首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Piles are structural members made of steel, concrete, or wood installed into the ground to transfer superstructure loads to the soil. Nowadays, many structures are built on poor lands, and therefore piles have crucial roles in such structures. Performing in-situ tests such as cone penetration (CPT) and piezocone penetration tests (CPTu) have always been of great importance in designing piles. These tests have a brilliant consistency with reality, and as a result, the outcome data can be used in order to achieve reliable pile designing models and reduce uncertainty in this regard. In this paper, the capability of various CPT and CPTu based methods developed from 1961 to 2016 has been investigated using four statistical methods. Such CPT and CPTu based methods are adopted for direct prediction of axial bearing capacity of piles using CPT and CPTu field data. For this purpose, 61 sets of field data prepared from CPT and CPTu have been collected. The data sets were utilized in order to calculate the axial bearing capacity of piles (QE) through 25 different methods. In addition, the measured axial pile capacities (QM) have been collected, recorded and prepared from field static load tests, respectively. Then, four different statistical approaches have been applied to assess the accuracy of these methods. Finally, the most reliable and accurate methods are presented.

  相似文献   

2.
The direct cone penetration test (CPT) based pile design methods use the measured penetrometer readings by scaling relationships or algorithms in a single-step process to enable the assessment of pile capacity components of shaft and base resistance (f p and q b, respectively) for evaluation of full-size pilings. This paper presents a state-of-the-art review of published works that focus on direct CPT evaluation of static axial pile capacity. The review is presented in a chronological order to explicate the evolution over the past six decades of an in situ test based solution for this soil-structure interaction problem. The objective of this study is an attempt to assemble maximum published methods proposed as a result of past investigations in one resource to afford researchers and practitioners with convenient access to the respective design equations and charts. In addition to an all-inclusive summary table and the design charts, a compilation of significant findings and discussions thereof are presented. Furthermore, potential future research directions are indicated, with special emphasis on the optimal use of the modern multi-channel hybrid geophysical-geotechnical seismic CPT to evaluate the complete axial pile load–displacement response.  相似文献   

3.
This study explores the potential of adaptive neuro-fuzzy inference systems (ANFIS) for prediction of the ultimate axial load bearing capacity of piles (Pu) using cone penetration test (CPT) data. In this regard, a reliable previously published database composed of 108 datasets was selected to develop ANFIS models. The collected database contains information regarding pile geometry, material, installation, full-scale static pile load test and CPT results for each sample. Reviewing the literature, several common and uncommon variables have been considered for direct or indirect estimation of Pu based on static pile load test, cone penetration test data or other in situ or laboratory testing methods. In present study, the pile shaft and tip area, the average cone tip resistance along the embedded length of the pile, the average cone tip resistance over influence zone and the average sleeve friction along the embedded length of the pile which are obtained from CPT data are considered as independent input variables where the output variable is Pu for the ANFIS model development. Besides, a notable criticism about ANFIS as a prediction tool is that it does not provide practical prediction equations. To tackle this issue, the obtained optimal ANFIS model is represented as a tractable equation which can be used via spread sheet software or hand calculations to provide precise predictions of Pu with the calculated correlation coefficient of 0.96 between predicted and experimental values for all of the data in this study. Considering several criteria, it is represented that the proposed model is able to estimate the output with a high degree of accuracy as compared to those results obtained by some direct CPT-based methods in the literature. Furthermore, in order to assess the capability of the proposed model from geotechnical engineering viewpoints, sensitivity and parametric analyses are done.  相似文献   

4.
This paper presents simplified dilatometer test (DMT)-based methods for evaluation of liquefaction resistance of soils, which is expressed in terms of cyclic resistance ratio (CRR). Two DMT parameters, horizontal stress index (KD) and dilatometer modulus (ED), are used as an index for assessing liquefaction resistance of soils. Specifically, CRR–KD and CRR–ED boundary curves are established based on the existing boundary curves that have already been developed based on standard penetration test (SPT) and cone penetration test (CPT). One key element in the development of CRR–KD and CRR–ED boundary curves is the correlations between KD (or ED) and the blow count (N) in the SPT or cone tip resistance (qc) from the CPT. In this study, these correlations are established through regression analysis of the test results of SPT, CPT, and DMT conducted side-by-side at each of five sites selected. The validity of the developed CRR–KD and CRR–ED curves for evaluating liquefaction resistance is examined with published liquefaction case histories. The results of the study show that the developed DMT-based models are quite promising as a tool for evaluating liquefaction resistance of soils.  相似文献   

