首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A preliminary integrated study of a Cretaceous-Tertiary (K/T) boundary section in Pernambuco, northeastern Brazil, provides evidence for an extraterrestrial bolide impact in the earliest Danian. A non-graded, nodular carbonate mudstone/wackestone bed is interpreted as a slump or a mud Flow deposit, induced by a tsunami event or by a gravity mass movement during a sea-level lowstand, the former possibly generated by the K/T boundary Yucatán impact. This bed overlies marlstones deposited in an upper bathyal environment and marks the top of the Cretaceous. Nearly all known latest Maastrichtian planktonic foraminifera are recovered from the Cretaceous strata. Iridium shows a marked peak in a thin hemipelagic claystone layer, about 75 cm above the K/T boundary, deposited in a middle to deep neritic environment. The claystone overlies alternating beds of finegrained limestones and marlstones and a 50 cm-thick graded bioclastic packstone, which rests upon a marly limestone breccia of the lowermost Danian. Abundant reworked Cretaceous and rare lowermost Danian microfossils (e.g. E. edita, E. eobulloides, E. fringa, G. irregularis, P. eugubina, P. cf. pseudobulloides, W. claytonensis and W. hornerstownensis ) have been recovered from these strata. These lowermost Danian beds record the sudden appearance of abundant shock-metamorphosed quartz grains, with several sets of intersecting deformation lamellae and microtektite-like microspherules. This suggests that these deposits were formed by an additional tsunami caused by a second impact event in the earliest Danian, near or at the boundary between the Palaeocene P α and P 1a foraminiferal zones. Impact-derived material has not been found in the uppermost Cretaceous beds.  相似文献   

2.
3.
4.
Major and trace element data are used to establish the nature and extent of spatial and temporal chemical variations in basalts erupted in the Iceland region of the North Atlantic Ocean. The ocean floor samples are those recovered by legs 38 and 49 of the Deep Sea Drilling Project. Within each of the active zones on Iceland there are small scale variations in the light rare earth elements and ratios such as K/Y: several central complexes and their associated fissure swarms erupt basalts with values of K/Y distinct from those erupted at adjacent centres; also basalts showing a wide range of immobile trace element ratios occur together within single vertical sections and ocean floor drill holes. Although such variations can be explained in terms of the magmatic processes operating on Iceland they make extrapolations from single basalt samples to mantle sources underlying the outcrop of the sample highly tenuous. 87Sr/86Sr ratios measured for 25 of the samples indicate a total range from 0.7028 in a tholeiite from the Reykjanes Ridge to 0.7034 in an alkali basalt from Iceland and are consistent with other published ratios from the region. A positive correlation between 87Sr/86Sr and Ce/Yb ratios indicates the existence of systematic isotopic and elemental variations in the mantle source region. An approximately fivefold variation in Ce/Yb ratio observed in basalts with the same 87Sr/86Sr ratio implies that different degrees and types of partial melting have been involved in magma genesis from a single mantle composition. 87Sr/86Sr ratios above 0.7028, Th/U ratios close to 4 and La/Ta ratios close to 10 distinguish most basalts erupted in this part of the North Atlantic Ocean from normal mid-ocean ridge basalt (N-type MORE) — although N-type MORB has been erupted at extinct spreading axes just to the north and northeast of Iceland as well as the presently active Iceland-Jan Mayen Ridge.Comparisons with the hygromagmatophile element and radiogenic isotope ratios of MORB and the estimated primordial mantle indicate that the mantle sources producing Iceland basalts have undergone previous depletion followed by more recent enrichment events. A veined mantle source region is proposed in preference to the mantle plume model to explain the chemical variations.  相似文献   

