共查询到20条相似文献,搜索用时 12 毫秒
1.
Broad‐Scale Evidence That pH Influences the Balance Between Microbial Iron and Sulfate Reduction 下载免费PDF全文
Understanding basic controls on aquifer microbiology is essential to managing water resources and predicting impacts of future environmental change. Previous theoretical and laboratory studies indicate that pH can influence interactions between microorganisms that reduce ferric iron and sulfate. In this study, we test the environmental relevance of this relationship by examining broad‐scale geochemical data from anoxic zones of aquifers. We isolated data from the U.S. Geological Survey National Water Information System for 19 principal aquifer systems. We then removed samples with chemical compositions inconsistent with iron‐ and sulfate‐reducing environments and evaluated the relationships between pH and other geochemical parameters using Spearman's rho rank correlation tests. Overall, iron concentration and the iron‐sulfide concentration ratio of groundwater share a statistically significant negative correlation with pH (P < 0.0001). These relationships indicate that the significance of iron reduction relative to sulfate reduction tends to increase with decreasing pH. Moreover, thermodynamic calculations show that, as the pH of groundwater decreases, iron reduction becomes increasingly favorable relative to sulfate reduction. Hence, the relative significance of each microbial reaction may vary in response to thermodynamic controls on microbial activity. Our findings demonstrate that trends in groundwater geochemistry across different regional aquifer systems are consistent with pH as a control on interactions between microbial iron and sulfate reduction. Environmental changes that perturb groundwater pH can affect water quality by altering the balance between these microbial reactions. 相似文献
2.
Toxic and carcinogenic effects of arsenic in drinking water continue to impact people throughout the world and arsenic remains common in groundwater at cleanup sites and in areas with natural sources. Advances in groundwater remediation are needed to attain the low concentrations that are protective of human health and the environment. In this article, we present the successful use of a permeable reactive barrier (PRB) utilizing sulfate reduction coupled with zero‐valent iron (ZVI) to remediate the leading edge of a dissolved arsenic plume in a wetland area near Tacoma, Washington. A commercially available product (EHC‐M®, Adventus Americas Inc., Freeport, Illinois) that contains ZVI, organic carbon substrate, and sulfate was injected into a reducing, low‐seepage‐velocity aquifer elevated in dissolved arsenic and iron from a nearby, slag‐containing landfill. Removal effectiveness was strongly correlated with sulfate concentration, and was coincident with temporary redox potential (Eh) reductions, consistent with arsenic removal by iron sulfide precipitation. The PRB demonstrates that induced sulfate reduction and ZVI are capable of attaining a regulatory limit of 5 µg/L total arsenic, capturing of 97% of the arsenic entering the PRB, and sustaining decreased arsenic concentrations for approximately 2 years, suggesting that the technology is appropriate for consideration at other sites with similar hydrogeochemical conditions. The results indicate the importance of delivery and longevity of minimum sulfate concentrations and of maintaining sufficient dissolved organic carbon and/or microscale ZVI to precipitate FeS, a precursor phase to arsenic‐bearing pyrite that may provide a stable, long‐term sink for arsenic. 相似文献
3.
4.
Permeable Asphalt: A New Tool to Reduce Road Salt Contamination of Groundwater in Urban Areas 下载免费PDF全文
Chloride contamination of groundwater in urban areas due to deicing is a well‐documented phenomenon in northern climates. The objective of this study was to evaluate the effects of permeable pavement on degraded urban groundwater. Although low impact development practices have been shown to improve stormwater quality, no infiltration practice has been found to prevent road salt chlorides from entering groundwater. The few studies that have investigated chlorides in permeable asphalt have involved sampling directly beneath the asphalt; no research has looked more broadly at surrounding groundwater conditions. Monitoring wells were installed upgradient and downgradient of an 860 m2 permeable asphalt parking lot at the University of Connecticut (Storrs, Connecticut). Water level and specific conductance were measured continuously, and biweekly samples were analyzed for chloride. Samples were also analyzed for sodium (Na), calcium (Ca), and magnesium (Mg). Analysis of variance analysis indicated a significantly (p < 0.001) lower geometric mean Cl concentration downgradient (303.7 mg/L) as compared to upgradient (1280 mg/L). Concentrations of all alkali metals increased upgradient and downgradient during the winter months as compared to nonwinter months, indicating that cation exchange likely occurred. Despite the frequent high peaks of chloride in the winter months as well as the increases in alkali metals observed, monitoring revealed lower Cl concentrations downgradient than upgradient for the majority of the year. These results suggest that the use of permeable asphalt in impacted urban environments with high ambient chloride concentrations can be beneficial to shallow groundwater quality, although these results may not be generalizable to areas with low ambient chloride concentrations. 相似文献
5.
