首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cosmic dust grains play an important role for the thermal, dynamical, and chemical structure of the interstellar medium. This is especially true for the star formation process and the late stages of stellar evolution. Dust grains determine the spectral appearance of protostars, very young stellar objects with disk-like structures as well as of evolved stars with circumstellar envelopes.In this review, we will demonstrate that solid particles in interstellar space are both agent and subject of galactic evolution. We will especially discuss the different dust populations in circumstellar envelopes, the diffuse interstellar medium, and the molecular clouds with strong emphasis on the evolutionary aspects and the metamorphosis of these populations.  相似文献   

2.
The two oldest known open clusters, NGC 188 and M67, are observed to have a higher heavy-element abundance than the sun and the stars in the Hyades. This observation might be explained by assuming that these clusters were formed from unusually dusty and hence metal-rich interstellar clouds. Alternatively it may be supposed that the radiation pressure produced by stars in the spiral arms of the Galaxy ejected dust from high-latitude clouds. The calculations presented in this paper show that the loss of dust from such clouds might just be sufficient to produce a significant decrease in the mean heavy-element abundance of the interstellar gas. According to this picture, the first burst of star formation in the Galaxy led to a rapid increase in the interstellar heavy-element abundance. Subsequently, the metal abundance of the interstellar gas decreased due to the radiation pressure by young stars. The present rate of change of the heavy-element abundance in the Galaxy depends on the ratio of heavy-element production by stars to ejection of these elements by radiation pressure on dust grains. Since noble gases do not condense on grains, the neon abundance in the interstellar gas should be a monotonously increasing function of time. The observation that the neon abundance in the sun is much lower than that in young stars and nebulae lends some support to the suggestion that ejection of grains from the Galaxy effects the heavy-element abundance in the interstellar gas.  相似文献   

3.
We discuss the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence.Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. We develop the old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds.It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations we find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits.  相似文献   

4.
An attempt is made to estimate the rate of accretion of interstellar grains by red giants. It seems possible for a red giant traversing dust clouds to acquire, under realistic conditions, an amount of carbon sufficient to turn its spectrum into that of a carbon star. Coarse grains exceeding 10–3 cm in diameter are most effective in this process.  相似文献   

5.
The radiation fluxes inside molecular clouds owing to a neighboring class A star or to isotropic interstellar irradiation are calculated. Radiation within the interval 912 ? < λ < 2067 ? is found to penetrate deeply enough to ensure a radiation dose for water ice on the order of 100 eV/amu or more over the lifetime of the clouds, whether a star formation region is present or not. The possibility is discussed of using these results for an astrophysical interpretation of published data from laboratory experiments on irradiation of ices of the type H2O:CH3OH:NH3:CO. The resulting radiation-chemical transformation of complex organic materials may play an important role in the prebiological evolution of the dust component of molecular clouds. Translated from Astrofizika, Vol. 52, No. 2, pp. 311–324 (May 2009).  相似文献   

6.
The observed relation between the interstellar linear polarization curve parameters K and λ max characterizing the width and the wavelength of the polarization maximum, respectively, is interpreted quantitatively. We have considered 57 stars located in four dark clouds with evidence of star formation: in Taurus, Chamaeleon, around the stars ρ Oph and R CrA. In our modeling we have used the spheroidal dust grain model applied previously to simultaneously interpret the interstellar extinction and polarization curves in a wide wavelength range. The observed trend K ≈ 1.7λ max is shown to be most likely related to the growth of dust grains due to coagulation rather than accretion. The relationship of the interstellar polarization curve parameters K and λ max to the mean dust grain size is discussed.  相似文献   

7.
The very young star cluster IC 5146 is studied using star counts, with a view to determining the distribution of interstellar matter in a region where star formation recently occurred. IC 5146 is embedded in a dark nebula which is very dense near its centre. The total mass of interstellar dust in the nebula is found to be about 4.5M . Comparison of radio and optical observations of the region indicates that gas and dust are not separated to any great degree by radiation from the embedded stars. A gas/dust ratio of about 150/1 by mass is found. This ratio varies with the dust grain model used.  相似文献   