5.
The abandoned Hg mine in Podljubelj was in operation with interceptions from 1557 to 1902. The entire operating period yielded about 110 000 tons of ore, from which 360 tons of Hg was produced. The objective of the research project was to establish the contents and spatial distribution of Hg in soils and stream sediments in the vicinity of the mine. On an area of 88 ha the soil was sampled in a 100 × 100 m grid. Two soil horizons (0–5 cm and 20–30 cm) were sampled in order to distinguish between geogenic and anthropogenic Hg sources. It was established that on an area of about 9 ha Hg content in soil exceeds The New Dutchlist action value for Hg (10 mg/kg). Total Hg concentrations in soil samples vary between 0.17 and 719 mg/kg, with a mean of 3.0 mg/kg. Mercury contents in stream sediments range from 0.065 to 1.4 mg/kg, with a mean of 0.64 mg/kg. The highest determined value in soils was found in the area around the former roasting furnace, where the ore was processed. Increased Hg concentrations were also found on the mine waste dump (108 mg/kg). Mercury contents in soils generally decrease with soil profile depth and with the distance from the mine and from the roasting furnace location. Mercury also appears in higher concentrations along the road that runs through the valley, which results from the use of Hg-bearing ore residues in road construction. The average enrichment factor (EF) of Hg in topsoil with respect to subsoil is 3.3. Calculated enrichment factors show higher values also for Cd (3.2), Pb (2.7), Ca (2.4) and P (1.9). The average enrichment factor of Hg in topsoil with regard to the established Slovenian soil averages (EFslo) is 19. EFslo of other determined chemical elements do not exceed 3.0.  相似文献   

6.
Carbon sources were estimated by measuring carbon isotope ratios (??13C and ??14C) with accelerator mass spectrometry (AMS) in forest soils of different lithology. Six locations were selected in temperate deciduous and coniferous stands in Slovenia (?irovski vrh, Idrija, Ko?evski Rog, Pohorje, Gori?nica, and Rakitna), where carbonate rocks consisting of limestone and dolomite are abundant as underlying bedrock. Carbon isotope fractionation would not have occurred in two carbonaceous soils, since the values of both ??13C and ??14C changed consistently in these soils after thermal (550°C, 2?h) or chemical (1?M HCl, 24?h) treatments. Organic components were found to be predominant carbon sources (70?C100%) in the uppermost portions (0?C2?cm in depth). In deeper portions at a depth of about 30?C35?cm, soil carbon may be derived completely from underlying carbonate minerals in Idria, western part of Slovenia. The Combination of heat and chemical treatments with AMS provides practical information on soil carbon sources in carbonaceous soils.  相似文献   

7.
The geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 , Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.  相似文献   

8.
Radiocarbon dating of the organic-rich sediments of Lake Illisarvik in the outer Mackenzie Delta indicates that formation of the lake occurred approximately 9500yr BP, with maximum expansion around 6000 yr BP. Sedimentation rates have remained relatively constant at an average of 0.3mm/yr. 13C results on biogenic and inorganic carbonates and organics indicate a change from dominantly terrestrial organics (?27 to ?28%0) to submerged aquatic vegetation or plankton (?18 to ?23%0) upon formation of the lake (9500yr BP), and a dramatic return to dominantly terrestrial organics at 5800yr BP (δ13C = ?27 to ?30%0). This latter shift is accompanied by a drastic reduction in the macroflora and fauna populations. 18O results suggest that a warmer climate than today existed prior to the shift at 5800yr BP.  相似文献   

9.
Holocene sediments from the Gotland Deep basin in the Baltic Sea were investigated for their Fe isotopic composition in order to assess the impact of changes in redox conditions and a transition from freshwater to brackish water on the isotope signature of iron. The sediments display variations in δ56Fe (differences in the 56Fe/54Fe ratio relative to the IRMM-14 standard) from −0.27 ± 0.09‰ to +0.21 ± 0.08‰. Samples deposited in a mainly limnic environment with oxygenated bottom water have a mean δ56Fe of +0.08 ± 0.13‰, which is identical to the mean Fe isotopic composition of igneous rocks and oxic marine sediments. In contrast, sediments that formed in brackish water under periodically euxinic conditions display significantly lighter Fe isotope signatures with a mean δ56Fe of −0.14 ± 0.19‰. Negative correlations of the δ56Fe values with the Fe/Al ratio and S content of the samples suggest that the isotopically light Fe in the periodically euxinic samples is associated with reactive Fe enrichments and sulfides. This is supported by analyses of pyrite separates from this unit that have a mean Fe isotopic composition of −1.06 ± 0.20‰ for δ56Fe. The supply of additional Fe with a light Fe isotopic signature can be explained with the shelf to basin Fe shuttle model. According to the Fe shuttle model, oxides and benthic ferrous Fe that is derived from dissimilatory iron reduction from shelves is transported and accumulated in euxinic basins. The data furthermore suggest that the euxinic water has a negative dissolved δ56Fe value of about −1.4‰ to −0.9‰. If negative Fe isotopic signatures are characteristic for euxinic sediment formation, widespread euxinia in the past might have shifted the Fe isotopic composition of dissolved Fe in the ocean towards more positive δ56Fe values.  相似文献   