An important operation parameter in the design of a pulsed air sparging (PAS) system is the pulse duration (PD). To study the effect of the PD on the remediation process, a series of laboratory experiments and numerical simulations were performed. The experimental apparatus was a cylindrical tank, packed with fine sand and partially filled by water contaminated with toluene. Toluene concentrations in water and in effluent air were measured over time during the application of PAS, which was applied with three different PD. Next, the T2VOC model, an extension of the TOUGH2 simulation program, was used to simulate the two-phase flow and transport processes for these cases. The simulation model was calibrated to the experimental results, and then run with a range of PD values. Results showed that there exists an optimal PD which yields the highest remediation efficiency. Next, it was shown that this PD may be obtained by performing a PAS pilot test and measuring the groundwater pressure response in a monitoring well. The characteristic time which describes the exponential decay of the pressure response was shown to provide an adequate estimate for the optimal PD. The estimation improved by taking a number of injection cycles. 相似文献
6.
Robert C. Borden Russell Todd Goin Chih-Ming Kao 《Ground Water Monitoring & Remediation》1997,17(1):70-80
A permeable barrier system. consisting of a line of closely spaced wclls. was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarhon plume. The wells were charged wiih concrete briquets that release oxygen and nitrate at a controlled rate. enhancing aerobic bio-degradation in the downgradient aquifer.
Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygcn over an extended time period. Concretes prepared with urea hydrogen peroxide were unsatisfactory, while concretes prepared with calcium peroxide and a proprietary formalation of magnesium peroxide (ORC®) gradually released oxygen at a steadily declining rate. The 21 percent MgO2 conerete cylinders and briquets released oxygen at measurable rates for up to 300 days, while the 14 percent CaO2 briquets were exhausted by 100 days.
A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation. total BTFX decreased from 17 to 3.4 mg/L. and dissolved oxygen increased from 0.4 to 1.8 mg/L. during transport through the barrier. Over time, BTEX treatment efficiencies declined. indicating the barrier system had becomc less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that ihc aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals. This clogging is believed to result from high pH from the concrete and oxygen released by ihc ORC. Oxygen-releasing permeable barriers and other aerobic bioremediation processes should be used with caution in aquifers with high levels of dissolved iron. 相似文献
Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygcn over an extended time period. Concretes prepared with urea hydrogen peroxide were unsatisfactory, while concretes prepared with calcium peroxide and a proprietary formalation of magnesium peroxide (ORC®) gradually released oxygen at a steadily declining rate. The 21 percent MgO
A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation. total BTFX decreased from 17 to 3.4 mg/L. and dissolved oxygen increased from 0.4 to 1.8 mg/L. during transport through the barrier. Over time, BTEX treatment efficiencies declined. indicating the barrier system had becomc less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that ihc aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals. This clogging is believed to result from high pH from the concrete and oxygen released by ihc ORC. Oxygen-releasing permeable barriers and other aerobic bioremediation processes should be used with caution in aquifers with high levels of dissolved iron. 相似文献
7.
Peter S.K. Knappett Alice Layton Larry D. McKay Daniel Williams Brian J. Mailloux M.R. Huq M.J. Alam Kazi Matin Ahmed Yasuyuki Akita Marc L. Serre Gary S. Sayler Alexander van Geen 《Ground water》2011,49(1):53-65
The goal of this study was to test hollow‐fiber ultrafiltration as a method for concentrating in situ bacteria and viruses in groundwater samples. Water samples from nine wells tapping a shallow sandy aquifer in a densely populated village in Bangladesh were reduced in volume approximately 400‐fold using ultrafiltration. Culture‐based assays for total coliforms and Escherichia coli, as well as molecular‐based assays for E. coli, Bacteroides, and adenovirus, were used as microbial markers before and after ultrafiltration to evaluate performance. Ultrafiltration increased the concentration of the microbial markers in 99% of cases. However, concentration factors (CF = post‐filtration concentration/pre‐filtration concentration) for each marker calculated from geometric means ranged from 52 to 1018 compared to the expected value of 400. The efficiency was difficult to quantify because concentrations of some of the markers, especially E. coli and total coliforms, in the well water (WW) collected before ultrafiltration varied by several orders of magnitude during the period of sampling. The potential influence of colloidal iron oxide precipitates in the groundwater was tested by adding EDTA to the pre‐filtration water in half of the samples to prevent the formation of precipitates. The use of EDTA had no significant effect on the measurement of culturable or molecular markers across the 0.5 to 10 mg/L range of dissolved Fe2+ concentrations observed in the groundwater, indicating that colloidal iron did not hinder or enhance recovery or detection of the microbial markers. Ultrafiltration appears to be effective for concentrating microorganisms in environmental water samples, but additional research is needed to quantify losses during filtration. 相似文献
8.
