首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Geographically weighted regression (GWR) is a local spatial statistical technique for exploring spatial nonstationarity. Previous approaches to mapping the results of GWR have primarily employed an equal step classification and sequential no-hue colour scheme for choropleth mapping of parameter estimates. This cartographic approach may hinder the exploration of spatial nonstationarity by inadequately illustrating the spatial distribution of the sign, magnitude, and significance of the influence of each explanatory variable on the dependent variable. Approaches for improving mapping of the results of GWR are illustrated using a case study analysis of population density–median home value relationships in Philadelphia, Pennsylvania, USA. These approaches employ data classification schemes informed by the (nonspatial) data distribution, diverging colour schemes, and bivariate choropleth mapping.  相似文献   

2.
Based on remote sensing and GIS, this study models the spatial variations of urban growth patterns with a logistic geographically weighted regression (GWR) technique. Through a case study of Springfield, Missouri, the research employs both global and local logistic regression to model the probability of urban land expansion against a set of spatial and socioeconomic variables. The logistic GWR model significantly improves the global logistic regression model in three ways: (1) the local model has higher PCP (percentage correctly predicted) than the global model; (2) the local model has a smaller residual than the global model; and (3) residuals of the local model have less spatial dependence. More importantly, the local estimates of parameters enable us to investigate spatial variations in the influences of driving factors on urban growth. Based on parameter estimates of logistic GWR and using the inverse distance weighted (IDW) interpolation method, we generate a set of parameter surfaces to reveal the spatial variations of urban land expansion. The geographically weighted local analysis correctly reveals that urban growth in Springfield, Missouri is more a result of infrastructure construction, and an urban sprawl trend is observed from 1992 to 2005.  相似文献   

3.
This study analyses the relationship between fire incidence and some environmental factors, exploring the spatial non-stationarity of the phenomenon in sub-Saharan Africa. Geographically weighted regression (GWR) was used to study the above relationship. Environment covariates comprise land cover, anthropogenic and climatic variables. GWR was compared to ordinary least squares, and the hypothesis that GWR represents no improvement over the global model was tested. Local regression coefficients were mapped, interpreted and related with fire incidence. GWR revealed local patterns in parameter estimates and also reduced the spatial autocorrelation of model residuals. All the covariates were non-stationary and in terms of goodness of fit, the model replicates the data very well (R 2 = 87%). Vegetation has the most significant relationship with fire incidence, with climate variables being more important than anthropogenic variables in explaining variability of the response. Some coefficient estimates exhibit locally different signs, which would have gone undetected by a global approach. This study provides an improved understanding of spatial fire–environment relationships and shows that GWR is a valuable complement to global spatial analysis methods. When studying fire regimes, effects of spatial non-stationarity need to be incorporated in vegetation-fire modules to have better estimates of burned areas and to improve continental estimates of biomass burning and atmospheric emissions derived from vegetation fires.  相似文献   

4.
在城镇化进程快速推进耕地保护形势严峻的背景下,粮食单产的区域差异研究对地区粮食安全具有重要意义。本文以湖北省粮食单产数据为基础,采用探索性数据分析方法和地理加权回归模型揭示省内县域粮食单产的空间关系和影响因素的空间异质性。结果表明:湖北省县域粮食单产具有显著的空间自相关特征,整体水平稳中有增。农村劳动力、化肥施用量、农村机械总动力和有效灌溉面积比对粮食单产具有正向促进作用和一定的空间分异规律,对农村用电量呈现出先正后负的影响,各因素的空间异质性显著。结合县域现状和因素的区域特质采取对应的有效措施应对粮食安全问题具有深远的现实意义。  相似文献   

5.
邓悦  刘洋  刘纪平  徐胜华  罗安 《测绘通报》2018,(3):32-37,42
近年来,我国大部分地区屡遭洪涝与干旱两种自然灾害侵袭,对重洪涝干旱区域进行空间插值具有重要的意义。针对传统地理加权回归(GWR)模型建模过程中模型识别和参数估计易受观测值异常点影响的问题,本文提出了一种基于吉布斯采样的贝叶斯地理加权回归(GBGWR)方法。运用基于吉布斯采样的马尔可夫链蒙特卡罗贝叶斯方法,估计地理加权回归模型参数,通过平滑函数降低观测值中异常点位数据,最后对湖南省1985-2015年35个观测站点的降水观测数据进行了空间分布模拟。试验结果表明,本文提出的方法相较于GWR模型性能提高了19.8%,相较于BGWR模型性能提高了8.2%,该方法可以有效降低异常值和"弱数据"对回归结果的影响,能够更加真实地模拟湖南省降水量的空间分布。  相似文献   