5.
The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using 2D elasto-plastic finite element analysis. Slippage and shear-load transfer behavior at the pile–soil interface are investigated by using a user-subroutine interface model (FRIC). It is shown that the coupled soil resistance acts as pile-toe settlement as the shaft resistance is increased to its ultimate limit state. Based on the results obtained, the coupling effect is closely related to the ratio of the pile diameter to soil modulus (D/Es) and the ratio of total shaft resistance against total applied load (Rs/Q). Through comparison with field case studies, the 2D numerical analysis reasonably estimated load transfer of pile and coupling effect, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.  相似文献   

6.
Standard Penetration Test(SPT) and Cone Penetration Test(CPT) are the most frequently used field tests to estimate soil parameters for geotechnical analysis and design.Numerous soil parameters are related to the SPT N-value.In contrast,CPT is becoming more popular for site investigation and geotechnical design.Correlation of CPT data with SPT N-value is very beneficial since most of the field parameters are related to SPT N-values.A back-propagation artificial neural network(ANN) model was developed to predict the N6o-value from CPT data.Data used in this study consisted of 109 CPT-SPT pairs for sand,sandy silt,and silty sand soils.The ANN model input variables are:CPT tip resistance(q_c),effective vertical stress(σ'_v),and CPT sleeve friction(f_s).A different set of SPT-CPT data was used to check the reliability of the developed ANN model.It was shown that ANN model either under-predicted the N_(60)-value by 7-16%or over-predicted it by 7-20%.It is concluded that back-propagation neural networks is a good tool to predict N_(60)-value from CPT data with acceptable accuracy.  相似文献   

7.
Zhou  Jia-jin  Yu  Jian-lin  Gong  Xiao-nan  El Naggar  M. Hesham  Zhang  Ri-hong 《Acta Geotechnica》2021,16(10):3327-3338

This paper presents the results of field tests performed to investigate the compressive bearing capacity of pre-bored grouted planted (PGP) pile with enlarged grout base focusing on its base bearing capacity. The bi-directional O-cell load test was conducted to evaluate the behavior of full scale PGP piles. The test results show that the pile head displacements needed to fully mobilize the shaft resistance were 5.9% and 6.4% D (D is pile diameter), respectively, of two test piles, owing to the large elastic shortening of pile shaft. Furthermore, the results demonstrated that the PHC nodular pile base and grout body at the enlarged base could act as a unit in the loading process, and the enlarged grout base could effectively promote the base bearing capacity of PGP pile through increasing the base area. The normalized base resistances (unit base resistance/average cone base resistance) of two test piles were 0.17 and 0.19, respectively, when the base displacement reached 5% Db (Db is pile base diameter). The permeation of grout into the silty sand layer under pile base increased the elastic modulus of silty sand, which could help to decrease pile head displacement under working load.

  相似文献   

8.
Han  Fei  Ganju  Eshan  Salgado  Rodrigo  Prezzi  Monica 《Acta Geotechnica》2019,14(6):1785-1803

Slow-maintained static load tests were performed on closed-ended and open-ended steel pipe piles driven side by side in a gravelly sand soil profile. The site investigation consisted of multiple cone penetration tests (CPTs) and standard penetration tests (SPTs), as well as laboratory tests on soil samples collected at various depths from the test site to determine basic soil properties. The test piles were densely instrumented with a combination of electrical-resistance and vibrating-wire strain gauges. The open-ended test pile was a specially fabricated double-wall, fully-instrumented pile, allowing for separation of the measurements of the inner and outer shaft resistances. Detailed comparison of the load test results, in terms of driving resistance, load response and profiles of unit shaft and base resistances for the two test piles, is presented and discussed. The applicability of three CPT-based pile design methods is assessed through a layer-by-layer comparison of the estimated resistances with those measured in the static load tests.

