. Nevertheless, the spatially corrected DDF reconstruction, which requires TLS data, suggests that the constant DDF approach is an efficient, and for most applications sufficiently accurate and easily reproducible method. The results highlight the usefulness of time‐lapse photography for not only determining the snow covered area, but also for estimating the spatial distribution of snow depth. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
Inter‐annual variation in the topographic controls on catchment‐scale snow distribution in a maritime alpine catchment,New Zealand 下载免费PDF全文
Seasonal snow is a globally important water resource that contributes substantially to upland and lowland water resources. As such, there is a need to understand the controls on the spatial and temporal variation in snow distribution. This study meets this research need by investigating the topographic controls on snow depth distribution in the upper Jollie catchment in the Southern Alps of New Zealand. Furthermore, inter‐annual variation in the importance of the topographic controls is examined and linked to variation in the dominant synoptic‐scale weather patterns over a 4‐year period (2007–2010). Through the use of regression trees, the relative importance of the topographic controls on snow depth was shown to vary between the four study years. In particular, elevation explained the greatest amount of variance in 2007 and 2008 and east‐exposure explained the greatest variance in 2009 and 2010. The other wind exposure variables also had a large effect on the snow depth distribution in 2009 and 2010. Differences in the frequency and duration of synoptic weather patterns were physically consistent with the changing importance of these variables. In particular, a higher frequency of troughing events in 2009 and 2010 is thought to be associated with a reduced importance of elevation and greater influence of wind exposure on snow depth in these years. These findings demonstrate the importance of using multi‐year data sets, and of considering topographic and climatic influences, when attempting to model alpine snow distribution. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
The conditions under which the Saint Venant equations system for unsteady open channel flow, as an initial–boundary value problem, becomes self‐similar are investigated by utilizing one‐parameter Lie group of point scaling transformations. One of the advantages of this methodology is that the self‐similarity conditions due to the initial and boundary conditions can also be investigated thoroughly in addition to the conditions due to the governing equation. The obtained self‐similarity conditions are compared with the scaling relationships that are derived through the Froude similitude. It is shown that the initial–boundary value problem of a one‐dimensional unsteady open channel flow process in a prototype domain can be self‐similar with that of several different scaled domains. However, the values of all the flow variables (at specified time and space) under different scaled domains can be upscaled to the same values in the prototype domain (at the corresponding time and space), as shown in this study. Distortion in scales of different space dimensions has been implemented extensively in physical hydraulic modelling, mainly because of cost, space and time limitations. Unlike the traditional approach, the distinction is made between the longitudinal–horizontal and transverse–horizontal length scales in this study. The scaled domain obtained by the proposed approach, when scaling ratios of channel width and water depth are equal, is particularly important for the similarity of flow characteristics in a cross‐section because the width‐to‐depth ratio and the inclination angles of the banks are conserved in a cross‐section. It is also shown that the scaling ratio of the roughness coefficient under distorted channel conditions depends on that of hydraulic radius and longitudinal length. The proposed scaling relations obtained by the Lie group scaling approach may provide additional spatial, temporal and economical flexibility in setting up physical hydraulic models. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
6.
Ground‐penetrating radar (GPR) has become a promising technique in the field of snow hydrological research. It is commonly used to measure snow depth, density, and water equivalent over large distances or along gridded snow courses. Having built and tested a mobile lightweight set‐up, we demonstrate that GPR is capable of accurately measuring snow ablation rates in complex alpine terrain. Our set‐up was optimized for efficient measurements and consisted of a multioffset radar with four pairs of antennas mounted to a plastic sled, which was small enough to permit safe and convenient operations. Repeated measurements at intervals of 2 to 7 days were taken during the 2014/2015 winter season along 10 profiles of 50 to 200 m length within two valleys located in the eastern Swiss Alps. Resulting GPR‐based data of snow depth, density, and water equivalent, as well as their respective change over time, were in good agreement with concurrent manual measurements, in particular if accurate alignment between repeated overpasses could be achieved. Corresponding root‐mean‐square error (RMSE) values amounted to 4.2 cm for snow depth, 17 mm for snow water equivalent, and 22 kg/m3 for snow density, with similar RMSE values for corresponding differential data. With this performance, the presented radar set‐up has the potential to provide exciting new and extensive datasets to validate snowmelt models or to complement lidar‐based snow surveys. 相似文献
7.
