首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following a recent report that AO Psc has broad iron Kα emission lines we have looked at the ASCA spectra of 15 magnetic cataclysmic variables. We find that half of the systems have Kα lines broadened by ∼ 200 eV, while the remainder have narrow lines. We argue that the Doppler effect is insufficient to explain the finding and propose that the lines originate in accretion columns on the verge of optical thickness, where Compton scattering of resonantly trapped line photons broadens the profile. We suggest that the broadening is a valuable diagnostic of conditions in the accretion column.  相似文献   

2.
We present the results of both analytical and numerical calculations of the amplitude of the reflection component in X-ray spectra of galactic black hole systems. We take into account the anisotropy of Compton scattering and the systematic relativistic bulk motion of the hot plasma. In the case of the single scattering approximation, the reflection from the disc surface is significantly enhanced owing to the anisotropy of Compton scattering. On the other hand, the calculations of multiple scattering obtained using the Monte Carlo method show that the anisotropy effect is much weaker in that case. Therefore, the enhanced back-scattered flux may affect the observed spectra only if the disc surface is highly ionized, which reduces the absorption in the energy band corresponding to the first Compton scattering.  相似文献   

3.
The X-ray spectra of accreting stellar-mass black hole systems exhibit spectral features due to reflection, especially broad iron Kα emission lines. We investigate the reflection by the accretion disc that can be expected in the high/soft state of such a system. First, we perform a self-consistent calculation of the reflection that results from illumination of a hot, inner portion of the disc with its atmosphere in hydrostatic equilibrium. Then, we present reflection spectra for a range of illumination strengths and disc temperatures under the assumption of a constant-density atmosphere. Reflection by a hot accretion disc differs in important ways from that of a much cooler disc, such as that expected in an active galactic nucleus.  相似文献   

4.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

5.
We present a systematic study of GX 339−4 in both its very high and low hard states from simultaneous observations made with XMM–Newton and RXTE in 2002 and 2004. The X-ray spectra of both these extreme states exhibit strong reflection signatures, with a broad, skewed Fe Kα line clearly visible above the continuum. Using a newly developed, self-consistent reflection model which implicitly includes the blackbody radiation of the disc as well as the effect of Comptonization, blurred with a relativistic line function, we were able to infer the spin parameter of GX 339−4 to be  0.935 ± 0.01  (statistical) ±0.01 (systematic) at 90 per cent confidence. We find that both states are consistent with an ionized thin accretion disc extending to the innermost stable circular orbit around the rapidly spinning black hole.  相似文献   

6.
Recent X-ray observations have shown evidence for exceptionally broad and skewed iron Kα emission lines from several accreting black hole systems. The lines are assumed to be due to fluorescence of the accretion disc illuminated by a surrounding corona and require a steep emissivity profile increasing into the innermost radius. This appears to question both standard accretion disc theory and the zero-torque assumption for the inner boundary condition, both of which predict a much less extreme profile. Instead it argues that a torque may be present due to magnetic coupling with matter in the plunging region or even to the spinning black hole itself. Discussion so far has centred on the torque acting on the disc. However, the crucial determinant of the iron line profile is the radial variation of the power radiated in the corona. Here we study the effects of different inner boundary conditions on the coronal emissivity and on the profiles of the observable Fe Kα lines. We argue that in the extreme case where a prominent highly redshifted component of the iron line is detected, requiring a steep emissivity profile in the innermost part and a flatter one outside, energy from the gas plunging into the black hole is being fed directly to the corona.  相似文献   

7.
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process.  相似文献   

8.
We present an ASCA observation of the broad-line radio galaxy 3C 111. The X-ray spectrum is well described by a model consisting of a photoelectrically absorbed power-law form. The inferred absorbing column density is significantly greater than expected on the basis of 21-cm measurements of Galactic H  I . Whilst this may be the result of intrinsic absorption from a circumnuclear torus or highly warped accretion disc, inhomogeneities and molecular gas within the foreground giant molecular cloud may also be responsible for some of this excess absorption. We also claim a marginal detection of a broad iron Kα line which is well explained as being a fluorescent line originating from the central regions of a radiatively efficient accretion disc. This line appears weak in comparison to those found in (radio-quiet) Seyfert nuclei. We briefly discuss the implications of this fact.  相似文献   

9.
We study X-ray spectra of Cyg X-3 from BeppoSAX , taking into account absorption and emission in the strong stellar wind of its companion. We find the intrinsic X-ray spectra are well modelled by disc blackbody emission, its upscattering by hot electrons with a hybrid distribution, and by Compton reflection. These spectra are strongly modified by absorption and reprocessing in the stellar wind, which we model using the photoionization code cloudy . The form of the observed spectra implies the wind is composed of two phases. A hot tenuous plasma containing most of the wind mass is required to account for the observed features of very strongly ionized Fe. Small dense cool clumps filling ≲0.01 of the volume are required to absorb the soft X-ray excess, which is emitted by the hot phase but not present in the data. The total mass-loss rate is found to be  (0.6–1.6) × 10−5 M yr−1  . We also discuss the feasibility of the continuum model dominated by Compton reflection, which we find to best describe our data. The intrinsic luminosities of our models suggest that the compact object is a black hole.  相似文献   