  相似文献   

9.
Guo  Zhengyang  Khidri  Mujtaba  Deng  Lijun 《Acta Geotechnica》2019,14(6):1843-1856

Unlike conventional grouted micropiles, screw micropiles have been recently introduced to the foundation industry. Full-scale field tests of screw micropiles were carried out at a cohesive soil site. The screw micropiles have a diameter varying from 76 to 114 mm and a length varying from 1.6 to 3 m, and spiral threads welded on the lower half of the steel tubular shaft. Site investigation from cone penetration tests (CPT) and laboratory testing implies that the soil was medium to stiff, low plasticity clay. Six axial monotonic and three axial cyclic load tests were performed on three micropiles. One micropile was instrumented with strain gauges to investigate the shaft load distribution during loading. The axial cyclic loading was intended to simulate cyclic inertia load during vertical ground motions. Results showed that the micropiles behave as frictional piles during monotonic tests; the unit shaft resistance and adhesion coefficient were calculated and compared with results in the literature. The end installation torque was estimated using CPT shaft resistance and was shown to agree reasonably with the measured torque. Under axial cyclic loading, the micropiles underwent small cumulative displacements and the magnitude of the displacement decreased with increasing pile length and diameter. Cyclic loading redistributed the load transfer along different segments of the micropile. Negative skin resistance was observed along the smooth pile shaft when the pile underwent decreasing axial loading.

  相似文献   

10.
In this paper, the CPT-based predicted ultimate pile resistances (Rp) were compared with the measured pile resistances (Rm) at different elapsed time for the piles driven into saturated soft clays where piles displayed significant set-up effect. The measured pile resistances were based on 115 restrike records collected from 95 production piles, and 74 records of 9 tested piles. The predicted ultimate pile resistances were calculated from the LCPC, the Schmertmann, and the de Ruiter–Beringen methods, respectively. With the significant pile set-up effect taken into account, the relationship between measured resistances and predicted capacities at different times after pile installation were investigated. The ratios of the measured pile resistances to the predicted capacities scattered in a large spectrum. The ratios fluctuated and stayed within a range of 0.6–1.6 for different CPT methods since end of initial driving until more than 2 months after pile installation. Plots of the ratios versus the predicted pile capacities using different CPT methods have revealed that the ratio (Rm/Rp) presented a strong dependence on the predicted capacities. Great research efforts have been devoted to the analyses of the ratios of the 24-h measured resistance to the predicted capacity based on different CPT methods, in an attempt to find a feasible empirical correlation. It is found that a simple linear relationship exists between the quad root of the ratio and the predicted capacity. The developed empirical equations will give pile foundation engineers an insight into the ultimate resistances of driven piles demonstrating significant pile set-up effects. Pile set-up makes pile resistances grow with time, and it might be one of the reasons that cause the frequently reported large discrepancy between calculated static capacity and measured resistance at a certain time after pile installation.  相似文献   

11.
The paper considers two techniques to model the Cone Penetration Test (CPT) end resistance, qc in a dense sand deposit using commercial finite element programmes. In the first approach, Plaxis was used to perform spherical cavity expansion analyses at multiple depths. Two soil models, namely; the Mohr–Coulomb (MC) and Hardening Soil (HS) models were utilized. When calibrated using simple laboratory element tests, the HS model was found to provide good estimates of qc. However, at shallow depths, where the over-consolidation ratio of the sand was highest, the relatively large horizontal stresses developed prevented the full development of the failure zone resulting in under-estimation of the qc value. The second approach involved direct simulation of cone penetration using a large-strain analysis implemented in Abaqus/Explicit. The Arbitrary Lagrangian Eulerian (ALE) technique was used to prevent excessive mesh deformation. Although the Druker–Prager soil model used was not as sophisticated as the HS model, excellent agreement was achieved between the predicted and measured qc profiles.  相似文献   