8.
The 2200 Å bump is a major figure of interstellar extinction. However, extinction curves with no bump exist and are, with no exception, linear from the near‐infrared down to 2500 Å at least, often over all the visible‐UV spectrum. The duality linear versus bump‐like extinction curves can be used to re‐investigate the relationship between the bump and the continuum of interstellar extinction, and answer questions as why do we observe two different kinds of extinction (linear or with a bump) in interstellar clouds? How are they related? How does the existence of two different extinction laws fits with the requirement that extinction curves depend exclusively on the reddening E (BV) and on a single additional parameter? What is this free parameter? It will be found that (1) interstellar dust models, which suppose the existence of three different types of particles, each contributing to the extinction in a specific wavelength range, fail to account for the observations; (2) the 2200 Å bump is very unlikely to be absorption by some yet unidentified molecule; (3) the true law of interstellar extinction must be linear from the visible to the far‐UV, and is the same for all directions including other galaxies (as the Magellanic Clouds). In extinction curves with a bump the excess of starlight (or the lack of extinction) observed at wavelengths less than λ = 4000 Å arises from a large contribution of light scattered by hydrogen on the line of sight. Although counter‐intuitive this contribution is predicted by theory. The free parameter of interstellar extinction is related to distances between the observer, the cloud on the line of sight, and the star behind it (the parameter is likely to be the ratio of the distances from the cloud to the star and to the observer). The continuum of the extinction curve and the bump contain no information on the chemical composition of interstellar clouds. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We perform numerical simulations of the molecular hydrogen production on the surface of interstellar dust grains and its dissociation by the ultraviolet background in conditions typical for the interstellar medium. The kinetic version of the Monte Carlo method is used for the modeling of the catalytic chemical reactions on the surface of the dust fraction and in the surrounding medium. Our simulations show the importance of the interstellar dust particles for hydrogen chemistry in diffuse molecular clouds.  相似文献   

10.
We develop a three-dimensional numerical model for an ensemble of molecular clouds moving in the fixed gravitational potential of a galaxy. This scheme is a modification of the widely known model of Oort and includes different processes of coagulation and fragmentation of clouds under pairwise collisions, interaction of clouds with the diffuse interstellar medium, and also feedback: the breaking up of clouds into small fragments under the action of stars arising in them. This model makes it possible to study the influence of various parameters of both the galaxy itself and the ensemble of molecular clouds on the process of large-scale star formation connected with giant molecular clouds and on the temporal changes of the global structure of the interstellar medium. We give as an example a computation of the evolution of the energy characteristics of an ensemble of molecular clouds in a spiral galaxy.Translated fromAstrofizika, Vol. 37, No. 4, 1994.  相似文献   

11.
Mid-and far-infrared maps of many Galactic star forming regions show multiple peaks in close proximity, implying more than one embedded energy source. With the aim of understanding such interstellar clouds better, the present study models the case of two embedded sources. A radiative transfer scheme has been developed to deal with a uniform density dust cloud in a cylindrical geometry, which includes isotropic scattering in addition to the emission and absorption processes. This scheme has been applied to the Galactic star forming region associated with IRAS 19181 + 1349, which shows observational evidence for two embedded energy sources. Two independent modelling approaches have been adopted, viz., to fit the observed spectral energy distribution (SED) best; or to fit the various radial profiles best, as a function of wavelength. Both the models imply remarkably similar physical parameters.  相似文献   

12.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

13.
The mass loss of T Tauri stars leads to the production of dust in circumstellar space. The total amount of lost mass (and therefore of produced dust) is observed to be positiv correlated with the intensity of the H and Call emission lines of the objects. This fact is used in the present paper to explain quantitatively another correlation, namely the observation, that the interstellar extinction which is found by star counts in the wider surroundings of a T Tauri star is roughly proportional to the intensity of its Hα emission. By this, the outflow of circumstellar matter into the interstellar space seems to be observable directly.  相似文献   