10.
The simultaneous presence of a strong quasi-periodic oscillation, of period ∼10 s, in the optical and X-ray light curves of the X-ray transient XTE J1118+480 suggests that a significant fraction of the optical flux originates from the inner part of the accretion flow, where most of the X-rays are produced. We present a model of magnetic flares in an accretion disc corona where thermal cyclo-synchrotron emission contributes significantly to the optical emission, while the X-rays are produced by inverse Compton scattering of the soft photons produced by dissipation in the underlying disc and by the synchrotron process itself. Given the observational constraints, we estimate the values for the coronal temperature, optical depth and magnetic field intensity, as well as the accretion rate for the source. Within our model we predict a correlation between optical and hard X-ray variability and an anticorrelation between optical and soft X-rays. We also expect optical variability on flaring time-scales (∼tens of ms), with a power-density spectrum similar to that observed in the X-ray band. Finally, we use both the available optical/extreme-ultraviolet/X-ray spectral energy distribution and the low-frequency time variability to discuss limits on the inner radius of the optically thick disc.  相似文献   

11.
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius.
We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68 a 0.88 . Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.  相似文献   

12.
We present the first of two papers describing an in-depth study of multiwaveband phase-resolved spectroscopy of the unusual dwarf nova WZ Sge. In this paper we present an extensive set of Doppler maps of WZ Sge covering optical and infrared emission lines, and describe a new technique for studying the accretion discs of cataclysmic variables using ratioed Doppler maps. Applying the ratioed Doppler map technique to our WZ Sge data shows that the radial temperature profile of the disc is unlike that predicted for a steady state α disc. Time-averaged spectra of the accretion disc line flux (with the bright spot contribution removed) show evidence in the shapes of the line profiles for the presence of shear broadening in a quiescent non-turbulent accretion disc. From the positions of the bright spots in the Doppler maps of different lines, we conclude that the bright spot region is elongated along the ballistic stream, and that the density of the outer disc is low. The velocity of the outer edge of the accretion disc measured from the H α line is found to be 723±23 km s−1. Assuming that the accretion disc reaches to the 3:1 tidal resonance radius, we derive a value for the primary star mass of 0.82 M. We discuss the implications of our results on the present theories of WZ Sge type dwarf nova outbursts.  相似文献   

13.
We present an exhaustive analysis of five broad-band observations of GRS 1915+105 in two variability states, χ and ω, observed simultaneously by the Proportional Counter Array (PCA) and High-Energy X-ray Timing Experiment (HEXTE) detectors aboard the Rossi X-ray Timing Explorer , and the Oriented Scintillation Spectrometer Experiment (OSSE) detector aboard the Compton Gamma-ray Observatory . We find all the spectra well fitted by Comptonization of disc blackbody photons, with very strong evidence for the presence of a non-thermal electron component in the Comptonizing plasma. Both the energy and the power spectra in the χ state are typical of the very high/intermediate state of black hole binaries. The spectrum of the ω state is characterized by a strong blackbody component Comptonized by thermal electrons and a weak non-thermal tail. We then calculate rms spectra (fractional variability as functions of energy) for the PCA data. We accurately model the rms spectra by coherent superposition of variability in the components implied by the spectral fits, namely a less variable blackbody and more variable Comptonization. The latter dominates at high energies, resulting in a flattening of the rms at high energies in most of the data. This is also the case for the spectra of the quasi-periodic oscillations present in the χ state. Then, some of our data require a radial dependence of the rms of the disc blackbody. We also study the distance to the source, and find   d ≃ 11 kpc  as the most likely value, contrary to a recent claim of a much lower value.  相似文献   

14.
15.
We calculate the equivalent width of the core, and the centroid energy and relative flux of the first-order Compton shoulder of the iron Kα emission line from neutral matter. The calculations are performed with Monte Carlo simulations. We explore a large range of column densities for both transmitted and reflected spectra, and study the dependence on the iron abundance. The Compton shoulder is now becoming observable in many objects thanks to the improved sensitivity and/or energy resolution of the XMM – Newton and Chandra satellites, and the present work aims to provide a tool to derive information on the geometry and element abundances of the line-emitting matter from Compton shoulder measurements.  相似文献   