John D. Coates Romy Chakraborty Susan M. OConnor Claudia Schmidt Jürgen Thieme 《洁净——土壤、空气、水》2001,28(7):420-427
As part of a study on microbial redox alteration of humic substances we investigated the potential effect of this metabolism on the fate of heavy metals and hydrocarbons as a result of conformational alteration of the humic molecular structure due to microbial reduction. Our studies indicate that the microbial reduction of humic acids (HA) results in significant morphological and geochemical alterations. X‐ray microscopy analysis indicate that the conformational structure of the humic colloids is altered as a result of the redox change. In the reduced state, the HA appeared as small dense particles, on reoxidation, large loose aggregates were formed. In addition, spectrofluorometric studies indicated that the binding capacity of the HA for naphthalene was decreased by 10% when the HA was reduced. Similarly, the reduced HA yielded higher surface tension values at all concentrations tested which is indicative of a more hydrophilic and less hydrophobic solute. On reoxidation, the surface tension values reverted back to values similar to those obtained for the untreated oxidized HA. These data indicate that the hydrophobicity of the HA is altered on biological reduction of the HA and that this alteration is reversible. In contrast the reduced HA demonstrated a 15% higher affinity for heavy metals such as divalent cobalt than the oxidized HA. In addition to increasing the binding capacity of HA for heavy metals, the reduction of the HA also decreased the bioavailability and toxicity of bound heavy metals such as chromium. When incubated in the presence of Cr(III) and HA, cells of Escherichia coli grew much more rapidly in the presence of the reduced HA suggesting that the higher metal binding capacity of the reduced humic substances resulted in a removal of the Cr(III) from solution and hence reduced its bioavailability and toxicity. These studies demonstrate that HA redox state and reduction of humic acids by microorganisms can have a significant effect on the molecular morphology and binding constants of HA for heavy metals and hydrocarbons and also directly affects the bioavailability of these compounds in the environment. 相似文献
9.
10.
The problem of migration of a hydrocarbon liquid through aeration zone to groundwater table is formulated and solved analytically. The aeration zone is represented by fractured–porous rocks, and the pollution source is a shallow pool that has formed due to a spill. Two schemes of liquid infiltration from fractures into rock blocks—piston-like and kinetic—are considered. The trajectory of pollution front in fractures and its distribution in the rock blocks are found. 相似文献
11.
Charles J. Paradis John I. Miller Ji-Won Moon Sarah J. Spencer Lauren M. Lui Joy D. Van Nostrand Daliang Ning Andrew D. Steen Larry D. McKay Adam P. Arkin Jizhong Zhou Eric J. Alm Terry C. Hazen 《Ground water》2022,60(1):99-111
Microbial-mediated nitrate removal from groundwater is widely recognized as the predominant mechanism for nitrate attenuation in contaminated aquifers and is largely dependent on the presence of a carbon-bearing electron donor. The repeated exposure of a natural microbial community to an electron donor can result in the sustained ability of the community to remove nitrate; this phenomenon has been clearly demonstrated at the laboratory scale. However, in situ demonstrations of this ability are lacking. For this study, ethanol (electron donor) was repeatedly injected into a groundwater well (treatment) for six consecutive weeks to establish the sustained ability of a microbial community to remove nitrate. A second well (control) located upgradient was not injected with ethanol during this time. The treatment well demonstrated strong evidence of sustained ability as evident by ethanol, nitrate, and subsequent sulfate removal up to 21, 64, and 68%, respectively, as compared to the conservative tracer (bromide) upon consecutive exposures. Both wells were then monitored for six additional weeks under natural (no injection) conditions. During the final week, ethanol was injected into both treatment and control wells. The treatment well demonstrated sustained ability as evident by ethanol and nitrate removal up to 20 and 21%, respectively, as compared to bromide, whereas the control did not show strong evidence of nitrate removal (5% removal). Surprisingly, the treatment well did not indicate a sustained and selective enrichment of a microbial community. These results suggested that the predominant mechanism(s) of sustained ability likely exist at the enzymatic- and/or genetic-levels. The results of this study demonstrated the in situ ability of a microbial community to remove nitrate can be sustained in the prolonged absence of an electron donor. 相似文献
12.