14.
Gas to Dust Ratio (GDR) indicates the mass ratio of interstellar gas to dust. It is widely adopted that the GDR in our Galaxy is 100~150. We choose three typical star forming regions to study the GDR: the Orion molecular cloud — a massive star forming region, the Taurus molecular cloud — a low-mass star forming region, and the Polaris molecular cloud — a region with no or very few star formation activities. The mass of gas only takes account of the neutral gas, i.e. only the atomic and molecular hydrogen, because the amount of ionized gas is very small in a molecular cloud. The column density of atomic hydrogen is taken from the high-resolution and high-sensitivity all-sky survey EBHIS (Effelsberg-Bonn HI Survey). The CO J = 1 →0 line is used to trace the molecular hydrogen, since the spectral lines of molecular hydrogen which can be detected are rare. The intensity of CO J = 1 →0 line is taken from the Planck all-sky survey. The mass of dust is traced by the interstellar extinction based on the 2MASS (Two Micron All Sky Survey) photometric database in the direction of anti-Galactic center. Adopting a constant conversion coefficient from the integrated intensity of the CO line to the column density of molecular hydrogen, XCO = 2.0 × 1020 cm?2 · (K · km/s)?1, the gas to dust ratio N(H)/AV is calculated, which is 25, 38, and 55 (in units of 1020 cm?2 · mag?1) for the Orion, Taurus, and Polaris molecular clouds, respectively. These values are significantly higher than the previously obtained average value of the Galaxy. Adopting the WD01 interstellar dust model (when the V-band selective extinction ratio is RV = 3.1), the derived GDRs are 160, 243, and 354 for the Orion, Taurus, and Polaris molecular clouds, respectively, which are apparently higher than 100~150, the commonly accepted GDR of the diffuse interstellar medium. The high N(H)/AV values in the star forming regions may be explained by the growth of dust in the molecular clouds because of either the particle collision or accretion, which can lead to the reduction of extinction efficiency per unit mass in the V band, rather than the increase of the GDR itself.  相似文献   

15.
The dependence of interstellar extinction on distance in the direction of a dark cloud around the reflection nebula NGC 1333 is determined on the basis of photoelectric Vilnius photometry and photometric classification of 78 stars. Two dust clouds are noted at distances 160 and 220 pc. The first one with mean extinction of 0.4 mag is concluded to belong to the Taurus cloud complex and the second cloud with mean extinction of 1.8 mag belongs to the chain of dark clouds and other young objects which is almost perpendicular to the spiral arm but lies 80 pc below the galactic plane. The star BD +30°549 which illuminates the NGC 1333 nebula is at distance 212 pc from the Sun. No extinction increase behind the Perseus cloud is detected.  相似文献   

16.
Embedded Young Stellar Objects (YSO) in dense interstellar clouds are treated self-consistently to understand their spectral energy distributions (SED). Radiative transfer calculations in spherical geometry involving the dust as well as the gas component, have been carried out to explain observations covering a wide spectral range encompassing near-infrared to radio continuum wavelengths. Various geometric and physical details of the YSOs are determined from this modelling scheme. In order to assess the effectiveness of this self-consistent scheme, three young Galactic star forming regions associated with IRAS 18314-0720, 18355-0532 and 18316-0602 have been modelled as test cases. They cover a large range of luminosity (≈ 40). The modelling of their SEDs has led to information about various details of these sources, e.g. embedded energy source, cloud structure and size, density distribution, composition and abundance of dust grains etc. In all three cases, the best fit model corresponds to the uniform density distribution. Two types of dust have been considered, viz., Draine & Lee (DL) and the Mezger, Mathis & Panagia (MMP). Models with MMP type dust explain the dust continuum and radio continuum emission from IRAS 18314-0720 and 18355-0532 self-consistently. These models predict much lower intensities for the fine structure lines of ionized heavy elements, than those observed for IRAS 18314-0720 and 18355-0532. This discrepancy has been resolved by invoking clumpiness in the interstellar medium. For IRAS 18316-0602, the model with DL type dust grains is preferred.  相似文献   

