首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171–175 m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175–180 mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.  相似文献   

2.
Existence of gas-hydrate in the marine sediments elevates both the P- and S-wave seismic velocities, whereas even a small amount of underlying free-gas decreases the P-wave velocity considerably and the S-wave velocity remains almost unaffected. Study of both P- and S-wave seismic velocities or their ratio (VP/VS) for the hydrate-bearing sediment provides more information than that obtained by the P- or S-wave velocity alone for the quantitative assessment of gas-hydrate. We estimate the P- and S-wave seismic velocities across a BSR (interface between gas-hydrate and free-gas bearing sediments) using the travel time inversion followed by a constrained AVA modeling of multi channel seismic (MCS) data at two locations in the Makran accretionary prism. Using this VP/VS ratio, we then quantify the amount of gas-hydrate and free-gas based on two rock-physics models. The result shows an estimate of 12–14.5% gas-hydrate and 4.5–5.5% free-gas of the pore volume based on first model, and 13–20% gas-hydrate and 3–3.5% free-gas of the pore volume based on the second model, respectively.  相似文献   

3.
Gas hydrates have been identified from two-dimensional (2D) seismic data and logging data above bottom simulating reflector (BSR) during China’s first gas hydrate drilling expedition in 2007. The multichannel reflection seismic data were processed to be preserved amplitudes for quantitatively analyzing amplitude variation with offset (AVO) at BSRs. Low P-wave velocity anomaly below BSR, coinciding with high amplitude reflections in 2D seismic data, indicates the presence of free gas. The absolute values of reflection coefficient versus incidence angles for BSR range from 0 to 0.12 at different CMPs near Site SH2. According to logging data and gas hydrate saturations estimated from resistivity of Site SH2, P-wave velocities calculated from effective media theory (EMT) fit the measured sonic velocities well and we choose EMT to calculate elastic velocities for AVO. The rock-physics modeling and AVO analysis were combined to quantitatively assess free gas saturations and distribution by the reflection coefficients variation of the BSRs in Shenhu area, South China Sea. AVO estimation indicates that free gas saturations immediately beneath BSRs may be about 0.2 % (uniform distribution) and up to about 10 % (patchy distribution) at Site SH2.  相似文献   

4.
High-quality logging-while-drilling (LWD) downhole logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. Well logs obtained in one of the wells, the Green Canyon Block 955 H well (GC955-H), indicate that a 27.4-m thick zone at the depth of 428 m below sea floor (mbsf; 1404 feet below sea floor (fbsf)) contains gas hydrate within sand with average gas hydrate saturations estimated at 60% from the compressional-wave (P-wave) velocity and 65% (locally more than 80%) from resistivity logs if the gas hydrate is assumed to be uniformly distributed in this mostly sand-rich section. Similar analysis, however, of log data from a shallow clay-rich interval between 183 and 366 mbsf (600 and 1200 fbsf) yielded average gas hydrate saturations of about 20% from the resistivity log (locally 50−60%) and negligible amounts of gas hydrate from the P-wave velocity logs. Differences in saturations estimated between resistivity and P-wave velocities within the upper clay-rich interval are caused by the nature of the gas hydrate occurrences. In the case of the shallow clay-rich interval, gas hydrate fills vertical (or high angle) fractures in rather than filling pore space in sands. In this study, isotropic and anisotropic resistivity and velocity models are used to analyze the occurrence of gas hydrate within both the clay-rich and sand dominated gas-hydrate-bearing reservoirs in the GC955-H well.  相似文献   

5.
We investigate the estimation of gas hydrate and free gas concentration using various rock physics models in the Cascadia accretionary prism, which is one of the most intensively studied regions of natural gas hydrate occurrences. Surface seismic reflection data is the most useful and cost-effective in deriving seismic velocity, and hence estimating gas hydrate and free gas across a BSR with depth, if a proper background (without gas hydrate and free gas) velocity is chosen. We have used effective medium theory of Helgerud et al. (EMTH) and, a combination of self-consistent approximation and differential effective medium (SCA-DEM) theory coupled with smoothing approximation for crystalline aggregate. Using the SCA-DEM (non-load-bearing) and EMTH (load-bearing) modeling, we calculate the average saturations of gas hydrate as 17 and 19%, respectively within ~100 m thick sedimentary column using velocity, derived from the surface seismic data. The saturations of gas hydrate are estimated as 15 and 18% using the SCA-DEM, and 20 and 25% using EMTH from the logging-while-drilling and wire-line sonic velocities, respectively. Estimations of gas hydrate from Poisson’s ratio are in average 50% for EMTH and 10% for SCA-DEM theory. We obtain the maximum saturation of free gas as 1–2% by employing the SCA-DEM theory either to seismic or sonic velocities, whereas the free-gas saturation varies between 0.1 and 0.4% for EMTH model. The gas hydrate saturation estimated from the sonic velocity and the free gas saturation derived from both the seismic and sonic velocities using the SCA-DEM modeling match quite well with those determined from the pressure core data in the study region.  相似文献   