6.
The principal rationale for applying geographically weighted regression (GWR) techniques is to investigate the potential spatial non-stationarity of the relationship between the dependent and independent variables—i.e., that the same stimulus would provoke different responses in different locations. The calibration of GWR employs a geographically weighted local least squares regression approach. To obtain meaningful inference, it assumes that the regression residual follows a normal or asymptotically normal distribution. In many classical econometric analyses, the assumption of normality is often readily relaxed, although it has been observed that such relaxation might lead to unreliable inference of the estimated coefficients' statistical significance. No studies, however, have examined the behavior of residual non-normality and its consequences for the modeled relationships in GWR. This study attempts to address this issue for the first time by examining a set of tobacco-outlet-density and demographic variables (i.e., percent African American residents, percent Hispanic residents, and median household income) at the census tract level in New Jersey in a GWR analysis. The regression residual using the raw data is apparently non-normal. When GWR is estimated using the raw data, we find that there is no significant spatial variation of the coefficients between tobacco outlet density and percentage of African American and Hispanics. After transforming the dependent variable and making the residual asymptotically normal, all coefficients exhibit significant variation across space. This finding suggests that relaxation of the normality assumption could potentially conceal the spatial non-stationarity of the modeled relationships in GWR. The empirical evidence of the current study implies that researchers should verify the normality assumption prior to applying GWR techniques in analyses of spatial non-stationarity.  相似文献   

7.
道路网络背景下的距离度量(如道路网络距离、旅行时间)是在空间分析或空间统计过程中常用的距离度量,但在科研过程中由于道路数据的可获得性和精度等方面的限制,该类距离的计算可能较为困难。Minkowski距离函数是欧氏空间中的广义距离函数,其参数p值的不同代表着对空间不同的度量。利用Minkowski的通用性和灵活性(参数p不同的取值),研究如何更好地逼近道路网络距离。同时,探索不同道路网络的部分计量特征(如密度、弯曲度等)与最优p值之间的关系。实验证明,相对于最常用的欧氏距离度量,优选p值后的Minkowski距离函数能够更大程度上逼近道路距离。而通过对道路网络计量特征与最优p值之间的关系的分析,指出了弯曲度与最优p值之间的对应关系,它对于p值的选择具有重要的指导意义。此外,为了验证Minkowski距离逼近算法的可行性,以地理加权回归分析为例,通过对比传统的欧氏距离度量、最优Minkowski距离度量和道路网络距离(旅行时间)对模型解算结果的影响,指出优选后Minkowski距离一定程度上更接近于采用旅行时间对模型解算的结果。  相似文献   

8.
互联网记录了人们的日常生活,对带有位置信息的搜索引擎数据进行分析和挖掘可以获得隐藏于其中的地理信息。本文通过分析中国各省流感月度发病数与相关关键词百度搜索指数之间的相关性,选取相关性较高关键词的百度指数作为解释变量,发病数作为因变量,在采用主成分分析法消除变量共线性后,分别使用普通最小二乘回归(OLS)、地理加权回归(GWR)及时空地理加权回归(GTWR)构建流感发病数的空间分布模型。模型的拟合度能够从OLS的0.737、GWR的0.915提高到GTWR的0.959,赤池信息准则(AIC)也表明,GTWR模型明显优于OLS与GWR模型。验证结果显示,GTWR模型能准确识别流感高发地区,将该方法与搜索引擎数据结合能较好地模拟流感空间分布,为空间流行病学的研究提供预测模型和统计解释。  相似文献   

9.
This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate.  相似文献   

10.
Geographically weighted regression (GWR) extends the familiar regression framework by estimating a set of parameters for any number of locations within a study area, rather than producing a single parameter estimate for each relationship specified in the model. Recent literature has suggested that GWR is highly susceptible to the effects of multicollinearity between explanatory variables and has proposed a series of local measures of multicollinearity as an indicator of potential problems. In this paper, we employ a controlled simulation to demonstrate that GWR is in fact very robust to the effects of multicollinearity. Consequently, the contention that GWR is highly susceptible to multicollinearity issues needs rethinking.  相似文献   