10.
11.
A diffusion-diagenesis model of the sulfur cycle is developed to calculate theoretical distributions of stable sulfur isotopes in marine sediments. The model describes the depth variation in δ34S of dissolved sulfate and H2S. and of pyrite. The effects of sulfate reduction, sulfate and H2S diffusion. and of sedimentation are considered as well as the bacterial isotope fractionation and the degree of pyrite formation. Under open system conditions of sulfur diagenesis the isotopic difference, ΔSO2?4 — H2S, tends to increase with depth being smaller than the bacterial fractionation factor near the sediment surface and larger in deeper layers. The two isotopes in SO2?4 or in H2S do not diffuse in the same proportion as they occur in the porewater. This explains why sulfur, which is incorporated from seawater sulfate by diffusion and precipitation as pyrite, can be enriched in 32S relative to the seawater sulfate. The model calculations demonstrate the importance of taking the whole dynamic sulfur cycle into account before drawing conclusions about sulfur diagenesis from the stable isotope distribution.  相似文献   

12.
Zhong, W., Cao, J., Xue, J., Ouyang, J., Wang, H., Tang, X. & Gao, X. 2012 (January): Carbon isotope evidence of last glacial climate variations in the tropical NW Leizhou Peninsula, South China. Boreas, Vol. 41, pp. 102–112. 10.1111/j.1502‐3885.2011.00224.x. ISSN 0300‐9483. Bulk organic δ13C values of sediment sequences are commonly used to indicate past climatic changes, although the causes and mechanisms leading to the observed organic carbon isotope responses are presently not fully understood. Based on two sedimentary sequences, namely a peat profile and a fluvial and swamp sequence from the tropical NW Leizhou Peninsula in South China, we interpret more negative bulk organic δ13C values to suggest wetter and warmer conditions, implying a stronger East Asian (EA) summer monsoon, and less negative δ13C values to indicate drier and cooler conditions, reflecting a weakening of the EA summer monsoon. A warm and wet period occurred between c. 48.0 and 28.0 cal. ka BP. In the study region, a climate shift occurred at c. 22.0 (or 20.0) cal. ka BP, and the driest and coldest period occurred between c. 19.0 and 16.0 cal. ka BP. After c. 12.0 cal. ka BP, the climate changed towards wetter and warmer conditions. Several possible millennial‐scale dry and cold oscillations characterized possibly by C4 plants, or by more positive organic δ13C values during the period when C3 plants dominated, are cautiously and tentatively interpreted as showing a similarity with Heinrich events and other cold millennial‐scale oscillations evidenced from a Greenland ice core and Chinese stalagmite. We demonstrate that bulk organic δ13C records of sedimentary sequences in the study region have potential for indicating the changes in vegetation composition that were closely associated with climate variation during the last glacial period.  相似文献   

13.
Oxygen and carbon stable isotope ratios in carbonates from the HDP-04 drill core from Lake Hovsgol, NW Mongolia, show an overall covariant relationship suggesting that for the most of the past 1 Ma Hovsgol remained a closed-basin lake. Carbonate δ18O ratio is responsive to regional climate change: a ca. +1.5‰ basinwide δ18O shift has occurred with the onset of Bølling–Allerød warming (sensu lato), followed by a ca. 0.8‰ depletion during the Younger Dryas. The post-glacial δ18O shift of the same magnitude is recorded in bulk carbonates, shells of two ostracod species and in wet-sieved fine fraction <63 μm. Associated with the lake-level rise and correlative with the post-glacial warming in the northern hemisphere, the observed δ18O shift is nevertheless positive. This argues against changes in local temperature and hydrology as key driving mechanisms. Most likely, Lake Hovsgol δ18O reflects a climate-driven shift in the composition of regional precipitation. Tied into a distinct lithologic succession, the radiocarbon-dated late glacial δ18O shift apparently represents a ‘template’ of the lake's response to glacial–interglacial transitions: a similar pattern of parallel changes in lithology and carbonate stable isotope composition is observed in at least 10 more intervals in the 1-Ma record, including the MIS 20/MIS19 transition at the Brunhes/Matuyama paleomagnetic reversal boundary. The comparison of carbon stable isotope ratios of untreated and in vacuo roasted bulk sediment with those of detrital carbonates suggests that clastic input of carbonates by lake tributaries does not affect the geochemistry of bulk carbonates in the HDP-04 section. The profiles of bulk carbonate δ18O and δ13C in the Pleistocene section of the HDP-04 drill core suggest at ca. 15.4 ka, at ca. 100 m below today's level, Lake Hovsgol still stood relatively high as compared with prior extended periods of time during late Matuyama and early Brunhes. Isotopically heavy δ18O and δ13C ratios during the mid–late Brunhes, particularly, in carbonate crusts and oolites, are suggestive of past episodes of dramatic evaporative 18O-enrichment of lake waters. Despite the expectation of muted amplitudes of temperature- and precipitation-related isotope signals, the sedimentary record from the sensitive ‘water gauge’ basin of Lake Hovsgol has high potential for providing important constraints on past hydrologic evolution of continental interior Asia during the Pleistocene.  相似文献   