6.
《Marine and Petroleum Geology》2012,29(10):1768-1778
During the Indian National Gas Hydrate Program (NGHP) Expedition 01, a series of well logs were acquired at several sites across the Krishna–Godavari (KG) Basin. Electrical resistivity logs were used for gas hydrate saturation estimates using Archie’s method. The measured in situ pore-water salinity, seafloor temperature and geothermal gradients were used to determine the baseline pore-water resistivity. In the absence of core data, Arp’s law was used to estimate in situ pore-water resistivity. Uncertainties in the Archie’s approach are related to the calibration of Archie coefficient (a), cementation factor (m) and saturation exponent (n) values. We also have estimated gas hydrate saturation from sonic P-wave velocity logs considering the gas hydrate in-frame effective medium rock-physics model. Uncertainties in the effective medium modeling stem from the choice of mineral assemblage used in the model. In both methods we assume that gas hydrate forms in sediment pore space. Combined observations from these analyses show that gas hydrate saturations are relatively low (<5% of the pore space) at the sites of the KG Basin. However, several intervals of increased saturations were observed e.g. at Site NGHP-01-03 (Sh = 15–20%, in two zones between 168 and 198 mbsf), Site NGHP-01-05 (Sh = 35–38% in two discrete zone between 70 and 90 mbsf), and Site NGHP-01-07 shows the gas hydrate saturation more than 25% in two zones between 75 and 155 mbsf. A total of 10 drill sites and associated log data, regional occurrences of bottom-simulating reflectors from 2D and 3D seismic data, and thermal modeling of the gas hydrate stability zone, were used to estimate the total amount of gas hydrate within the KG Basin. Average gas hydrate saturations for the entire gas hydrate stability zone (seafloor to base of gas hydrate stability), sediment porosities, and statistically derived extreme values for these parameters were defined from the logs. The total area considered based on the BSR seismic data covers ∼720 km2. Using the statistical ranges in all parameters involved in the calculation, the total amount of gas from gas hydrate in the KG Basin study area varies from a minimum of ∼5.7 trillion-cubic feet (TCF) to ∼32.1 TCF.  相似文献   

7.
Through the use of 3-D seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ∼2 ohm-m and P-wave velocity in the range of ∼1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gas hydrate in the logged sand interval, mainly because large washouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gas hydrate saturations in the sedimentary section drilled in the Alaminos Canyon 21 B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gas hydrate saturation in the target sand section in the AC21-B well can be constrained to the range of 8–28%, with 20% being our best estimate.  相似文献   

8.
9.
Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea   总被引:1,自引:0,他引:1  
Geophysical surveys and geological studies of gas hydrates in the western deep-water Ulleung Basin of the East Sea off the east coast of Korea have been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2000. The work included a grid of 4782 km of 2D multi-channel seismic reflection lines and 11 piston cores 5–8 m long. In the piston cores, cracks generally parallel to bedding suggest significant in-situ gas. The cores showed high amounts of total organic carbon (TOC), and from the southern study area showed high residual hydrocarbon gas concentrations. The lack of higher hydrocarbons and the carbon isotope ratios indicate that the methane is primarily biogenic. The seismic data show areas of bottom-simulating reflectors (BSRs) that are associated with gas hydrates and underlying free gas. An important observation is the numerous seismic blanking zones up to 2 km across that probably reflect widespread fluid and gas venting and that are inferred to contain substantial gas hydrate. Some of the important results are: (1) BSRs are widespread, although most have low amplitudes; (2) increased P-wave velocities above some BSRs suggest distributed low to moderate concentration gas hydrate whereas a velocity decrease below the BSR suggests free gas; (3) the blanking zones are often associated with upbowing of sedimentary bedding reflectors in time sections that has been interpreted at least in part due to velocity pull-up produced by high-velocity gas hydrate. High gas hydrate concentrations are also inferred in several examples where high interval velocities are resolved within the blanking zones. Recently, gas hydrate recoveries by the piston coring and deep-drilling in 2007 support the interpretation of substantial gas hydrate in many of these structures.  相似文献   