11.
Present methodological research on geographically weighted regression (GWR) focuses primarily on extensions of the basic GWR model, while ignoring well-established diagnostics tests commonly used in standard global regression analysis. This paper investigates multicollinearity issues surrounding the local GWR coefficients at a single location and the overall correlation between GWR coefficients associated with two different exogenous variables. Results indicate that the local regression coefficients are potentially collinear even if the underlying exogenous variables in the data generating process are uncorrelated. Based on these findings, applied GWR research should practice caution in substantively interpreting the spatial patterns of local GWR coefficients. An empirical disease-mapping example is used to motivate the GWR multicollinearity problem. Controlled experiments are performed to systematically explore coefficient dependency issues in GWR. These experiments specify global models that use eigenvectors from a spatial link matrix as exogenous variables.This study was supported by grant number 1 R1 CA95982-01, Geographic-Based Research in Cancer Control and Epidermiology, from the National Cancer Institute. The author thank the anonymous reviewers and the editor for their helpful comments.  相似文献   

12.
地理加权回归是常用的空间分析方法,已广泛应用于各个领域,但利用此方法进行回归分析前,往往忽略了对设计矩阵进行局部多重共线性的诊断,从而导致对模型的估计不准确。因此,本文在引入了全局模型的多重共线性诊断方法的基础上,对这些方法进行了改进,改进后构建了加权方差膨胀因子法和加权条件指标方法——分解比法,用于诊断地理加权回归模型设计矩阵的多重共线性问题。实验结果表明,多重共线性不存在于全局模型,而可能存在于局部模型中,构建的两种方法能够有效地诊断地理加权回归模型的多重共线性问题,且加权条件指标方法——分解比法比加权方差膨胀因子法在诊断多重共线性问题上更有优势。  相似文献   

13.
In the present study, relationship between Land surface temperature and selected indices, vegetation index (VARI), built-up index (BUI) and elevation (DEM) is investigated. Ordinary least square method and geographically weighted regression are used to analyse the spatial correlation between the indices with surface temperature. Subsequently, temporal trends (2001–2015) in surface temperature and vegetation are explored after every two years of interval. LANDSAT image and ASTER DEM are used to extract LST and additional indices. The selected variables (Built-up, vegetation and topography) explain 69% of the variation in surface temperature. The OLS and GWR revealed that topography and vegetation are the significant factor of LST in Manipur State. Topography being a constant parameter, its effect is constant over time. The changing scenario of vegetation is significantly contributing to LST. The surface temperature over a period of 15 years show increasing trend and is negatively and strongly correlated to vegetation cover.  相似文献   

14.
Griliches’ knowledge production function has been increasingly adopted at the regional level where location-specific conditions drive the spatial differences in knowledge creation dynamics. However, the large majority of such studies rely on a traditional regression approach that assumes spatially homogenous marginal effects of knowledge input factors. This paper extends the authors’ previous work (Kang and Dall’erba in Int Reg Sci Rev, 2015. doi: 10.1177/0160017615572888) to investigate the spatial heterogeneity in the marginal effects by using nonparametric local modeling approaches such as geographically weighted regression (GWR) and mixed GWR with two distinct samples of the US Metropolitan Statistical Area (MSA) and non-MSA counties. The results indicate a high degree of spatial heterogeneity in the marginal effects of the knowledge input variables, more specifically for the local and distant spillovers of private knowledge measured across MSA counties. On the other hand, local academic knowledge spillovers are found to display spatially homogenous elasticities in both MSA and non-MSA counties. Our results highlight the strengths and weaknesses of each county’s innovation capacity and suggest policy implications for regional innovation strategies.  相似文献   

15.
The realization in the statistical and geographical sciences that a relationship between an explanatory variable and a response variable in a linear regression model is not always constant across a study area has led to the development of regression models that allow for spatially varying coefficients. Two competing models of this type are geographically weighted regression (GWR) and Bayesian regression models with spatially varying coefficient processes (SVCP). In the application of these spatially varying coefficient models, marginal inference on the regression coefficient spatial processes is typically of primary interest. In light of this fact, there is a need to assess the validity of such marginal inferences, since these inferences may be misleading in the presence of explanatory variable collinearity. In this paper, we present the results of a simulation study designed to evaluate the sensitivity of the spatially varying coefficients in the competing models to various levels of collinearity. The simulation study results show that the Bayesian regression model produces more accurate inferences on the regression coefficients than does GWR. In addition, the Bayesian regression model is overall fairly robust in terms of marginal coefficient inference to moderate levels of collinearity, and degrades less substantially than GWR with strong collinearity.  相似文献   