14.
We present a continuous ∼14-yr-long (1985 to 1999) high-resolution record of trace element (Mg, Sr, Ba, U) and stable isotope (δ13C, δ18O) variations in a modern freshwater tufa from northwestern Queensland, Australia. By utilizing the temperature dependence of the δ18O signal, an accurate chronology was developed for the sampled profile, which allowed a comparison of the chemical records with hydrological and meteorological observations. As a consequence, it was possible to constrain the relevant geochemical processes relating climate variables, such as temperature and precipitation, to their chemical proxies in the tufa record. Temperatures calculated from the Mg concentrations of the tufa samples provide close approximations of average annual water temperature variations. Furthermore, we demonstrate that temporal changes in (Mg/Ca)water can be estimated using an empirically derived equation relating (Mg/Ca)water to the (Sr/Ba) ratio measured in the tufa samples. By means of this relationship, it is theoretically possible to determine the (Mg/Ca) ratio of paleowaters, and hence to derive reliable estimates of former water temperatures from the Mg concentrations of fossil tufas from the study area. Sympathetic variations in Sr, Ba, and δ13C along the sampled profile record changes in water chemistry, which are most probably caused by variable amounts of calcite precipitation within the vadose zone of the karst aquifer. This process is thought to be markedly subdued whenever the amount of wet-season precipitation exceeds a given threshold. Accordingly, distinct minima in Sr, Ba, and δ13C are interpreted to reflect years with above-average rainfall. The pronounced seasonal and annual variability of the U concentration along the profile is thought to primarily record changes in the U flux from the soil to the water table. We suggest that during intensive rain events U is transported to the phreatic zone by complexing organic colloids, giving rise to conspicuous U maxima in the tufa after above-average wet seasons. This study demonstrates the potential of freshwater tufas to provide valuable information on seasonal temperature and rainfall variations. If tufa deposits turn out to be reasonably resistant to secondary processes, combined investigation of speleothems and tufas from the same area could become a promising approach in future research. While speleothems offer continuous records of long-term paleoenvironmental changes, tufas could provide high-resolution time windows into selected periods of the past.  相似文献   

15.
The stable isotope compositions of organic carbon and nitrogen, the contents of organic carbon and nitrogen and C/N ratios for two cores recovered from the Empakai Crater at water depths of 11 and 20 m are used to document climatic changes in northern Tanzania. Eight 14C AMS dates determined on total organic matter (OM) indicate that the sedimentation rate in this lake is about 30 cm/ka for the late Pleistocene to early Holocene period. There are differences in the δ13C values of organic carbon between the two cores, which may be a result of differences in location from the present shoreline and of different water depths. In the deeper-water core the δ13C values show a general downcore decrease to the base of the core with a sharp change to lower values of about 4‰ at a depth of 100 cm (8.7 ka). The general trend of downcore decrease in 13C values can be attributed either to a systematic decrease in the relative proportion of C4 type of OM, owing to an increase in precipitation and change in vegetation cover from grassland to forest, or to utilization of isotopically enriched carbon during photosynthesis. The δ15N values show a general downcore increase with again a sharp change of about 5‰ to lower values at about 8.7 ka. A sharp change of about 5‰ and 4‰ to more depleted values at a depth of 100 cm of both 15N and 13C, respectively, suggests either hiatus or abrupt change in climatic condition from wetter conditions to drier conditions. There is enhanced preservation of OM in the lake as depicted by high mean values of organic carbon and nitrogen at both sites.  相似文献   