10.
Seismic tomography is an effective means of estimating velocity and structure from multichannel seismic (MCS) reflection data. In this study we have followed a 2D approach to arrive at the probable velocity field configuration from multichannel seismic data and infer the presence of gas hydrates/free-gas in the offshore Kerala-Konkan region, along the eastern part of a seismic line on which a bottom simulating reflector (BSR) has previously been identified. Tomographic modeling consists of the identification of reflection phases and picking of respective travel times for various source-receiver positions. These picks were then utilized to arrive at a 2D velocity field following a forward and inversion approach using a ray tracing technique. The modeling for the first time brought out the finer scale velocity structure under the region of investigation. Modeling through the 2D approach shows lateral variation in velocity field along the studied segment of the seismic line. The results indicate a thin (∼50–60 m) sedimentary cover with velocity ranging from 1,770 to 1,850 m/s. A sedimentary layer with high P-wave velocity 1,980–2,100 m/s below the sea floor was interpreted as the hydrate layer. The thickness of this layer varies between 110 and 140 m. The hydrate layer is underlain by a low-velocity layer having velocities in the range 1,660–1,720 m/s. This low velocity may represent a free gas layer, whose thickness varies between 50 and 100 m located below the hydrated layer. The investigation suggests the occurrence of gas hydrate underlain by free gas in some parts of the Kerala-Konkan offshore region.  相似文献   

11.
Gas hydrate has been recognized as a potential energy resource in South China Sea (SCS). Understanding the acoustic response of gas hydrate formation in the SCS sediments is essential for regional gas hydrate investigation and quantification. The sediments were obtained from gravity core sampling at E 115°12.52363′ N 19°48.40299′. Gas hydrate was formed within a “gas + water-saturated SCS sediments” system. Combination of a new bender element technique and coated time domain reflectometry (TDR) was carried out to study the acoustic response of hydrate occurrence in SCS sediments. The results show the acoustic signal becomes weak when hydrate saturation (Sh) is lower than 14%. The acoustic velocities (Vp, Vs) of the sediments increase with Sh during hydrate formation, and Vs increases relatively faster when Sh is higher than 14%. These results indicate that tiny hydrate particles may firstly float in the pore fluid, which causes a significant acoustic attenuation, but has little influence on shear modulus. As time lapses and Sh approaches 14%, numerous particles coalesce together and contact with sediment particles. As a result, Vs has a sharp increase when hydrate saturation exceeds 14%. Several velocity models were validated with the experimental data, which suggests a combination of the BGTL (Biot–Gassmann Theory modified by Lee) model and the Weighted Equation is suitable to estimate Sh in SCS.  相似文献   

12.
13.
The passive northern continental margin of the South China Sea is rich in gas hydrates, as inferred from the occurrence of bottom-simulating reflectors (BSR) and from well logging data at Ocean Drilling Program (ODP) drill sites. Nonetheless, BSRs on new 2D multichannel seismic reflection data from the area around the Dongsha Islands (the Dongsha Rise) are not ubiquitous. They are confined to complex diapiric structures and active fault zones located between the Dongsha Rise and the surrounding depressions, implying that gas hydrate occurrence is likewise limited to these areas. Most of the BSRs have low amplitude and are therefore not clearly recognizable. Acoustic impedance provides information on rock properties and has been used to estimate gas hydrate concentration. Gas hydrate-bearing sediments have acoustic impedance that is higher than that of the surrounding sediments devoid of hydrates. Based on well logging data, the relationship between acoustic impedance and porosity can be obtained by a linear regression, and the degree of gas hydrate saturation can be determined using Archie’s equation. By applying these methods to multichannel seismic data and well logging data from the northern South China Sea, the gas hydrate concentration is found to be 3–25% of the pore space at ODP Site 1148 depending on sub-surface depth, and is estimated to be less than values of 5% estimated along seismic profile 0101. Our results suggest that saturation of gas hydrate in the northern South China Sea is higher than that estimated from well resistivity log data in the gas hydrate stability zone, but that free gas is scarce beneath this zone. It is probably the scarcity of free gas that is responsible for the low amplitudes of the BSRs.  相似文献   

