首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A stochastic optimization model based on an adaptive feedback correction process and surrogate model uncertainty was proposed and applied for remediation strategy design at a dense non-aqueous phase liquids (DNAPL)-contaminated groundwater site. One hundred initial training samples were obtained using the Latin hypercube sampling method. A surrogate model of a multiphase flow simulation model was constructed based on these samples employing the self-adaptive particle swarm optimization kriging (SAPSOKRG) method. An optimization model was built, using the SAPSOKRG surrogate model as a constraint. Then, an adaptive feedback correction process was designed and applied to iteratively update the training samples, surrogate model, and optimization model. Results showed that the training samples, the surrogate model, and the optimization model were effectively ameliorated. However, the surrogate model is an approximation of the simulation model, and some degree of uncertainty exists even though the surrogate model was ameliorated. Therefore, residuals between the surrogate model and the simulation model were calculated, and an uncertainty analysis was conducted. Based on the uncertainty analysis results, a stochastic optimization model was constructed and solved to obtain optimal remediation strategies at different confidence levels (60, 70, 80, 90, 95%) and under different remediation objectives (average DNAPL removal rate ≥?70,?≥?75,?≥?80,?≥?85,?≥?90%). The optimization results demonstrated that the higher the confidence level and remediation objective, the more expensive was remediation. Therefore, decision makers can weigh remediation costs, confidence levels, and remediation objectives to make an informed choice. This also allows decision makers to determine the reliability of a selected strategy and provides a new tool for DNAPL-contaminated groundwater remediation design.  相似文献   

2.
The basic physics of air flow through saturated porous media are reviewed and implications arc drawn for the practical application of air sparging. A conceptual model of the detailed behavior of an air sparging system is constructed using elements of multiphase flow theory and the results of recent experimental work. Implications of the conceptual model on air sparging topics are discussed. The meaning of radius of influence in the context of air sparging is found to be ambiguous. The hydrodynamic effects of air sparging such as mounding of ground water and flow impedance are explored. Limitations on rates of remediation and operational strategics for improving sparging effectiveness are examined.  相似文献   

3.
This study tests the feasibility of an aquifer remediation concept proposed by Gvirtzman and Gorelick (1992) that involves the removal of volatile organic compounds (VOCs) dissolved in ground water. The principal is 10 inject air into a well, creating airlift pumping, which is used as a means of in-well vapor stripping. The partially treated water is diverted away from the well and infiltrates back to the water table, thus allowing remediation of a larger aquifer volume.
A remediation well prototype, constructed in a laboratory aquifer model, was used to demonstrate the processes involved. The removal rates of trichloroethylene, toluene, and chloroform were monitored using eight triple-level observation wells. The continuous decrease of VOC concentrations during the short-term experiment has yielded macroscopic evidence that the process offers some promise. It was found that the flow field in the saturated zone. involving the continuous water circulation between the pumping well and the recharging area, caused temporal and spatial variation in remediation efficiency.  相似文献   

4.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

5.
为深入理解井水位同震响应机理,本文开展了向完整井-松散含水层系统输入由不同频率和振幅(加速度)组成的正弦波荷载的振动台实验。以实验模型为物理模型,建立了振动作用下松散承压含水层中孔隙水压力响应的流固耦合模型和含水层水流与井流的相互作用模型,并运用多物理场耦合模拟软件COMSOL Multiphysics对实验过程进行了数值模拟。实验中观测到的四种典型水位变化形态与野外场地同震井水位变化形态相似。数值模拟结果显示,本研究建立的数学模型能较好地反映松散承压含水层中孔隙水压力和水位的响应情况。本文研究对解释地下水同震响应机制、岩体渗流稳定性和安全问题具有重要意义。  相似文献   

6.
Ahlfeld DP  Hoque Y 《Ground water》2008,46(5):716-726
Ground water management models require the repeated solution of a simulation model to identify an optimal solution to the management problem. Limited precision in simulation model calculations can cause optimization algorithms to produce erroneous solutions. Experiments are conducted on a transient field application with a streamflow depletion control management formulation solved with a response matrix approach. The experiment consists of solving the management model with different levels of simulation model solution precision and comparing the differences in optimal solutions obtained. The precision of simulation model solutions is controlled by choice of solver and convergence parameter and is monitored by observing reported budget discrepancy. The difference in management model solutions results from errors in computation of response coefficients. Error in the largest response coefficients is found to have the most significant impact on the optimal solution. Methods for diagnosing the adequacy of precision when simulation models are used in a management model framework are proposed.  相似文献   

