首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seafloor blister-like mounds, methane migration and gas hydrate formation were investigated through detailed seafloor surveys in Santa Monica Basin, offshore of Los Angeles, California. Two distinct deep-water (≥ 800 m water depth) topographic mounds were surveyed using an autonomous underwater vehicle (carrying a multibeam sonar and a chirp sub-bottom profiler) and one of these was explored with the remotely operated vehicle Tiburon. The mounds are > 10 m high and > 100 m wide dome-shaped bathymetric features. These mounds protrude from crests of broad anticlines (~ 20 m high and 1 to 3 km long) formed within latest Quaternary-aged seafloor sediment associated with compression between lateral offsets in regional faults. No allochthonous sediments were observed on the mounds, except slumped material off the steep slopes of the mounds. Continuous streams of methane gas bubbles emanate from the crest of the northeastern mound, and extensive methane-derived authigenic carbonate pavements and chemosynthetic communities mantle the mound surface. The large local vertical displacements needed to produce these mounds suggests a corresponding net mass accumulation has occurred within the immediate subsurface. Formation and accumulation of pure gas hydrate lenses in the subsurface is proposed as a mechanism to blister the seafloor and form these mounds.  相似文献   

2.
The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene–Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.  相似文献   

3.
《Marine Geology》2005,216(4):265-274
Magnetic susceptibility measurements on near-surface sediment cores from the North Cascadia accretionary sedimentary prism show that seismic blanking or wipe-out zones in the upper few hundred metres of sediments are associated with a prominent low magnetic susceptibility signature. Seismic blanking and low magnetization are both attributed to high upward methane flux within a vent zone, as evidenced by the presence of massive gas hydrate within the cores. Sedimentological analysis of these cores also reveals the presence of authigenic pyrite within the areas of magnetic susceptibility lows. This phenomenon is suspected to be produced by the reducing environment associated with the high upward methane flux and increased bacterial activity within the topmost sediments, resulting in diagenesis of highly magnetic detrital minerals such as magnetite into nearly non-magnetic pyrite. These low magnetic susceptibility zones may produce magnetic anomalies with a magnitude of 10–35 nT near the seafloor. Such anomalies might be detected using high-resolution near-bottom magnetometers to provide a means of mapping zones of methane venting.  相似文献   

4.
Integrated geological, geochemical, and geophysical exploration since 2004 has identified massive accumulation of gas hydrate associated with active methane seeps on the Umitaka Spur, located in the Joetsu Basin on the eastern margin of Japan Sea. Umitaka Spur is an asymmetric anticline formed along an incipient subduction zone that extends throughout the western side of the Japanese island-arc system. Seismic surveys recognized chimney structures that seem strongly controlled by a complex anticlinal axial fault system, and exhibit high seismic amplitudes with apparent pull-up structures, probably due to massive and dense accumulation of gas hydrate. Bottom simulating reflectors are widely developed, in particular within gas chimneys and in the gently dipping eastern flank of the anticline, where debris can store gas hydrates that may represent a potential natural gas resource. The axial fault system, the shape of the anticline, and the carrier beds induce thermogenic gas migration to the top of the structure, and supply gas to the gas hydrate stability zone. Gas reaching the seafloor produces strong seepages and giant plumes in the sea water column.  相似文献   

5.
天然气水合物目前已经成为世界范围的一个研究热点,而我国的天然气水合物研究起步则相对较晚,通过阅读国内外有关文献,总结了天然气水合物在海底的分布特征,聚集和形成机制,产状及其形成机理,甲烷羽的形成过程,天然气水合物在沉积物中的聚集位置通常有两种情况:一是较浅的沉积物(海底以下几米)中,受控于泥底辟,泥火山,断层等;二是较深的沉积物(海底以下几十米,甚至更深)中,受控于流体,当断层延伸至海底时,通常在水合物聚集处的上部发现甲烷羽,天然气以溶解气,游离气或分子扩散的形式运移,在温,压适宜的沉积物中,即水合物稳定带内聚集并形成水合物,水合物的形成过程是:最初形成晶体,呈分散状分布于沉积物中,之后逐渐聚集,生长成结核状,层状,最后形成块状,在细粒的浅层沉积物中,通常以较慢的速度生长,形成分散状的水合物;而在粗粒沉积物中,水合物通常呈填隙状,并且这种产状可能位于较深层位中,我国南海在温度,压力,构造条件,天然气来源等方面都能满足天然气水合物的形成条件,并且在南海也发现了一些水合物存在的标志,如似海底反射层(BSR)以及孔隙水中氯离子浓度的降低。因此,天然气水合物在我国南海海域可能有很好的前景。  相似文献   