14.
2D and 3D seismic reflection and well log data from Andaman deep water basin are analyzed to investigate geophysical evidence related to gas hydrate accumulation and saturation. Analysis of seismic data reveals the presence of a bottom simulating reflector (BSR) in the area showing all the characteristics of a classical BSR associated with gas hydrate accumulation. Double BSRs are also observed on some seismic sections of area (Area B) that suggest substantial changes in pressure–temperature (P–T) conditions in the past. The manifestation of changes in P–T conditions can also be marked by the varying gas hydrate stability zone thickness (200–650 m) in the area. The 3D seismic data of Area B located in the ponded fill, west of Alcock Rise has been pre-stack depth migrated. A significant velocity inversion across the BSR (1,950–1,650 m/s) has been observed on the velocity model obtained from pre-stack depth migration. The areas with low velocity of the order of 1,450 m/s below the BSR and high amplitudes indicate presence of dissociated or free gas beneath the hydrate layer. The amplitude variation with offset analysis of BSR depicts increase in amplitude with offset, a similar trend as observed for the BSR associated with the gas hydrate accumulations. The presence of gas hydrate shown by logging results from a drilled well for hydrocarbon exploration in Area B, where gas hydrate deposit was predicted from seismic evidence, validate our findings. The base of the hydrate layer derived from the resistivity and acoustic transit-time logs is in agreement with the depth of hydrate layer interpreted from the pre-stack depth migrated seismic section. The resistivity and acoustic transit-time logs indicate 30-m-thick hydrate layer at the depth interval of 1,865–1,895 m with 30 % hydrate saturation. The total hydrate bound gas in Area B is estimated to be 1.8 × 1010 m3, which is comparable (by volume) to the reserves in major conventional gas fields.  相似文献   

15.
It is very important for converting the seismic data from the time domain to the depth domain. Here we discuss the approaches of inverse modeling of travel times for determination of the P-wave velocity (Vp). The migration section of the single channel seismic data is used to define the model horizons and help to control their geometry. Wide angle hydrophone data of OBS are used to determine P-wave travel times. The picked travel times from various shots are inverted for P-wave interval velocities using RayInvr, which calculated theoretical travel times via ray tracing. Damped least squares optimization is performed to fine tune the fits between observed and calculated travel times. In the end, the Vp curve is achieved and the results are compared with that derived from the conventional hyperbolic curve velocity analysis method, the shape of the two curves are similar, and the velocity increases in the layer where gas hydrates are present.  相似文献   

16.
南海陆坡天然气水合物饱和度估计   总被引:5,自引:0,他引:5  
基于双相介质理论和热弹性理论,建立了沉积层纵波速度与天然气水合物饱和度、弹性性质及地层孔隙度之间的关系。通过对比饱和水的理论P波速度与实际P波速度,可以得到天然气水合物饱和度。根据ODP184航次的电阻率、声波速度、密度等测井资料以及地质资料,初步推断南海陆坡存在天然气水合物。根据声波测井的纵波速度估算出南海1146和1148井天然气水合物饱和度分别为孔隙空间的25%~30%和10%~20%,1148井个别沉积层天然气水合物饱和度可达40%~50%。沉积层的纵波速度与饱和水速度差值越大,天然气水合物饱和度越高。  相似文献   

17.
During the Indian National Gas Hydrate Program (NGHP) Expedition 01, a series of well logs were acquired at several sites across the Krishna–Godavari (KG) Basin. Electrical resistivity logs were used for gas hydrate saturation estimates using Archie’s method. The measured in situ pore-water salinity, seafloor temperature and geothermal gradients were used to determine the baseline pore-water resistivity. In the absence of core data, Arp’s law was used to estimate in situ pore-water resistivity. Uncertainties in the Archie’s approach are related to the calibration of Archie coefficient (a), cementation factor (m) and saturation exponent (n) values. We also have estimated gas hydrate saturation from sonic P-wave velocity logs considering the gas hydrate in-frame effective medium rock-physics model. Uncertainties in the effective medium modeling stem from the choice of mineral assemblage used in the model. In both methods we assume that gas hydrate forms in sediment pore space. Combined observations from these analyses show that gas hydrate saturations are relatively low (<5% of the pore space) at the sites of the KG Basin. However, several intervals of increased saturations were observed e.g. at Site NGHP-01-03 (Sh = 15–20%, in two zones between 168 and 198 mbsf), Site NGHP-01-05 (Sh = 35–38% in two discrete zone between 70 and 90 mbsf), and Site NGHP-01-07 shows the gas hydrate saturation more than 25% in two zones between 75 and 155 mbsf. A total of 10 drill sites and associated log data, regional occurrences of bottom-simulating reflectors from 2D and 3D seismic data, and thermal modeling of the gas hydrate stability zone, were used to estimate the total amount of gas hydrate within the KG Basin. Average gas hydrate saturations for the entire gas hydrate stability zone (seafloor to base of gas hydrate stability), sediment porosities, and statistically derived extreme values for these parameters were defined from the logs. The total area considered based on the BSR seismic data covers ∼720 km2. Using the statistical ranges in all parameters involved in the calculation, the total amount of gas from gas hydrate in the KG Basin study area varies from a minimum of ∼5.7 trillion-cubic feet (TCF) to ∼32.1 TCF.  相似文献   

