首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cap-rock seals can be divided genetically into those that fail by capillary leakage (membrane seals) and those whose capillary entry pressures are so high that seal failure preferentially occurs by fracturing and/or wedging open of faults (hydraulic seals). A given membrane seal can trap a larger oil column than gas column at shallow depths, but below a critical depth (interval), gas is more easily sealed than oil. This critical depth increases with lower API gravity, lower oil GOR and overpressured conditions (for the gas phase). These observations arise from a series of modelling studies of membrane sealing and can be conveniently represented using pressure/ depth (P/D) profiles through sealed hydrocarbon columns. P/D diagrams have been applied to the more complex situation of the membrane sealing of a gas cap underlain by an oil rim; at seal capacity, such a two-phase column will be always greater than if only oil or gas occurs below the seal.These conclusions contrast with those for hydraulic seals where the seal capacity to oil always exceeds that for gas. Moreover, a trapped two-phase column, at hydraulic seal capacity will be less than the maximum-allowed oil-only column, but more than the maximum gas-only column. Unlike membrane seals, hydraulic seal capacity should be directly related to cap-rock thickness, in addition to the magnitude of the minimum effective stress in the sealing layer and the degree of overpressure development in the sequence as a whole.Fault-related seals are effectively analogous to membrane cap-rocks which have been tilted to the angle of the fault plane. Consequently, all of the above conclusions derived for membrane cap-rocks apply to both sealing faults sensu stricto (fault plane itself seals) and juxtaposition faults (hydrocarbon trapped laterally against a juxtaposed sealing unit). The maximum-allowed two-phase column trapped by a sealing fault is greater than for equivalent oil-only and gas-only columns, but less than that predicted for a horizontal membrane cap-rock under similar conditions. Where a two-phase column is present on both sides of a sealing fault (which is at two-phase seal capacity), a deeper oil/water contact (OWC) in one fault block is associated with a deeper gas/oil contact (GOC) compared with the adjacent fault block. If the fault seal is discontinuous in the gas leg, however, the deeper OWC is accompanied by a shallower GOC, whereas a break in the fault seal in the oil leg results in a common OWC in both fault blocks, even though separate GOC's exist. Schematic P/D profiles are provided for each of the above situations from which a series of fundamental equations governing single- and two-phase cap-rock and fault seal capacities can be derived. These relationships may have significant implications for exploration prospect appraisal exercises where more meaningful estimates of differential seal capacities can be made.The membrane sealing theory developed herein assumes that all reservoirs and seals are water-wet and no hydrodynamic flow exists. The conclusions on membrane seal capacity place constraints on the migration efficiency of gas along low-permeabiligy paths at depth where fracturing, wedging open of faults and/or diffusion process may be more important. Contrary to previous assertions, it is speculated that leakage of hydrocarbons through membrane seals occurs in distinct pulses such that the seal is at or near the theoretically calculated seal capacity, once this has been initially attained.Finally, the developed seal theory and P/D profile concepts are applied to a series of development geological problems including the effects of differential depletion, and degree of aquifer support, on sealing fault leakage, and the evaluation of barriers to vertical cross-flow using RFT profiles through depleted reservoirs. It is shown that imbibition processes and dynamic effects related to active cross-flow across such barriers often preclude quantitative analysis and solution of these problems for which simulation studies are usually required.  相似文献   

2.
利用断层落差法、生长指数法和泥岩涂抹SGR法分析了商河油田断层活动性和封闭性特征,并结合油气分布分析了断层与油气运聚之间的关系。研究结果表明,商河油田1号、2号、3号及6号断层在馆陶期持续活动,是油气向中浅部沙一段等储集层运移的有利垂向通道;同时,具有良好侧向封堵条件的断层容易使油气聚集成藏,认为SGR=0.75是断层侧向封闭的临界条件。  相似文献   

3.
南堡凹陷4号构造带蛤坨断层特征与油气成藏关系   总被引:1,自引:0,他引:1  
南堡凹陷4号构造带断裂发育,既发育沟通烃源岩的深断裂,也发育沟通浅层圈闭的次级断裂。综合利用地震、测井、岩性等资料分析断层的空间展布,计算蛤坨断层的生长指数和断层泥比率(SGR),分析断层的活动性、封堵性,评价其输导性能,并结合其与烃源岩生排烃期的匹配关系研究断裂与油气运移、聚集的关系及控制规律。在典型油气藏剖面解剖的基础上,建立了4号构造带油气运聚成藏模式。  相似文献   

4.
Fault seal due to juxtaposition or the generation of low-permeability fault rock has the potential to change through time with displacement accumulation. Temporal variations in cross-fault flow of hydrocarbons have been assessed for the Cape Egmont Fault (CEF), Taranaki Basin New Zealand, using displacement backstripping, juxtaposition and Shale Gouge Ratio (SGR) analysis. The timing of hydrocarbon migration and charge of the giant Maui Gas-condensate Field across the CEF have been assessed using seismic reflection lines (2D & 3D), coherency cubes, VShale curves from the Maui-2 well and PetroMod modelling. Displacement–backstripping analysis suggests that between the Late Miocene and early Pleistocene (5.5 and 2.1 Ma) sandstone reservoir units of the Maui Field (Mangahewa, Kaimiro and Farewell Formations) and underlying source rocks (Rakopi Formation) were partly juxtaposed across the CEF with low SGRs (< 0.2) present in the fault zone. Following 2.1 Ma SGRs increased to 0.2–0.55 adjacent to the Eocene–Palaeocene reservoir succession which was not in juxtaposed contact with source rocks. PetroMod modelling using these SGR values and juxtaposition relationships supports cross-fault flow prior to 2.1 Ma with later charge across the fault being less likely. Gas chimneys and the gas–water contact in the Eocene reservoir proximal to the fault suggest that despite limited cross-fault flow, upward leakage of hydrocarbons from the reservoir occurred after 2.1 Ma, possibly associated with active fault movement or fracturing related to faulting, and may account for the loss of an early oil phase.  相似文献   