Spatio‐temporal controls of snowmelt and runoff generation during rain‐on‐snow events in a mid‐latitude mountain catchment 下载免费PDF全文
A network of 30 standalone snow monitoring stations was used to investigate the snow cover distribution, snowmelt dynamics, and runoff generation during two rain‐on‐snow (ROS) events in a 40 km2 montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent (SWE) distribution within the catchment was applied on an hourly basis for two significant ROS flood events that occurred in December 2012. The available snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for the runoff generation. The study provides a spatially and temporally distributed picture of how the two observed ROS floods developed in the catchment. It became evident that the retention capacity of the snow cover is a crucial mechanism during ROS. It took several hours before water was released from the snowpack during the first ROS event, while retention storage was exceeded within 1 h from the start of the second event. Elevation was the most important terrain feature. South‐facing terrain contributed more water for runoff than north‐facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of snowmelt together with liquid precipitation for the generation of flood runoff during ROS and the large temporal and spatial variability of the relevant processes. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth. 相似文献
9.
Noah P. Molotch Peter D. Blanken Mark W. Williams Andrew A. Turnipseed Russell K. Monson Steven A. Margulis 《水文研究》2007,21(12):1567-1575
Direct measurements of winter water loss due to sublimation were made in a sub‐alpine forest in the Rocky Mountains of Colorado. Above‐and below‐canopy eddy covariance systems indicated substantial losses of winter‐season snow accumulation in the form of snowpack (0·41 mm d?1) and intercepted snow (0·71 mm d?1) sublimation. The partitioning between these over and under story components of water loss was highly dependent on atmospheric conditions and near‐surface conditions at and below the snow/atmosphere interface. High above‐canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow‐surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above‐canopy latent heat fluxes, high within‐canopy sublimation rates (maximum = 3·7 mm d?1), and diminished sub‐canopy snowpack sublimation. These results indicate that sublimation losses from the sub‐canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compels comprehensive studies of snow sublimation in forested regions that integrate sub‐canopy and over‐story processes. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
Regional variability in dust‐on‐snow processes and impacts in the Upper Colorado River Basin 下载免费PDF全文
S. McKenzie Skiles Thomas H. Painter Jayne Belnap Lacey Holland Richard L. Reynolds Harland L. Goldstein John Lin 《水文研究》2015,29(26):5397-5413
Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust‐on‐snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high‐altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4‐year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g?1 to 4.80 mg g?1, and daily mean spring dust radiative forcing ranged from 50–65 W m?2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g?1 less dust per season on average, spring radiative forcings of 32–50 W m?2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
Rain‐on‐snow events have generated major floods around the world, particularly in coastal, mountainous regions. Most previous studies focused on a limited number of major rain‐on‐snow events or were based primarily on model results, largely due to a lack of long‐term records from lysimeters or other instrumentation for quantifying event water balances. In this analysis, we used records from five automated snow pillow sites in south coastal British Columbia, Canada, to reconstruct event water balances for 286 rain‐on‐snow events over a 10‐year period. For large rain‐on‐snow events (event rainfall >40 mm), snowmelt enhanced the production of water available for run‐off (WAR) by approximately 25% over rainfall alone. For smaller events, a range of antecedent and meteorological factors influenced WAR generation, particularly the antecedent liquid water content of the snowpack. Most large events were associated with atmospheric rivers. Rainfall dominated WAR generation during autumn and winter events, whereas snowmelt dominated during spring and summer events. In the majority of events, the sensible heat of rain contributed less than 10% of the total energy consumed by snowmelt. This analysis illustrated the importance of understanding the amount of rainfall occurring at high elevations during rain‐on‐snow events in mountainous regions. 相似文献
12.
Zhu Gaofeng Lu Ling Su Yonghong Wang Xufeng Cui Xia Ma Jinzhu He Jianhua Zhang Kun Li Changbin 《水文研究》2014,28(19):5093-5104
In this study, we examined the year 2011 characteristics of energy flux partitioning and evapotranspiration of a sub‐alpine spruce forest underlain by permafrost on the Qinghai–Tibet Plateau (QPT). Energy balance closure on a half‐hourly basis was H + λE = 0.81 × (Rn ? G ? S) + 3.48 (W m?2) (r2 = 0.83, n = 14938), where H, λE, Rn, G and S are the sensible heat, latent heat, net radiation, soil heat and air‐column heat storage fluxes, respectively. Maximum H was higher than maximum λE, and H dominated the energy budget at midday during the whole year, even in summer time. However, the rainfall events significantly affected energy flux partitioning and evapotranspiration. The mean value of evaporative fraction (Λ = λE/(λE + H)) during the growth period on zero precipitation days and non‐zero precipitation days was 0.40 and 0.61, respectively. The mean daily evapotranspiration of this sub‐alpine forest during summer time was 2.56 mm day?1. The annual evapotranspiration and sublimation was 417 ± 8 mm year?1, which was very similar to the annual precipitation of 428 mm. Sublimation accounted for 7.1% (30 ± 2 mm year?1) of annual evapotranspiration and sublimation, indicating that the sublimation is not negligible in the annual water balance in sub‐alpine forests on the QPT. The low values of the Priestley–Taylor coefficient (α) and the very low value of the decoupling coefficient (Ω) during most of the growing season suggested low soil water content and conservative water loss in this sub‐alpine forest. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
14.