16.
We report the discovery of emission features in the X-ray spectrum of GRO J1655–40 obtained with RXTE during the observation of 1997 February 26. We have fitted the features first by two Gaussian lines which in four spectra analysed have average energies of 5.85±0.08 and 7.32±0.13 keV, strongly suggestive that these are the red- and blueshifted wings of an iron disc line. These energies imply a velocity of ∼0.33 c . The blue wing is less bright than in the calculated profiles of disc lines near a black hole subject to Doppler boosting; however, known Fe absorption lines in GRO J1655–40 at energies between ∼7 and 8 keV can reduce the apparent brightness of the blue wing. Secondly, we have fitted the spectra using the disc line model of Laor based on a full relativistic treatment plus an absorption line, and show that good fits are obtained. This gives a rest-frame energy of the disc line between 6.4 and 6.8 keV, indicating that the line is iron K α emission probably of significantly ionized material. The Laor model shows that the line originates in a region of the accretion disc extending from ∼10 Schwarzschild radii from the black hole outwards. The line is direct evidence for the black hole nature of the compact object, and is the first discovery of a highly red- and blueshifted iron disc line in a Galactic source.  相似文献   

17.
We present Doppler and modulation tomography of the X-ray nova XTE J1118+480 with data obtained during quiescence using the 10-m Keck II telescope. The hotspot where the gas stream hits the accretion disc is seen in Hα, Hβ, He  i λ5876 and Ca  ii λ8662, thus verifying the presence of continued mass transfer within the system. The disc is clearly seen in Hα and Ca  ii λ8662. We image the mass-donor star in narrow absorption lines of Na  i  λλ5890, 5896, 8183, 8195  and Ca  ii λ8662, implying an origin from the secondary itself rather than the interstellar medium. We also detect deviations in the centroid of the double peak of Hα akin to those found by Zurita et al. suggesting disc eccentricity.  相似文献   

18.
Optical/near-infrared (optical/NIR, OIR) light from low-mass neutron star X-ray binaries (NSXBs) in outburst is traditionally thought to be thermal emission from the accretion disc. Here we present a comprehensive collection of quasi-simultaneous OIR and X-ray data from 19 low magnetic field NSXBs, including new observations of three sources: 4U 0614+09, LMC X−2 and GX 349+2. The average radio–OIR spectrum for NSXBs is  α≈+ 0.2  (where   L ν∝να  ) at least at high luminosities when the radio jet is detected. This is comparable to, but slightly more inverted than the  α≈ 0.0  found for black hole X-ray binaries. The OIR spectra and relations between OIR and X-ray fluxes are compared to those expected if the OIR emission is dominated by thermal emission from an X-ray or viscously heated disc, or synchrotron emission from the inner regions of the jets. We find that thermal emission due to X-ray reprocessing can explain all the data except at high luminosities for some NSXBs, namely, the atolls and millisecond X-ray pulsars. Optically thin synchrotron emission from the jets (with an observed OIR spectral index of  αthin < 0  ) dominate the NIR light above     and the optical above     in these systems. For NSXB Z-sources, the OIR observations can be explained by X-ray reprocessing alone, although synchrotron emission may make a low-level contribution to the NIR, and could dominate the OIR in one or two cases.  相似文献   

19.
We study properties of Fe K lines of a large sample of Seyfert 1s observed by ASCA . Fits with power laws and Gaussian lines yield the average linewidth and equivalent width of 0.22±0.03 keV and 0.13±0.01 keV, respectively. Thus, the typical lines are weak and narrow. We then obtain the average line profile of all our spectra, and find it to consist of a narrow core and blue and red wings, with the red wing being much weaker than that of e.g. MCG −6-30-15. We obtain three average spectra of Seyferts grouped according to the hardness, and find the equivalent width of the core (originating in a remote medium) to be ≃50 eV in all three cases. The wings are well fitted by a broad line from a disc with strong relativistic effects. Its equivalent width correlates with the slope, increasing from ∼70 eV for the hardest spectrum to ∼120 eV for the softest one. The inner disc radius decreases correspondingly from ∼40 to ∼10 gravitational radii, and the fitted disc inclination is ∼45°. The obtained correlation between the slope and the strength of the broad Fe K line is found to be consistent with the previously found correlation of the slope and Compton reflection.  相似文献   

20.
Observations suggest that accretion discs in many X-ray binaries are likely flared. An outer edge of the disc intercepts radiation from the central X-ray source. Part of that radiation is absorbed and re-emitted in the optical/UV spectral ranges. However, a large fraction of that radiation is reflected and appears in the broad-band X-ray spectrum as a Compton reflection bump. This radiation is delayed and variability is somewhat smeared compared with the intrinsic X-ray radiation. We compute response functions for flat and flared accretion discs and for isotropic and anisotropic X-ray sources. A simple approximation for the response function which is valid in the broad range of the disc shapes and inclinations, inner and outer radii, and the plasma bulk velocity is proposed. We also study the impact of the X-ray reprocessing on temporal characteristics of X-ray binaries such as the power spectral density, auto- and cross-correlation functions, and time/phase lags. We propose a reprocessing model which explains the secondary peaks in the phase lag Fourier spectra observed in Cyg X-1 and other Galactic black hole sources. The position of the peaks could be used to determine the size of the accretion disc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号