12.
Osterberg-Cell (O-Cell) tests are widely used to predict the load–settlement behavior of large-diameter drilled shafts socketed in rock. The loading direction of O-Cell tests for shaft resistance is opposite to that of conventional downward load tests, meaning that the equivalent top load–settlement curve determined by the summation of the mobilized shaft resistance and end bearing at the same deflection neglects the pile-toe settlement caused by the load transmitted along the pile shaft. The emphasis is on quantifying the effect of coupled shaft resistance, which is closely related to the ratios of pile diameter to soil modulus (D/Es) and total shaft resistance to total applied load (Rs/Q) in rock-socketed drilled shafts, using the coupled load-transfer method. The proposed analytical method, which takes into account the effect of coupled shaft resistance, was developed using a modified Mindlin’s point load solution. Through comparisons with field case studies, it was found that the proposed method reasonably estimated the load-transfer behavior of piles and coupling effects due to the transfer of shaft shear loading. These results represent a significant improvement in the prediction of load–settlement behaviors of drilled shafts subjected to bi-directional loading from the O-Cell test.  相似文献   

13.

This paper examines the effect of heavy tamping (dynamic compaction) on highly porous structured residual clayey soil. The aim of this study is to analyse the feasibility of this technique when applied on lightly bonded residual soil sites, which are commonly found in tropical and subtropical regions. This soil has some interesting characteristics, such as high fine grain soil percentages (56% clay and 22% silt), a plastic index of 11%, high porosity (initial void ratio of 1.21), high hydraulic conductivity (about 10?5 m/s) and a high stiffness at small strains (E?=?49.2-MPa). The research involves field [Cone Penetration Test (CPT) and the dynamic compaction] and laboratory (triaxial tests, characterization and hydraulic conductivity) investigation. According to laboratory tests, the void ratio decreased to 0.96, hydraulic conductivity decreased to 2.8?×?10?7 m/s, the effective peak friction angle (?′) increased from 30.5° (in natural conditions) to about 35.5°, and the triaxial stiffness at small strains decreased to E?=?20-MPa due to dynamic compaction. CPT results have shown an improved depth in which CPT tip strength (qt) increased from nearly 650-kPa to an average of 1700-kPa and CPT sleeve friction (fs) increased from approximately 50-kPa to about 130-kPa. Horizontal displacements were observed up to about 4.0 m of depth (approximately the same depth at which CPT results showed soil improvement). It was concluded that heavy tamping reduces soil voids and substantially increases soil strength, but also breaks soil structure and decreases soil stiffness. It is thus not a suitable ground improvement solution for highly porous structured residual clayey soil.

  相似文献   

14.
In this paper research was presented on the development of a growth-rate-dependent model for pile set-up prediction using the restrike and static/statnamic load testing data collected from different projects. The data included: a) restrike records from ninety-five production piles and restrike and load test results of nine instrumented piles driven in soft clays from the relocation project of Highway No. 1 in Louisiana (LA-1); and b) restrike and static load testing data of five fully instrumented square PPC piles driven at four different bridge sites in various soil layers from sands to clays in Florida. Research effort was focused on the prediction of the ultimate shaft resistances with pile set-up formulated using the pile resistance growth rate-dependent model. The timeframe of interest was studied for a practical set-up magnitude such as 90% of the ultimate shaft resistance (Q90). As an application of the rate-dependent model, it was found that piles at the LA-1 relocation project, in general, reached about 95% of the ultimate shaft resistances at the time of 2 weeks after pile installation. The strategy of incorporation of pile set-up in adjusting pile driving criteria or/and design during pile construction, such as the experience-based plan of a two-week waiting period adopted by Louisiana DOTD, was investigated and justified.  相似文献   

15.
Twelve methods to determine axial pile capacity directly based on cone penetration test (CPT) and piezocone penetration test (CPTU) data are presented, compared and evaluated. Analyses and evaluation were conducted on three types of piles of different size and length. All the tested piles have failed at the end of static load test. Both the CPT methods and the CPTU methods were used to estimate the load bearing capacities of the investigated piles (Qp). The static load test was performed to determine the measured load bearing capacities (Qm). The pile capacities determined through different methods were compared with the measured values obtained from the static load tests. Two criteria were selected as bases of evaluation: the best fit line for Qp versus Qm and the arithmetic mean and standard deviation for the ratio Qp/Qm. Results of the analyses showed that the best methods for determining pile capacity are the two CPTU methods. Furthermore, the CPTU method is simple, easy to apply, and not influenced by the subjective judgements of operating staff. Therefore, it is quite suitable for the application in pile engineering practice.  相似文献   