6.
To what extent methane liberated from marine hydrate will enter the ocean during a warmer world is unknown. Although methane release due to hydrate dissociation has been modelled, it is unclear whether or not methane will reach the seafloor during a warmer world and therefore contribute to oceanic and atmospheric budgets. Here we show, using a new three-dimensional (3-D) seismic dataset, that some hydrate deposits surround the gas chimneys passing through the HSZ. Bottom water warming since the last glacial maximum (LGM) is interpreted to cause hydrate dissociation but critically some of the released methane was not vented to the ocean. The released gas caused seal failure and free gas entered the hydrate stability zone (HSZ) through vertical gas chimneys to where new hydrate accumulations formed. This process is a new evidence for methane recycling and could account in part for the lack of methane in ice core records that cover warming events during the late Quaternary. This research provides new insight into how methane could be recycled rather than vented during a warmer world.  相似文献   

7.
Natural gas hydrates is considered as a strategic unconventional clean hydrocarbon resource in the energy sector. Understanding the behavior of the rising methane gas bubbles during production leaks from the deep marine gas hydrate reservoirs well head is essential for environmental impact studies and to design environmental monitoring systems. Numerical model for quantitatively characterizing the vertical dissolution pattern of the wellhead released methane gas bubbles is analyzed for three potential gas hydrate locations in India. Simulation results indicate that the methane bubbles with diameter of 10?mm can transport methane gas till 650, 800, and 750?m from the seabed in the Krishna–Godavari(KG), Mahanadi and Andaman basins respectively. Results brought out that potential well head damage during methane hydrate production at 1050?m water depth could release up to 28?m3 of methane gas, in which 50% of the molar mass shall get dissolved within 40?m of water column from the seafloor.  相似文献   

8.
Abstract

Where undissolved gas occurs within fine‐grained marine sediments it usually takes the form of discrete bubbles that are much larger than the normal void spaces. The possibility of buoyancy‐induced movement of these relatively large bubbles must be included when considering the transport of gas through marine sediments. A theoretical analysis shows that, under static loading conditions, bubbles larger than a critical size should have sufficient buoyancy to move upward through a fine‐grained sediment stratum, whereas bubbles smaller than the critical size should remain fixed in position. The critical radius is directly proportional to sediment shear strength, and bubbles of a realistic size should move upward only in extremely weak sediments. Further theoretical analysis shows that the critical bubble size is reduced under cyclic loading conditions, but movement of typical‐sized bubbles should still be restricted to sediments of low shear strength. A simple laboratory experiment provides support for the conclusions of the theoretical analysis. The results indicate that buoyancy‐induced movement of relatively large gas bubbles in fine‐grained sediments is most likely to occur under storm loading conditions and is unlikely to occur at depths greater than a few meters below the seabed.  相似文献   

9.
This study is a synthesis of gas-related features in recent sediments across the western Black Sea basin. The investigation is based on an extensive seismic dataset, and integrates published information from previous local studies. Our data reveal widespread occurrences of seismic facies indicating free gas in sediments and gas escape in the water column. The presence of gas hydrates is inferred from bottom-simulating reflections (BSRs). The distribution of the gas facies shows (1) major gas accumulations close to the seafloor in the coastal area and along the shelfbreak, (2) ubiquitous gas migration from the deeper subsurface on the shelf and (3) gas hydrate occurrences on the lower slope (below 750 m water depth). The coastal and shelfbreak shallow gas areas correspond to the highstand and lowstand depocentres, respectively. Gas in these areas most likely results from in situ degradation of biogenic methane, probably with a contribution of deep gas in the shelfbreak accumulation. On the western shelf, vertical gas migration appears to originate from a source of Eocene age or older and, in some cases, it is clearly related to known deep oil and gas fields. Gas release at the seafloor is abundant at water depths shallower than 725 m, which corresponds to the minimum theoretical depth for methane hydrate stability, but occurs only exceptionally at water depths where hydrates can form. As such, gas entering the hydrate stability field appears to form hydrates, acting as a buffer for gas migration towards the seafloor and subsequent escape.  相似文献   

10.
Except for those occurring at seafloor, most of natural gas hydrate form in sediments and are subject to the influence of sediment. Among these factors, the particle size effect on hydrate saturation level in sediment have been studied with a series of silica sands with various sizes, and the results obtained clearly indicate that particle size does play an important role in affecting the saturation level of hydrate in sediments. The proton relaxation times of water confined in the same series of silica sands, which were determined with NMR measurement, show logarithmic relationship with particle size. By comprehensive consideration of the results of hydrate saturation and water proton relaxation times, the particle size effect observed is tentatively explained by the water availability for hydrate formation in sediments.  相似文献   