7.
In part 1 [Class et al., this issue], we presented a numerical simulator for non-isothermal multiphase systems. A module of this simulator that considers the phases water, an organic non-aqueous-phase liquid (NAPL), and the gas phase is used here for two applications. The aim of the numerical simulations is to show and to interpret the behavior of the non-isothermal multiphase processes. The first example deals with an experiment in which an air-dry, NAPL-contaminated column is remediated by a steam injection. The typical front behavior is investigated and the coupled physical processes are identified by a comparison with experimental temperature data. The second application is a two-dimensional case study, where the influence of different strategies for the remediation by injection of steam and/or air in a heterogeneous, NAPL-contaminated sand can be shown.  相似文献   

8.
Optimal cost pump-and-treat ground water remediation designs for containment of a contaminated aquifer are often developed using deterministic ground water models to predict ground water flow. Uncertainty in hydraulic conductivity fields used in these models results in remediation designs that are unreliable. The degree to which uncertainty contributes to the reliability of remediation designs as measured by the characterization of the uncertainty is shown to differ depending upon the geologic environments of the models. This conclusion is drawn from the optimal design costs for multiple deterministic models generated to represent the uncertainty of four distinct models with different geologic environments. A multi scenario approach that includes uncertainty into the remediation design called the deterministic method for optimization subject to uncertainty (DMOU) is applied to these distinct models. It is found that the DMOU is a method for determining a remediation design subject to uncertainty that requires minimal postprocessing efforts. Preprocessing, however, is required for the application of the DMOU to unique problems. In the ground water remediation design problems, the orientation of geologic facies with respect to the orientation of flow patterns, pumping well locations, and constraint locations are shown to affect the preprocessing, the solutions to the DMOU problems, and the computational efficiency of the DMOU approach. The results of the DMOU are compared to the results of a statistical analysis of the effects of the uncertainty on remediation designs. This comparison validates the efficacy of the DMOU and illustrates the computational advantages to using the DMOU over statistical measures.  相似文献   

9.
A new probabilistic remediation simulation package, PREMChlor, was used to simulate the effect of contaminant source and plume remediation at a site contaminated by trichloroethylene (TCE). First, the PREMChlor model was calibrated to the plume using a deterministic approach to represent the site conditions prior to remediation activities, which occurred in 1999. The calibrated model was then used in a probabilistic mode to conduct a simulation of the effects of field source and plume remediation activities during the period after 1999. This probabilistic simulation considers uncertainties in seven key parameters: the initial source mass and concentration, the relationship between source mass removal and source concentration, the effectiveness of the source remediation, the groundwater velocity, the background plume degradation rate, and the plume treatment effectiveness. The simulation results compare favorably with the observed data collected after 1999, and show the influence of the remediation efforts on the plume.  相似文献   

10.
This paper presents an analytical case study to explore one‐dimensional subsurface air pressure variation in a coastal three‐layered unsaturated zone. The upper layer is thin and much less permeable than the middle layer, and water table is located in the very permeable lower layer. An analytical solution was derived to describe the air pressure variation caused by tide‐induced water table fluctuations. We revisited the case study at Hong Kong International Airport conducted by Jiao and Li (2004) who used a two‐dimensional numerical model. The analytical prediction using the parameter values equivalent to the two‐dimensional numerical model agreed very well with the observed air pressure, indicating the validity and applicability of our one‐dimensional model in approximating the actual situation in this coastal zone with adequate accuracy. The analysis revealed that the asphalt pavement played an important role in causing air pressure fluctuations below it. Abnormally high air pressure can be caused beneath the surface pavement when the air permeability decreases due to rainfall infiltration, which may lead to heaving problems during rising tides.  相似文献   