16.
针对离群值存在时地理加权回归模型拟合效果较差的问题,本文提出了基于IGGⅢ的地理加权回归方法。核心是采用IGGⅢ方案中的权函数计算权重矩阵,将权因子用于地理加权回归参数估计模型。利用模拟数据和真实数据与GWR、ACV-GWR进行对比试验,以MSE、MAE和R2作为指标对结果进行评价。模拟试验结果显示,IGGⅢ-GWR比GWR性能分别提升了51.14%、23.77%、28.4%,比ACV-GWR分别提升了49.96%、22.57%、27.1%;真实试验结果显示,IGGⅢ-GWR比GWR性能分别提升了12.65%、7.44%、0.37%,比ACV-GWR分别提升了11.85%、6.96%、0.34%。试验结果表明,基于IGGⅢ的地理加权回归可提高模型的抗差能力,拟合效果更好。  相似文献   

17.
Soil organic matter (SOM) is an important component of soils, and knowing the spatial distribution and variation of SOM is the premise for sustainably utilizing soils. The objective of this study was to compare geographically weighted regression (GWR) with regression kriging (RK) for estimating the spatial distribution of SOM using field-sample data in SOM and auxiliary data in correlated environmental variables (e.g., elevation, slope, ferrous minerals index, and Normalized Difference Vegetation Index). Results showed that GWR was a relatively better method and could provide promising results for SOM prediction in comparison with RK. The map interpolated by GWR showed similar spatial patterns influenced by environmental variables and the nonapparent effect of data outliers, but with higher accuracies, compared to that interpolated by RK.  相似文献   

18.
Local regression methods such as geographically weighted regression (GWR) can provide specific information about individual locations (or places) in spatial analysis that is useful for mapping nonstationary covariate relationships. However, the distance-based weighting schemes used in GWR are only adaptable for spatial objects that are point or area features. In particular, spatial object-pairs pose a challenge for local analysis because they have a linear dimensionality rather than a point dimensionality. This paper proposes using an alternative local regression model – quantile regression (QR) – for investigating the stationarity of regression parameters with respect to these linear features as well as facilitating the visualization of the results. An empirical example of a gravity model analysis of trade patterns within Europe is used to illustrate the utility of the proposed method.  相似文献   

19.
遥感技术具备实时快速、时空连续、广覆盖尺度等独特优势,在全球气候恶化大背景下,利用遥感干旱监测方法相比于传统地面监测手段,能够提供实时、准确、稳定的旱情信息,辅助科学决策。目前常用遥感旱情监测方法大多依赖全域性数学模型建模,假定了旱情模式的空间平稳特性,因而难以准确反映旱情模式的局部差异特征。本文提出利用地理加权回归模型GWR (Geographically Weighted Regression),考虑旱情模式的空间非平稳特性,综合多种遥感地面旱情监测指数,以实现传统全域旱情监测模型的局部优化。以美国大陆为研究区,监测2002年—2011年共10年的旱情状态。研究表明,GWR模型能够提供空间变化的局部最佳估计模型参数,监测结果更加吻合标准美国旱情监测USDM (U.S Drought Monitor)验证数据,且与地面实测值的最高相关系数R达到0.8552,均方根误差RMSE达到0.972,显著优于其他遥感旱情监测模型。GWR模型具备空间非平稳探测优势,实现了旱情模式的局部精细探测,能够显著提升遥感旱情监测精度,具备较好的应用前景。  相似文献   

20.
针对采用地理加权回归模型(GWR)进行预测时输入变量较多导致计算复杂度高,而输入变量较少引起预测精度降低这一问题,提出了一种基于主成分分析的地理加权回归方法(PCA-GWR)。首先,该方法检验了气溶胶光学厚度(AOD)影响因素之间的共线性;然后,通过非线性主成分分析法(NLPCA)对影响AOD值的若干相关变量进行处理,既消除了相关变量彼此之间的多重共线性,又可以起到降维的作用;最后,利用非线性主成分分析得到较少的几个综合指标,通过地理加权回归模型对AOD值进行分析预测。为验证该方法的有效性,采用京津冀地区的AOD、高程、风速、气温、湿度、气压、坡度、坡向数据,利用Pearson相关系数法选取与AOD浓度具有较高相关性的影响因素作为常规的GWR模型的输入变量,在变量个数相同的前提下,与本文方法进行对比。研究结果表明:应用非线性主成分分析法对相关变量进行预处理后,有效地解决了变量之间的共线性,保留了原始影响因素主要信息,提高了运算效率,且该方法所得的MAE、RMSE、AIC及其拟合优度R2均优于常规的GWR模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号