11.
We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and δ13C-CH4 values of ?50.6‰. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas–sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO 4 2? and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.  相似文献   

12.
Pockmarks form where fluids discharge through seafloor sediments rapidly enough to make them quick, and are common where gas is present in near-seafloor sediments. This paper investigates how gas might lead to pockmark formation. The process is envisioned as follows: a capillary seal traps gas beneath a fine-grained sediment layer or layers, perhaps layers whose pores have been reduced in size by hydrate crystallization. Gas accumulates until its pressure is sufficient for gas to invade the seal. The seal then fails completely (a unique aspect of capillary seals), releasing a large fraction of the accumulated gas into an upward-propagating gas chimney, which displaces water like a piston as it rises. Near the seafloor the water flow causes the sediments to become “quick” (i.e., liquefied) in the sense that grain-to-grain contact is lost and the grains are suspended dynamically by the upward flow. The quickened sediment is removed by ocean-bottom currents, and a pockmark is formed. Equations that approximately describe this gas–piston–water-drive show that deformation of the sediments above the chimney and water flow fast enough to quicken the sediments begins when the gas chimney reaches half way from the base of its source gas pocket to the seafloor. For uniform near-surface sediment permeability, this is a buoyancy control, not a permeability control. The rate the gas chimney grows depends on sediment permeability and the ratio of the depth below seafloor of the top of the gas pocket to the thickness of the gas pocket at the time of seal failure. Plausible estimates of these parameters suggest gas chimneys at Blake Ridge could reach the seafloor in less than a decade or more than a century, depending mainly on the permeability of the deforming near-surface sediments. Since these become quick before gas is expelled, gas venting will not provide a useful warning of the seafloor instabilities that are related to pockmark formation. However, detecting gas chimney growth might be a useful risk predictor. Any area underlain by a gas chimney that extends half way or more to the surface should be avoided.  相似文献   

13.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   

14.
A mound related to a cold vent in a columnar seismic blanking zone (CSBZ) was formed around site UBGH1-10 in the central Ulleung Basin (2077 m water depth), East Sea, Korea. The mound is 300–400 m wide and 2–3 m high according to multi-beam bathymetry, 2–7 kHz sub-bottom profiler data, and multi-channel reflection seismic data. Seafloor topography and characteristics were investigated using a remotely operated vehicle (ROV) around site UBGH1-10, which is located near the northern part of the mound. The origin of the mound was investigated through lithology, mineralogy, hydrate occurrence, and sedimentary features using dive cores, piston cores, and a deep-drilling core. The CSBZ extends to ∼265 ms two-way traveltime (TWT) below the seafloor within a mass-transport deposit (MTD) unit. Gas hydrate was entirely contained 6–141 m below the seafloor (mbsf) within hemipelagic deposits intercalated with a fine-grained turbidite (HTD) unit, characteristically associated with high resistivity values at site UBGH1-10. The hydrate is commonly characterized by veins, nodules, and massive types, and is found within muddy sediments as a fracture-filling type. Methane has been produced by microbial reduction of CO2, as indicated by C1/C2+, δ13CCH4, and δD4CH analyses. The bowl-shaped hydrate cap revealed at 20–45 ms TWT below the seafloor has very high resistivity and high salinity, suggesting rapid and recent gas hydrate formation. The origin of the sediment mound is interpreted as a topographic high formed by the expansion associated with the formation of the gas hydrate cap above the CSBZ. The lower sedimentation rate of the mound sediments may be due to local enhancement of bottom currents by topographic effects. In addition, no evidence of gas bubbles, chemosynthetic communities, or bacterial mats was observed in the mound, suggesting an inactive cold vent.  相似文献   

15.
A previously unsuspected source of fuel for the global firestorm recorded by soot in the Cretaceous–Tertiary impact layer may have resided in methane gas associated with gas hydrate in the end-Cretaceous seafloor. End-Cretaceous impact-generated shock and megawaves would have had the potential to initiate worldwide oceanic methane gas blow-outs from these deposits. The methane would likely have ignited and incompletely combusted. This large burst of methane would have been followed by longer-term methane release as a part of a positive thermal feedback in the disturbed ocean-atmosphere system.  相似文献   

16.
Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (≤ 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations.In combination with δ13C- and δD-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1–2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6 m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.  相似文献   