11.
A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.  相似文献   

12.
Stephen B. Shaw 《水文研究》2017,31(21):3729-3739
There remains continued use of non‐linear, logistic regression models for predicting water temperature from air temperature. A dominant feature of these non‐linear models is an upper bound on river water temperature. This upper bound is often attributed to a large increase in evaporative cooling at high air temperatures, but the exact conditions under which such an increase may occur have not been thoroughly explored. To better understand the appropriateness of the non‐linear model for predicting river water temperatures, it is essential to understand the physical basis for the upper bound and when it should and should not be included in the statistical model. This paper applies and validates an energy balance model against 8 river systems spread across different climate regions of the United States. The energy balance model is then used to develop a diagram relating vapour pressure deficit and air temperature to water temperature. With knowledge of present or future vapour pressure deficit (difference between saturation and actual vapour content in the atmosphere) conditions in a given climate, the diagram can be used to predict the likelihood of an upper bound in the air–water temperature relationship. This investigation offers a fundamental physical explanation of the most appropriate form of statistical models that should be used for predicting future water temperature from air temperature in different geographic regions with different climate conditions. In general, climatic regions that have only a slight increase in vapour pressure deficit with increasing air temperature (typically humid regions) would not be expected to have an upper bound. Conversely, climatic regions in which vapour pressure deficit sharply increases with increasing air temperature (typically arid regions) would be expected to have an upper bound.  相似文献   

13.
The effect of the North Atlantic Oscillation (NAO) indices on climatic conditions and their subsequent influence on water temperature of two Basque estuaries (estuary of Bilbao and estuary of Urdaibai) were assessed by transfer function (TF) models for the period 1997–2006. Results showed that air temperature had an immediate (lag=0) and significant negative response to the NAO, whereas rainfall was not correlated with this climate index. The negative correlation between NAO and air temperature was found to be stronger with the seasonal indices derived from the differences in surface pressure between Iceland and Azores than with that derived from the principal component time-series of the leading eigenvector of the sea-level pressure in an Atlantic sector. The correlations between rainfall and river discharge, and between air temperature and water temperature were positive and highly significant in both estuaries. The response of water temperature to air temperature was immediate in both estuaries, whereas one-quarter lagged responses were also observed in the estuary of Bilbao, which is deeper and more stratified than the estuary of Urdaibai. Our study provides evidence that on the Basque coast the NAO plays an important role in climate variations, which in turn affect estuarine water temperature.  相似文献   

14.
Streaming‐potentials are produced by electrokinetic effects in relation to fluid flow and are used for geophysical prospecting. The aim of this study is to model streaming potential measurements for unsaturated conditions using an empirical approach. A conceptual model is applied to streaming potential measurements obtained from two drainage experiments in sand. The streaming potential data presented here show a non‐monotonous behaviour with increasing water saturation, following a pattern that cannot be predicted by existing models. A model involving quasi‐static and dynamic components is proposed to reproduce the streaming potential measurements. The dynamic component is based on the first time derivative of the driving pore pressure. The influence of this component is investigated with respect to fluid velocity, which is very different between the two experiments. The results demonstrate that the dynamic component is predominant at the onset of drainage in experiments with the slowest water flow. On the other hand, its influence appears to vanish with increasing drainage velocity. Our results suggest that fluid flow and water distribution at the pore scale have an important influence on the streaming potential response for unsaturated conditions. We propose to explain this specific streaming potential response in terms of the behaviour of both rock/water interface and water/air interfaces created during desaturation processes. The water/air interfaces are negatively charged, as also observed in the case of water/rock interfaces. Both the surface area and the flow velocity across these interfaces are thought to contribute to the non‐monotonous behaviour of the streaming potential coefficient as well as the variations in its amplitude. The non‐monotonous behaviour of air/water interfaces created during the flow was highlighted as it was measured and modelled by studies published in the literature. The streaming potential coefficient can increase to about 10 to 40 when water saturation decreases. Such an increase is possible if the amount of water/air interfaces is increased in sufficient amount, which can be the case.  相似文献   

15.
Air sparging is a relatively new technique for the remediation of ground water contaminated with petroleum hydrocarbons. In this technique, air is injected below the water table, beneath the contaminated soil. Remediation occurs by a combination of contaminant partitioning into the vapor phase and enhanced biodegradation. The air is usually removed by vacuum extraction in the vadose zone.
The efficiency of remediation from air sparging is a function of the air flow pattern, although the distribution of the injected air is still poorly understood. Cross-borehole resistivity surveys were performed at a former service station in Florence, Oregon, to address this unknown. The resistivity measurements were made using six wells, one of which was the sparge well. Data were collected over a two-week period during and after several air injections, or sparge events. Resistivity images were calculated between wells using an algorithm that assumes axially symmetric structures. The movement of the injected air through time was defined by regions of large increases in resistivity, greater than 100 percent from the background. During early sparge times, air moved outward and upward from the injection point as it ascended to the unsaturated zone. At later sparge times, the air flow reached a somewhat stable cone-shaped pattern radiating out and up from the injection point. Two days after sparging was discontinued, a residue of entrained air remained in the saturated zone, as indicated by a zone of 60 to 80 percent water saturation.  相似文献   