16.
The provenance of Cenomanian to Eocene flysch deposits accreted along the northern margin of the Eastern Alps has been investigated by means of zircon fission-track (FT) geochronology and zircon morphology. The Rhenodanubian flysch and Ybbsitz klippen zone comprise several nappes representing the Main flysch and Laab basins. The Laab basin received sediments of stable European provenance, indicated by pre-Variscan, Variscan, and Permian–Triassic zircon FT ages, and was thus located in the immediate south of the European margin. The Main flysch basin was supplied mainly from the evolving Eastern Alps and was therefore situated south of the Laab basin. Zircon populations with Permian to Jurassic cooling ages in the Main flysch basin are related to increased heat fluxes during the break-up of Pangaea and are probably derived from the northwestern part of the Eastern Alps. The dominant Cretaceous zircon FT cooling ages reflect Eoalpine metamorphism in the Austroalpine realm.  相似文献   

17.
The 31.6±0.3 Ma old Bufa del Diente alkali-syenite (NE Mexico) intruded a sequence of Cretaceous limestones with intercalated sub-horizontal chert layers. The cherts acted as aquifers that facilitated transport of brines and pegmatitic melts within the shallow-level (<1 kbar) contact-metamorphic aureole. Fluid-driven reactions between chert and marble wallrock, and the influx of late melts and various fluids gave rise to distinct chemical and isotopic signatures within the aquifer and across the zones of infiltration and fluid-driven reaction. Aqueous brines of magmatic origin produced thick wollastonite mantles around the chert layers. Wollastonite formation occurred at the expense of limestone and chert and generated CO2. This CO2-induced fluid unmixing into an aqueous brine and a low-density CO2-rich fluid, which was lost to the overlying marble where it oxidized organic matter and caused 13C and 18O shifts in a zone some 5–10 cm wide. After wollastonite formation, the chert aquifers were locally intruded by pegmatite veins carrying alkali feldspar, quartz, aegirine-augite, eudialyte, zircon, and apatite. Aqueous fluids that exsolved during crystallization of the pegmatite veins escaped along late cross-fractures and migrated along the inner and outer borders of the wollastonite margins. Chemical dispersion patterns of U, Al, Na + K, P, S, Fe, and REE across the chert-to-marble boundary and its metasomatic rims are shown by autoradiography and neutron-induced radiography. Scavenging of cations at mineralogical contacts and cation transport into the marbles occurred only on the mm to cm scale. Isotopic data for Pb and Sr across a simple metachert-marble boundary and for Pb, Sr, Nd, B, and Li across a metachert-pegmatite-marble sequence demonstrate the following: (1) The Pb and Sr isotopic signature of early fluids was buffered by the carbonate wallrock. Only late fluids, shielded from wallrock interaction by a wollastonite mantle, variably preserved a memory of their initial magmatic signature. (2) Since the Nd isotope signature of marble and chert is bound to calcite and clay minerals, systematic shifts to unradiogenic Nd in marble reflect loss of carbonate-bound Nd as the wollastonite margin is approached. Nd in the wollastonite margin is dominated by Nd originally bound to clay minerals. The later emplacement of the pegmatite, which carried the Nd isotope signature of its alkali-syenite source, had little effect on the Nd isotopic composition of the wollastonite rim. (3) Although the Li and B isotopic compositions reflect the alkali-syenite source, they are also affected by isotopic fractionation and partitioning between melt, fluid, and solids.Editorial responsibility J. Hoefs  相似文献   