17.
Pockmarks are observed worldwide along the continental margins and are inferred to be indicators of fluid expulsion. In the present study, we have analysed multibeam bathymetry and 2D/3D seismic data from the south-western Barents Sea, in relation to gas hydrate stability field and sediment type, to examine pockmark genesis. Seismic attributes of the sediments at and beneath the seafloor have been analysed to study the factors related to pockmark formation. The seabed depths in the study area are just outside the methane hydrate stability field, but the presence of higher order hydrocarbon gases such as ethane and/or propane in the expelled fluids may cause localised gas hydrate formation. The selective occurrence of pockmarks in regions of specific seabed sediment types indicates that their formation is more closely related to the type of seabed sediment than the source path of fluid venting such as faults. The presence of high acoustic backscatter amplitudes at the centre of the pockmarks indicates harder/coarser sediments, likely linked to removal of soft material. The pockmarks show high seismic reflection amplitudes along their fringes indicating deposition of carbonates precipitated from upwelling fluids. High seismic amplitude gas anomalies underlying the region away from the pockmarks indicate active fluid flow from hydrocarbon source rocks beneath, which is blocked by overlying less permeable formations. In areas of consolidated sediments, the upward flow is limited to open fault locations, while soft sediment areas allow diffused flow of fluids and hence formation of pockmarks over a wider region, through removal of fine-grained material.  相似文献   

18.
《Marine and Petroleum Geology》2012,29(10):1967-1978
Integrated geological, geochemical, and geophysical exploration since 2004 has identified massive accumulation of gas hydrate associated with active methane seeps on the Umitaka Spur, located in the Joetsu Basin on the eastern margin of Japan Sea. Umitaka Spur is an asymmetric anticline formed along an incipient subduction zone that extends throughout the western side of the Japanese island-arc system. Seismic surveys recognized chimney structures that seem strongly controlled by a complex anticlinal axial fault system, and exhibit high seismic amplitudes with apparent pull-up structures, probably due to massive and dense accumulation of gas hydrate. Bottom simulating reflectors are widely developed, in particular within gas chimneys and in the gently dipping eastern flank of the anticline, where debris can store gas hydrates that may represent a potential natural gas resource. The axial fault system, the shape of the anticline, and the carrier beds induce thermogenic gas migration to the top of the structure, and supply gas to the gas hydrate stability zone. Gas reaching the seafloor produces strong seepages and giant plumes in the sea water column.  相似文献   

19.
We have implemented a 2-dimensional numerical model for simulating gas hydrate and free gas accumulation in marine sediments. The starting equations are those of the conservation of the transport of momentum, energy, and mass, as well as those of the thermodynamics of methane hydrate stability and methane solubility in the pore-fluid. These constitutive equations are then integrated into a finite element in space, finite-difference in time scheme. We are then able to examine the formation and distribution of methane hydrate and free gas in a simple geologic framework, with respect to the geothermal heat flow, fluid flow, the methane in-situ production and basal flux. Three simulations are performed, leading to the build up of hydrate emplacements largely linear through time. Models act primarily as free gas accumulators and are relatively inefficient with respect to hydrate emplacements: 26–33% of formed methane are converted to hydrate. Seepage of methane across the sea-floor is negligible for fluid flow below 2. 10−11 kg/m2/s. At 5.625 10−11 kg/m2/s however, 9.7% of the formed methane seeps out of the model. Moreover, along strike variation arising in the 2-dimensional model are outlined. In the absence of focused flow, the thermodynamics of hydrate accumulation are primarily one-dimensional. However, changes in free methane compressibility (density) and methane solubility (the intrinsic dissolved methane flux) subtlety impact on the formation of a free gas zone and the distribution of the hydrate emplacements in our 2-dimensional simulations.  相似文献   

20.
Increased oil and gas exploration activity has led to a detailed investigation of the continental shelf and adjacent slope regions of Mahanadi, Krishna–Godavari (KG) and Cauvery basins, which are promising petroliferous basins along the eastern continental margin of India. In this paper, we analyze the high resolution sparker, subbottom profiler and multibeam data in KG offshore basin to understand the shallow structures and shallow deposits for gas hydrate exploration. We identified and mapped prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES in the vicinity of the mounds show the presence of thick accumulation of subsurface gas hydrate. Further, geological and geochemical study of long sediment cores collected onboard Marion Dufresne in the vicinity of the mounds and sedimentary ridges shows the imprints of paleo-expulsion of methane and sulfidic fluid from the seafloor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号