Hui Yu Xuetong Zhang Tiangang Liang Hongjie Xie Xianwei Wang Qisheng Feng Quangong Chen 《水文研究》2012,26(20):3052-3061
Taking the Northern Xinjiang region as an example, we develop a snow depth model by using the Advanced Microwave Scanning Radiometer‐Earth Observing System (AMSR‐E) horizontal and vertical polarization brightness temperature difference data of 18 and 36 GHz bands and in situ snow depth measurements from 20 climatic stations during the snow seasons November–March) of 2002–2005. This article proposes a method to produce new 5‐day snow cover and snow depth images, using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover products and AMSR‐E snow water equivalent and daily brightness temperature products. The results indicate that (1) the brightness temperature difference (Tb18h–Tb36h) provides the most accurate and precise prediction of snow depth; (2) the snow, land and overall classification accuracies of the new images are separately 89.2%, 77.7% and 87.2% and are much better than those of AMSR‐E or MODIS products (in all weather conditions) alone; (3) the snow classification accuracy increases as snow depth increases; and (4) snow accuracies for different land cover types vary as 88%, 92.3%, 79.7% and 80.1% for cropland, grassland, shrub, and urban and built‐up, respectively. We conclude that the new 5‐day snow cover–snow depth images can provide both accurate cloud‐free snow cover extent and the snow depth dynamics, which would lay a scientific basis for water management and prevention of snow‐related disasters in this dry and cold pastoral area. After validations of the algorithms over other regions with different snow and climate conditions, this method would also be used for monitoring snow cover and snow depth elsewhere in the world. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
Mohammad M. Sohrabi Daniele Tonina Rohan Benjankar Mukesh Kumar Patrick Kormos Danny Marks Charlie Luce 《水文研究》2019,33(8):1260-1275
Hydrological processes in mountainous settings depend on snow distribution, whose prediction accuracy is a function of model spatial scale. Although model accuracy is expected to improve with finer spatial resolution, an increase in resolution comes with modelling costs related to increased computational time and greater input data and parameter information. This computational and data collection expense is still a limiting factor for many large watersheds. Thus, this work's main objective is to question which physical processes lead to loss in model accuracy with regard to input spatial resolution under different climatic conditions and elevation ranges. To address this objective, a spatially distributed snow model, iSnobal, was run with inputs distributed at 50‐m—our benchmark for comparison—and 100‐m resolutions and with aggregated (averaged from the fine to the large resolution) inputs from the 50‐m model to 100‐, 250‐, 500‐, and 750‐m resolution for wet, average, and dry years over the Upper Boise River Basin (6,963 km2), which spans four elevation bands: rain dominated, rain–snow transition, and snow dominated below treeline and above treeline. Residuals, defined as differences between values quantified with high resolution (>50 m) models minus the benchmark model (50 m), of simulated snow‐covered area (SCA) and snow water equivalent (SWE) were generally slight in the aggregated scenarios. This was due to transferring the effects of topography on meteorological variables from the 50‐m model to the coarser scales through aggregation. Residuals in SCA and SWE in the distributed 100‐m simulation were greater than those of the aggregated 750 m. Topographic features such as slope and aspect were simplified, and their gradient was reduced due to coarsening the topography from the 50‐ to 100‐m resolution. Therefore, solar radiation was overestimated, and snow drifting was modified and caused substantial SCA and SWE underestimation in the distributed 100‐m model relative to the 50‐m model. Large residuals were observed in the wet year and at the highest elevation band when and where snow mass was large. These results support that model accuracy is substantially reduced with model scales coarser than 50 m. 相似文献
16.