16.
井水位的“记忆”滞后效应   总被引:5,自引:0,他引:5  
张昭栋  张华 《地震》1998,18(1):21-27
观测资料表明,井水位对信息响应存在的“记忆”滞后现象,它与一般的位相滞后不同,在鲁29井现场试验也证明了井水位对井吕空气压力变化的响应存在的“记忆”滞后现象。利用水平层状承压含水层模式,从理论上解释了井水位对井口空气压力变化响应“记忆”滞后现象,认为这种现象与水井含水层的导水系数有关,含水层导不系数越小,这种现象越明显,用一般多元回归方法无法较好地扣除井水位中“记忆”滞后影响,作给出了一种可以扣  相似文献   

17.
This report summarizes the initial results of subsurface remediation at Terminal 1, Kenneth International Airport, to remediate soil and ground water contaminated with Jet A fuel. The project was driven and constrained In the const ruction schedule of a major new terminal at the facility. The remediation system used a combination of ground water pumping, air injection, and soil vapor extraction. In the first five months of operation, the combined processes of dewatering, volatilization, and biodegradation removed a total of 36,689 pounds of total volatile and semivolatile organic jet fuel hydrocarbons from subsurface soil and ground water. The. results of this case study have shown that 62 percent of the removal resulted from biodegradation, 21 percent occurred as a result of liquid removal, and 11 percent resulted from the extraction of volatile organic compounds (VOC's).  相似文献   

18.
Classical optimization methodologies based on mathematical theories have been developed for the solution of various constrained environmental design problems. Numerical models have been widely used to represent an environmental system accurately. The use of methodologies such as artificial neural networks (ANNs), which approximate the complicated behaviour and response of physical systems, allows the optimization of a large number of case scenarios with different set of constraints within a short period of time, whereas the corresponding simulation time using a numerical model would be prohibitive. In this paper, a combination of an ANN with a differential evolution algorithm is proposed to replace the classical finite‐element numerical model in water resources management problems. The objective of the optimization problem is to determine the optimal operational strategy for the productive pumping wells located in the northern part of Rhodes Island in Greece, to cover the water demand and maintain the water table at certain levels. The conclusions of this study show that the use of ANN as an approximation model could (a) significantly reduce the computational burden associated with the accurate simulation of complex physical systems and (b) provide solutions very close to the optimal ones for various constrained environmental design problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Light non-aqueous phase liquids (LNAPL) represent one of the most serious problems in aquifers contaminated with petroleum hydrocarbons liquids. To design an appropriate remediation strategy it is essential to understand the behavior of the plume. The aim of this paper is threefold: (1) to characterize the fluid distribution of an LNAPL plume detected in a volcanic low-conductivity aquifer (∼0.4 m/day from slug tests interpretation), (2) to simulate the recovery processes of the free-product contamination and (3) to evaluate the primary recovery efficiency of the following alternatives: skimming, dual-phase extraction, Bioslurping and multi-phase extraction wells. The API/Charbeneau analytical model was used to investigate the recovery feasibility based on the geological properties and hydrogeological conditions with a multi-phase (water, air, LNAPL) transport approach in the vadose zone. The modeling performed in this research, in terms of LNAPL distribution in the subsurface, show that oil saturation is 7% in the air–oil interface, with a maximum value of 70% in the capillary fringe. Equilibrium between water and LNAPL phases is reached at a depth of 1.80 m from the air–oil interface. On the other hand, the LNAPL recovery model results suggest a remarkable enhancement of the free-product recovery when simultaneous extra-phase extraction was simulated from wells, in addition to the LNAPL lens. Recovery efficiencies were 27%, 65%, 66% and 67% for skimming, dual-phase extraction, Bioslurping and multi-phase extraction, respectively. During a 3-year simulation, skimmer wells and multi-phase extraction showed the lowest and highest LNAPL recovery rates, with expected values from 207 to 163 and 2305 to 707 l-LNAPL/day, respectively. At a field level we are proposing a well distribution arrangement that alternates pairs of dual-phase well-Bioslurping well. This not only improves the recovery of the free-product plume, but also pumps the dissolve plume and enhances in situ biodegradation in the vadose zone. Thus, aquifer and soil remediation can be achieved at a shorter time. Rough calculations suggest that LNAPL can be recovered at an approximate cost of $6–$10/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号