18.
Seismic indicators of gas-hydrate-bearing sediments include elevated interval velocities and amplitude reduction of seismic reflections owing to the presence of gas hydrate in the sediment's pore spaces. However, large amplitude blanking with relatively low interval velocities observed at the Blake Ridge has been enigmatic because realistic seismic models were absent to explain the observation. This study proposes models in which the gas hydrate concentrations vary in proportion to the porosity. Where gas hydrate concentrations are greater in more porous media, a significant amplitude blanking can be achieved with relatively low interval velocity. Depending on the amount of gas hydrate concentration in the pore space, reflection amplitudes from hydrate-bearing sediments can be much less, less or greater than those from corresponding non-hydrate-bearing sediments. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
The bottom simulating reflector (BSR), the boundary between the gas hydrate and the free gas zone, is considered to be the most common evidence in seismic data analysis for gas hydrate exploration. Multiple seismic attribute analyses of reflectivity and acoustic impedance from the post-stack deconvolution and complex analysis of instantaneous attribute properties including the amplitude envelope, instantaneous frequency, phase, and first derivative of the amplitude of seismic data have been used to effectively confirm the existence of a BSR as the base of gas hydrate stability zone. In this paper, we consider individual seismic attribute analysis and integrate the results of those attributes to locate the position of the BSR. The outputs from conventional seismic data processing of the gas hydrate data set in the Ulleung Basin were used as inputs for multiple analyses. Applying multiple attribute analyses to the individual seismic traces showed that the identical anomalies found in two-way travel time (TWT) between 3.1 and 3.2 s from the results of complex analyses and l 1 norm deconvolution indicated the location of the BSR.  相似文献   

20.
Mass-transport-deposits (MTDs) and hemipelagic mud interbedded with sandy turbidites are the main sedimentary facies in the Ulleung Basin, East Sea, offshore Korea. The MTDs show similar seismic reflection characteristics to gas-hydrate-bearing sediments such as regional seismic blanking (absence of internal reflectivity) and a polarity reversed base-reflection identical to the bottom-simulating reflector (BSR). Drilling in 2007 in the Ulleung Basin recovered sediments within the MTDs that exhibit elevated electrical resistivity and P-wave velocity, similar to gas hydrate-bearing sediments. In contrast, hemipelagic mud intercalated with sandy turbidites has much higher porosity and correspondingly lower electrical resistivity and P-wave velocity.At drill-site UBGH1-4 the bottom half of one prominent MTD unit shows two bands of parallel fractures on the resistivity log-images indicating a common dip-azimuth direction of about ∼230° (strike of ∼140°). This strike-direction is perpendicular to the seismically defined flow-path of the MTD to the north-east. At Site UBGH1-14, the log-data suggest two zones with preferred fracture orientations (top: ∼250°, bottom: ∼130°), indicating flow-directions to the north-east for the top zone, and north-west for the bottom zone. The fracture patterns may indicate post-depositional sedimentation that gave rise to a preferred fracturing possibly linked to dewatering pathways. Alternatively, fractures may be related to the formation of pressure-ridges common within MTD units.For the interval of observed MTD units, the resistivity and P-wave velocity log-data yield gas hydrate concentrations up to ∼10% at Site UBGH1-4 and ∼25% at Site UBGH1-14 calculated using traditional isotropic theories such as Archie's law or effective medium modeling. However, accounting for anisotropic effects in the calculation to honor observed fracture patterns, the gas hydrate concentration is overall reduced to less than 5%. In contrast, gas hydrate was recovered at Site UBGH1-4 near the base of gas hydrate stability zone (GHSZ). Log-data predict gas hydrate concentrations of 10–15% over an interval of 25 m above the base of GHSZ. The sediments of this interval are comprised of the hemipelagic mud and interbedded thin sandy turbidites, which did contain pore-filling gas hydrate as identified from pore-water freshening and core infra-red imaging. Seismically, this unit reveals a coherent parallel bedding character but has overall faint reflection amplitude. This gas-hydrate-bearing interval can be best mapped using a combination of regular seismic amplitude and seismic attributes such as Shale indicator, Parallel-bedding indicator, and Thin-bed indicator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号