17.
The existence of partially ionized, diffuse gas and dust clouds at kiloparsec scale distances above the central planes of edge-on, galaxy discs was an unexpected discovery about 20 years ago. Subsequent observations showed that this extended or extraplanar diffuse interstellar gas (EDIG) has rotation velocities approximately 10–20 per cent lower than those in the central plane, and has been hard to account for. Here, we present results of hydrodynamic models, with radiative cooling and heating from star formation. We find that in models with star formation generated stochastically across the disc, an extraplanar gas layer is generated as long as the star formation is sufficiently strong. However, this gas rotates at nearly the same speed as the midplane gas. We then studied a range of models with imposed spiral or bar waves in the disc. EDIG layers were also generated in these models, but primarily over the wave regions, not over the entire disc. Because of this partial coverage, the EDIG clouds move radially, as well as vertically, with the result that observed kinematic anomalies are reproduced. The implication is that the kinematic anomalies are the result of three-dimensional motions when the cylindrical symmetry of the disc is broken. Thus, the kinematic anomalies are the result of bars or strong waves, and more face-on galaxies with such waves should have an asymmetric EDIG component. The models also indicate that the EDIG can contain a significant fraction of cool gas, and that some star formation can be triggered at considerable heights above the disc mid-plane. We expect all of these effects to be more prominent in young, forming discs, to play a role in rapidly smoothing disc asymmetries and in working to self-regulate disc structure.  相似文献   

18.
The production of CH+ in dense interstellar clouds under intense UV irradiation is discussed. A model applicable to the cloud towards the star 20 Tau is described.  相似文献   

19.
Following its 2002 February eruption, V838 Mon developed a light echo that continues to expand and evolve as light from the outburst scatters off progressively more distant circumstellar and/or interstellar material. Multifilter images of the light echo, obtained with the South African Astronomical Observatory (SAAO) 1.0-m telescope between 2002 May and 2004 December, are analysed and made available electronically. The expansion of the light echo is measured from the images and the data compared with models for scattering by a thin sheet and a thin shell of dust. From these model results we infer that the dust is probably in the form of a thin sheet distant from the star, suggesting that the material is of interstellar origin, rather than being from earlier stages in the evolution of the star. Although the fit is uncertain, we derive a stellar distance of ∼9 kpc and a star–dust distance of ∼5 pc, in good agreement with recent results reported from other methods. We also present JHKL  and Cousins UBVRI  photometry obtained at the SAAO during the post-outburst second, third and fourth observing seasons of the star. These data show complex infrared colour behaviour while V838 Mon is slowly brightening in the optical.  相似文献   

20.
Tremendous progress has been made in the field of interstellar dust in recent years through the use of telescopic observations, theoretical studies, laboratory studies of analogs, and the study of actual interstellar samples found in meteorites. It is increasingly clear that the interstellar medium (ISM) contains an enormous diversity of materials created by a wide range of chemical and physical processes. This understanding is a far cry from the picture of interstellar materials held as recently as two decades ago, a picture which incorporated only a few generic types of grains and few molecules. In this paper, I attempt to review some of our current knowledge of the more abundant materials thought to exist in the ISM. The review concentrates on matter in interstellar dense molecular clouds since it is the materials in these environments from which new stars and planetary systems are formed. However, some discussion is reserved for materials in circumstellar environments and in the diffuse ISM. The paper also focuses largely on solid materials as opposed to gases since solids contain a major fraction of the heavier elements in clouds and because solids are most likely to survive incorporation into new planetary systems in identifiable form. The paper concludes with a discussion of some of the implications resulting from the recent growth of our knowledge about interstellar materials and also considers a number of areas in which future work might be expected to yield important results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号