To improve spring runoff forecasts from subalpine catchments, detailed spatial simulations of the snow cover in this landscape is obligatory. For more than 30 years, the Swiss Federal Research Institute WSL has been conducting extensive snow cover observations in the subalpine watershed Alptal (central Switzerland). This paper summarizes the conclusions from past snow studies in the Alptal valley and presents an analysis of 14 snow courses located at different exposures and altitudes, partly in open areas and partly in forest. The long‐term performance of a physically based numerical snow–vegetation–atmosphere model (COUP) was tested with these snow‐course measurements. One single parameter set with meteorological input variables corrected to the prevailing local conditions resulted in a convincing snow water equivalent (SWE) simulation at most sites and for various winters with a wide range of snow conditions. The snow interception approach used in this study was able to explain the forest effect on the SWE as observed on paired snow courses. Finally, we demonstrated for a meadow and a forest site that a successful simulation of the snowpack yields appropriate melt rates. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
In this paper, we addressed a sensitivity analysis of the snow module of the GEOtop2.0 model at point and catchment scale in a small high‐elevation catchment in the Eastern Italian Alps (catchment size: 61 km2). Simulated snow depth and snow water equivalent at the point scale were compared with measured data at four locations from 2009 to 2013. At the catchment scale, simulated snow‐covered area (SCA) was compared with binary snow cover maps derived from moderate‐resolution imaging spectroradiometer (MODIS) and Landsat satellite imagery. Sensitivity analyses were used to assess the effect of different model parameterizations on model performance at both scales and the effect of different thresholds of simulated snow depth on the agreement with MODIS data. Our results at point scale indicated that modifying only the “snow correction factor” resulted in substantial improvements of the snow model and effectively compensated inaccurate winter precipitation by enhancing snow accumulation. SCA inaccuracies at catchment scale during accumulation and melt period were affected little by different snow depth thresholds when using calibrated winter precipitation from point scale. However, inaccuracies were strongly controlled by topographic characteristics and model parameterizations driving snow albedo (“snow ageing coefficient” and “extinction of snow albedo”) during accumulation and melt period. Although highest accuracies (overall accuracy = 1 in 86% of the catchment area) were observed during winter, lower accuracies (overall accuracy < 0.7) occurred during the early accumulation and melt period (in 29% and 23%, respectively), mostly present in areas with grassland and forest, slopes of 20–40°, areas exposed NW or areas with a topographic roughness index of ?0.25 to 0 m. These findings may give recommendations for defining more effective model parameterization strategies and guide future work, in which simulated and MODIS SCA may be combined to generate improved products for SCA monitoring in Alpine catchments. 相似文献
18.
Changchun Xu Yaning Chen Yimit Hamid Tiyip Tashpolat Yapeng Chen Hongtao Ge Weihong Li 《水文研究》2009,23(14):2045-2055
Spatio‐temporal variation of snow depth in the Tarim River basin has been studied by the empirical orthogonal function (EOF) based on the data collected by special sensor microwave/imager (SSM/I) and scanning multichannel microwave radiometer (SMMR) during the period from 1979 to 2005. The long‐term trend of snow depth and runoff was presented using the Mann‐Kendall non‐parametric test, and the effects of the variations of snow depth and climatic factors on runoff were analysed and discussed by means of the regression analysis. The results suggested that the snow depth variation on the entire basin was characterised by four patterns: all consistency, north–south contrast, north‐middle‐south contrast and complex. The first pattern accounting 39·13% of the total variance was dominant. The entire basin was mainly affected by one large‐scale weather system. However, the spatial and temporal differences also existed among the different regions in the basin. The significant snow depth changes occurred mainly in the Aksu River basin with the below‐normal snow depth anomalies in the 1980s and the above‐normal snow depth anomalies in the 1990s. The long‐term trend of snow depth was significant in the northwestern, western and southern parts of the basin, whereas the long‐term trend of runoff was significant in the northwestern and northeastern parts. The regression analysis revealed that the runoff of the rivers replenished by snow melt water and rainfall was related primarily to the summer precipitation, followed by the summer temperature or the maximum snow depth in the cold season. Our results suggest that snow is not the principal factor that contributes to the runoff increase in headstreams, although there was a slow increase in snow depth. It is the climatic factors that are responsible for the steady and continuous water increase in the headstreams. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
The geophysical, thermodynamic and dielectric properties of snow are important state variables that are known to be sensitive to Arctic climate variability and change. Given recent observations of changes in the Arctic physical system (Arctic Climate Impact Assessment, 2004), it is important to focus on the processes that give rise to variability in the horizontal, vertical and temporal dimensions of the life‐history of snow on sea ice. The objectives in this study are to present these ‘state’ variables and to investigate the processes that govern variability in the vertical, horizontal and temporal dimension by using a case study over land‐fast first‐year sea ice for the period December 2003 to June 2004. Results from two sampling areas (thin and thick snowpacks) show that differences in snowpack thickness can substantially change the vertical and temporal evolution of snow properties. During the late fall and early winter (cooling period) we measured no significant changes in the physical properties, except for thin snow‐cover salinity, which decreased throughout the period. Fall‐snow desalination was only observed under thin snowpacks with a rate of ?0·12 ppt day?1. Significant changes occurred in the late winter and early spring (warming period), especially for snow grain size. Snow grain kinetic growth of 0·25–0·48 mm·day?1 was measured coincidently with increasing salinity and wetness for both thin and thick snowpacks. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
20.
Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE. 相似文献