13.
Land Application of Sulfate Salts for Enhanced Natural Attenuation of Benzene in Groundwater: A Case Study 下载免费PDF全文
Sulfate reducing conditions are widely observed in groundwater plumes associated with petroleum hydrocarbon releases. This leads to sulfate depletion in groundwater which can limit biodegradation of hydrocarbons (usually benzene, toluene, ethylbenzene, xylenes [BTEX] compounds) and can therefore result in extended timeframes to achieve groundwater cleanup objectives by monitored natural attenuation. Under these conditions, sulfate addition to the subsurface can potentially enhance BTEX biodegradation and facilitate enhanced natural attenuation. However, a delivery approach that enables effective contact with the hydrocarbons and is able to sustain elevated and uniform sulfate concentrations in groundwater remains a key challenge. In this case study, sulfate addition to a groundwater plume containing predominantly benzene by land application of agricultural gypsum and Epsom salt is described. Over 4 years of groundwater monitoring data from key wells subjected to pilot‐scale and site‐wide land application events are presented. These are compared to data from pilot testing employing liquid Epsom salt injections as an alternate sulfate delivery approach. Sulfate land application, sulfate retention within the vadose zone, and periodic infiltration following ongoing precipitation events resulted in elevated sulfate concentrations (>150 mg/L) in groundwater that were sustained over 12 months between application events and stimulated benzene biodegradation as indicated by declines in dissolved benzene concentration, and compound‐specific isotope analysis data for carbon in benzene. Long‐term groundwater benzene concentration reductions were achieved in spite of periodic rebounds resulting from water table fluctuations across the smear zone. Land application of gypsum is a potentially cost‐effective sulfate delivery approach at sites with open, unpaved surfaces, relatively permeable geology, and shallow hydrocarbon impacts. However, more research is needed to understand the fate and persistence of sulfate and to improve the likelihood of success and effectiveness of this delivery approach. 相似文献
14.
The identification of groundwater parameters in heterogeneous systems is a major challenge in groundwater modeling. Flexible parameterization methods are needed to assess the complexity of the spatial distributions of these parameters in real aquifers. In this article, we introduce an adaptative parameterization to identify the distribution of hydraulic conductivity within the large‐scale (4400 km2) Upper Rhine aquifer. The method is based on adaptative multiscale triangulation (AMT) coupled with an inverse problem procedure that identifies the parameters' distributions by reducing the error between measured and simulated heads. The AMT method has the advantage of combining both zonation and interpolation approaches. The AMT method uses area‐based interpolation rather than an interpolation based on stochastic features. The method is applied to a standard 2D groundwater model that takes into account the interactions between the aquifer and surface water bodies, groundwater recharge, and pumping wells. The simulation period covers 204 months, from January 1986 to December 2002. Recordings at 109 piezometers are used for model calibration. The simulated heads are globally quite accurate and reproduce the main dynamics of the system. The local hydraulic conductivities resulting from the AMT method agree qualitatively with existing local experimental observations across the Rhine aquifer. 相似文献
15.