16.
Accurately predicting pile shaft resistance when designing pile foundations is necessary for ensuring appropriate structural and serviceability performance. The scope of this research includes four main components: (I) compiling shaft resistance datasets obtained from the published literature; (II) developing two artificial neural network (ANN) and non-linear multi regression models for predicting pile shaft resistance using cone penetration test (CPT) results; (III) investigating the influence of input parameters on the resulting shaft friction and their degrees of importance; and (IV) assessing the relative accuracies of the presented models using a number of traditional methods. It is quantitatively demonstrated that the ANN and non-linear multiple regression models proposed in the current study out perform the traditional methods and can be used by engineers to accurately predict pile shaft resistance.  相似文献   

17.
Separation of the effects of initial horizontal stress and relative density on cone tip resistance in sandy soils has been a complicated issue for many years. In order to overcome this problem, a numerical modeling of CPT which has been verified by calibration chamber tests, has been used in this paper to achieve a reliable analytical solution. The analytical solution has resulted in two relationships for sleeve friction and cone tip resistance in terms of the initial conditions of sandy soil. Based on the presented solution, the initial horizontal stress and relative density can be determined according to CPT measurements.  相似文献   

18.
This paper presents the results of three-dimensional, finite element analyses performed with an advanced, two-surface-plasticity, constitutive sand model to investigate the response of non-displacement piles to axial loading. The analysis domain is carefully meshed such that the formation and evolution of shear bands next to the pile shaft and near the pile base can be properly captured. Analyses considering various soil profiles and pile geometries show that the mobilized lateral earth pressure coefficient K along the pile shaft increases with increasing relative density and decreasing initial confining stress. The ultimate unit base resistance is independent of pile diameter, increasing with increasing relative density and increasing initial confining stress at the pile base. Based on the analysis results, design equations are proposed to estimate the limit shaft resistance and ultimate base resistance of non-displacement piles in sandy soil. In proposing these relationships, the pile slenderness ratio is considered. The effect of layer proximity to the base of the pile or pile base embedment in a layer is also considered.  相似文献   

19.
A cavity expansion–based solution is proposed in this paper for the interpretation of CPTu data under a partially drained condition. Variations of the normalized cone tip resistance, cone factor, and undrained-drained resistance ratio are examined with different initial specific volume and overconsolidation ratio, based on the exact solutions of both undrained and drained cavity expansion in CASM, which is a unified state parameter model for clay and sand. A drainage index is proposed to represent the partially drained condition, and the critical state after expansion and stress paths of cavity expansion are therefore predicted by estimating a virtual plastic region and assuming a drainage-index–based mapping technique. The stress paths and distributions of stresses and specific volume are investigated for different values of drainage index, which are also related to the penetration velocity with comparisons of experimental data and numerical results. The subsequent consolidation after penetration is thus predicted with the assumption of constant deviatoric stress during dissipation of the excess pore pressure. Both spherical and cylindrical consolidations are compared for dissipation around the cone tip and the probe shaft, respectively. The effects of overconsolidation ratio on the stress paths and the distributions of excess pore pressure and specific volume are then thoroughly investigated. The proposed solution and the findings would contribute to the interpretation of CPTu tests under a random drained condition, as well as the analysis of pile installation and the subsequent consolidation.  相似文献   

20.
This paper presents the pseudo-dynamic analysis to determine the seismic vertical uplift capacity of a horizontal strip anchor using upper bound limit analysis. However, in the literature, the pseudo-static approach was used by few researchers to compute the seismic vertical pullout resistance, where the real dynamic nature of earthquake accelerations cannot be considered. Under the seismic conditions, the values of the unit weight component of uplift factor fγE are determined for different magnitudes of soil friction angle, soil amplification, embedment ratio and seismic acceleration coefficients both in the horizontal and vertical directions. It is observed that the uplift factor fγE decreases significantly with the increase in seismic accelerations and amplification but increases with the increase in embedment ratio. The results are compared with the existing values in the literature and the significance of the present methodology for designing the horizontal strip anchor is discussed. In presence of vertical earthquake acceleration and amplification of vibration, the present values of fγE compare reasonably well with the existing pseudo-static values obtained by modifying the horizontal acceleration coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号