18.
The Wabigoon River (Ontario, Canada) was affected by dams starting in 1898 and was polluted with pulp and paper mill wastes starting in 1913 and mercury from a chlor-alkali plant from 1962 to 1975. A dated sediment core from a riverine lake was analysed to investigate resultant changes in the biogeochemistry of mercury as revealed by variations in mercury isotope ratios and sediment chemistry. A total mercury maximum formed by the mercury pollution coincided with minimums in the δ-values of the 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, and 201Hg/202Hg ratios, and the δ-values decreased in the order δ201Hg > δ200Hg > δ199Hg > δ198Hg. Thus, mass-dependent fractionation caused depletion in lighter isotopes, implying evaporation of Hg(0) and pollution of the atmosphere as well as the river-lake system. Concurrently, mass-independent fractionation caused 199Hg enrichment, possibly reflecting an independently documented upsurge in methylmercury production, and 201Hg depletion, suggesting removal of methylmercury with anomalously high 201Hg/199Hg ratios by aquatic organisms and accumulation of 201Hg-depleted inorganic Hg(II) in sediments. The δ201Hg/δ199Hg ratio rose abruptly when mercury pollution began, reflecting the resultant increase in methylmercury production, and remained high but gradually declined as the pollution abated, paralleling trends shown by methylmercury in aquatic organisms. The δ201Hg/δ199Hg ratio of pre-1962 background mercury increased ca. 1898 and ca. 1913–1929, suggesting accelerated methylmercury production due to stimulation of microbial activities by the damming of the river and the input of pulp and paper mill wastes, respectively. Other variations were linked to economic and technological factors that affected pulp and paper manufacture.  相似文献   

19.
Two piston cores, one located far from the continents (The North Pacific Ocean: ES core), and another located comparatively closer to the continents (The Bering Sea: BOW-8a core) were investigated to reconstruct environmental changes on source land areas. The results show significant contribution of terrestrial organic matter to sediments in both cores. The δ13C values of n-C27, n-C29, and n-C31 alkanes in sediments from the North Pacific ES core show significant glacial to interglacial variation whereas those from the Bering Sea core do not. Variations of δ13C values of land plant n-alkanes are related to the environmental or vegetational changes in the source land areas. Environmental changes, especially, aridity, rainfall, and pCO2 during glacial/interglacial transitional periods can affect vegetation, and therefore C3 / C4 plant ratios, resulting in δ13C changes in the preserved land plant biomarkers. Maximum values of δ13C as well as maximum average chain length values of long chain n-alkanes in the ES core occur mostly at the interglacial to glacial transition zones reflecting a time lag related to incorporation of living organic matter into soil and transportation into ocean basins via wind and/or ability of C4 plants to adapt for a longer period before being replaced by C3 plants when subjected to gradual climatic changes. Irregular variations with no clear glacial to interglacial trends in the BOW-8a core may result from complex mixture of aerosols from westerly winds and riverine organic matter from the Bering Sea catchments. In addition, terrestrial organic matter entering the Bering Sea could originate from multiple pathways including eolian, riverine, and ice rafted debris, and possibly be disturbed by turbidity and other local currents which can induce re-suspension and re-sedimentation causing an obliterated time relation in the Bering Sea biomarker records.  相似文献   

20.
Brecciated and fractured peridotites with a carbonate matrix, referred to as ophicalcites, are common features of mantle rocks exhumed in passive margins and mid-oceanic ridges. Ophicalcites have been found in close association with massive peridotites, which form the numerous ultramafic bodies scattered along the North Pyrenean Zone (NPZ), on the northern flank of the Pyrenean belt. We present the first field, textural and stable isotopic characterization of these rocks. Our observations show that Pyrenean ophicalcites belong to three main types: (1) a wide variety of breccias composed of sorted or unsorted millimeter- to meter-sized clasts of fresh or oxidized ultramafic material, in a fine-grained calcitic matrix; (2) calcitic veins penetrating into fractured serpentine and fresh peridotite; and (3) pervasive substitution of serpentine minerals by calcite. Stable isotopic analyses (O, C) have been conducted on the carbonate matrix, veins and clasts of samples from 12 Pyrenean ultramafic bodies. We show that the Pyrenean ophicalcites are the product of three distinct genetic processes: (1) pervasive ophicalcite resulting from relatively deep and hot hydrothermal activity; (2) ophicalcites in veins resulting from tectonic fracturing and cooler hydrothermal activity; and (3) polymictic breccias resulting from sedimentary processes occurring after the exposure of subcontinental mantle as portions of the floor of basins which opened during the mid-Cretaceous. We highlight a major difference between the eastern and western Pyrenean ophicalcites belonging, respectively, to the sedimentary and to the hydrothermal types. Our data set points to a possible origin of the sedimentary ophicalcites in continental endorheic basins, but a post-depositional evolution by circulation of metamorphic fluids or an origin from relatively warm marine waters cannot be ruled out. Finally, we discuss the significance of such discrepancy in the characteristics of the NPZ ophicalcites in the frame of the variable exhumation history of the peridotites all along the Pyrenean realm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号