Groundwater Microbial Communities Along a Generalized Flowpath in Nomhon Area,Qaidam Basin,China 下载免费PDF全文
Yizhi Sheng Guangcai Wang Dan Zhao Chunbo Hao Chenglong Liu Linfeng Cui Ge Zhang 《Ground water》2018,56(5):719-731
Spatial distribution (horizonal and vertical) of groundwater microbial communities and the hydrogeochemistry in confined aquifers were studied approximately along the groundwater flow path from coteau to plain in the Nomhon area, Qinghai‐Tibet plateau, China. The confined groundwater samples at different depths and locations were collected in three boreholes through a hydrogeological section in this arid and semi‐arid area. The phylogenetic analysis of 16S rRNA genes and multivariate statistical analysis were used to elucidate similarities and differences between groundwater microbial communities and hydrogeochemical properties. The integrated isotopic geochemical measurements were applied to estimate the source and recharge characteristics of groundwater. The results showed that groundwater varied from fresh to saline water, and modern water to ancient water following the flowpath. The recharge characteristics of the saline water was distinct with that of fresh water. Cell abundance did not vary greatly along the hydrogeochemical zonality; however, dissimilarities in habitat‐based microbial community structures were evident, changing from Betaproteobacteria in the apex of alluvial fan to Gammaproteobacteria and then to Epsilonproteobacteria in the core of the basin (alluvial‐lacustrine plain). Rhodoferax, Hydrogenophaga, Pseudomonas, and bacterium isolated from similar habitats unevenly thrived in the spatially distinct fresh water environments, while Sulfurimonas dominanted in the saline water environment. The microbial communities presented likely reflected to the hydrogeochemical similarities and zonalities along groundwater flowpath. 相似文献
16.
17.
Kirk T. O'Reilly Rachel E. Mohler Dawn A. Zemo Sungwoo Ahn Renae I. Magaw Catalina Espino Devine 《Ground Water Monitoring & Remediation》2019,39(4):32-40
This research continues a 7-year study of oxygen-containing organic compounds present in groundwater at gasoline and diesel fuel release sites that are quantified as diesel-range “total petroleum hydrocarbons” when measured by methods utilizing solvent extraction and gas chromatography. Two-dimensional gas chromatography with time-of-flight mass spectrometry was used to tentatively identify 1162 compounds (TICs) in 113 groundwater samples from 22 sites. Samples were collected from wells either upgradient of the release, within the source zone, or downgradient of the source but still within the plume of dissolved organics associated with release. The names and formulas of all TICs found in samples from each well type are presented and the results from upgradient and downgradient locations are compared in detail. About 60% of the most frequently detected TICs in downgradient wells were also detected in upgradient wells. A majority of these were saturated straight chain alkyl acids, commonly called fatty acids, or fatty acid esters. Of TICs frequently detected in downgradient wells but not upgradient wells, over half were branched alkyl alcohols. Hierarchical cluster analysis results suggest about 80% of the chemical composition of downgradient samples is more similar to upgradient samples than to source area samples. This similarity is due to the presence of the same types of fatty acids and esters. Principal component analysis indicates a continuum of biodegradation between the source area and downgradient samples with the latter becoming more consistent with upgradient samples. Results suggest some TICs may not be petroleum degradation intermediates but compounds synthesized by microorganisms through secondary production and carbon cycling. 相似文献
18.
Mehrdis Danapour Michael N. Fienen Anker Lajer Højberg Karsten Høgh Jensen Simon Stisen 《Ground water》2021,59(4):503-516
Due to increasing water demands globally, freshwater ecosystems are under constant pressure. Groundwater resources, as the main source of accessible freshwater, are crucially important for irrigation worldwide. Over-abstraction of groundwater leads to declines in groundwater levels; consequently, the groundwater inflow to streams decreases. The reduction in baseflow and alteration of the streamflow regime can potentially have an adverse effect on groundwater-dependent ecosystems. A spatially distributed, coupled groundwater–surface water model can simulate the impacts of groundwater abstraction on aquatic ecosystems. A constrained optimization algorithm and a simulation model in combination can provide an objective tool for the water practitioner to evaluate the interplay between economic benefits of groundwater abstractions and requirements to environmental flow. In this study, a holistic catchment-scale groundwater abstraction optimization framework has been developed that allows for a spatially explicit optimization of groundwater abstraction, while fulfilling a predefined maximum allowed reduction of streamflow (baseflow [Q95] or median flow [Q50]) as constraint criteria for 1484 stream locations across the catchment. A balanced K-Means clustering method was implemented to reduce the computational burden of the optimization. The model parameters and observation uncertainties calculated based on Bayesian linear theory allow for a risk assessment on the optimized groundwater abstraction values. The results from different optimization scenarios indicated that using the linear programming optimization algorithm in conjunction with integrated models provides valuable information for guiding the water practitioners in designing an effective groundwater abstraction plan with the consideration of environmental flow criteria important for the ecological status of the entire system. 相似文献
19.
Water Resources - The aims of this study was to identify the groundwater level (GWL) trend and dominant periodic component of Ardabil plain (North-west of Iran) using three variations of the... 相似文献