5.
Chengdao is an offshore area in the Bohai Bay Basin that contains approximately 25.7 × 108 bbl of oil and gas reserves within the sandstone reservoirs in Neogene strata. However, previous predictions of hydrocarbon accumulation in Neogene traps are inaccurate, resulting in a current failure rate of 50% when drilling for hydrocarbons in this area. To build an improved exploration model for Neogene traps, we select 92 traps from Neogene strata in the Chengdao area to quantify the filling degree, which is an indicator of hydrocarbon accumulation efficiency. The quantified filling degree is based on actual geological and exploration data and differs significantly among various trap types. The filling degree of traps also varies significantly with their structural locations and decreases generally from the northwest to the southeast along the Chengbei Fault zone. Vertically, the filling degree is highly heterogeneous, initially increasing from the bottom to the middle of Neogene strata and then decreasing towards the top of the strata. These Neogene hydrocarbon reservoirs are sourced from the Paleogene, and as they lay vertically away from the source rocks, their hydrocarbon enrichment is constrained largely by hydrocarbon migration distance and vertical migration pathways. The sealing capacity of faults and cap rocks, sandbody orientation and reservoir sedimentary facies determine the maximum column height, which in turn affects the amount of hydrocarbon accumulation within these traps. A scatter plot analysis of individual controls and volumetric filling for each trap type is compiled using multivariate linear regression analysis to quantify controls and the dominant control of hydrocarbon accumulation is determined.  相似文献   

6.
辽河滩海葵花岛构造带断裂发育特征及其与油气关系   总被引:1,自引:0,他引:1  
辽河滩海葵花岛构造带发育复杂断裂体系,断裂发展主要经历了沙河街组三段沉积期-东营组二段下部沉积早期,东营组二段下部沉积晚-东营组一段沉积期,N-Q等三个期次,本文根据规模,控制作用和与油气关系将断裂分为基底主干断裂,盖层主要断裂,盖层次要断裂,小断裂四个序次,断裂与油气关系密切,断裂活动控制了生储盖层之发育,在构造和圈闭形成中起主导作用,影响油气运聚与保存,最后,文章讨论了之各种圈闭之油敢勘探前景  相似文献   

7.
Top seals and faults represent key risks to trap integrity and therefore preservation of hydrocarbons in the frontier Ceduna Sub-basin, offshore Southern Australia. Due to a paucity of well data in the basin, to provide constraint to the stratigraphic distribution of the prospective Cretaceous deltaic and marine sequences, stratigraphic forward modelling was utilised to create facies, grain size and Vshale volumes. These modelled Vshale volumes were subsequently used to investigate the structural control(s) on potential hydrocarbon leakage and migration within key stratigraphic sequences in the sub-basin.A set of coarse (20 km horizontal resolution), large scale (1100 × 600 km) stratigraphic forward models simulated the deposition of Late Jurassic to Tertiary stratigraphic sequences in the sub-basin with an initial 1 Ma interval. Smaller (80 × 60 km), finer scale (0.5 km horizontal resolution, 200 ka interval), models focussing on the Tiger and Hammerhead Supersequences over the Trim 3D seismic survey were used to investigate fault seal and top seal frameworks, using shale gouge ratio and silt and shale thicknesses from Vshale volume. Four stratigraphic forward models were produced to match a range of estimates of Vshale derived from the Gnarlyknots-1A well, the only well penetrating the central Ceduna Sub-basin. These stratigraphies were in turn integrated into a geological model interpreted from the Trim 3D seismic survey creating a geocellular model to test potential migration and trapping scenarios for potential hydrocarbons generated in the sub-basin.Fault and top seal models from the most likely scenario suggest (i) restricted potential for structural trapping near the base of the Tiger Supersequence, (ii) the possible presence of a regional migration pathway associated with sandy shoreface deposits at the transition between the Tiger and Hammerhead Supersequences, and (iii) the association of intraformational top seals and increasing fault seal potential in the deltaic sediments of the Hammerhead Supersequence feasibly resulting in a series of stacked structural traps.  相似文献   

8.
Through the analysis of the faults and their internal structure in Zhu I Depression, it is found that the internal structure of the late fault is obviously segmented vertically. It develops unitary structure(simple fault plane) in shallow layers, binary structure(induced fracture zone in hanging wall and sliding fracture zone in footwall) in middle, layers and ternary structure(induced fracture zone in hanging wall and sliding fracture zone in middle,and induced fracture zone in footwall) in deep layers. Because the induced fracture zone is a high porosity and permeability zone, and the sliding fracture zone is a low porosity and ultra-low permeability zone, the late fault in middle layers has the character of "transporting while sealing". The late fault can transport hydrocarbon by its induced fracture zone in the side of the hanging wall and seal hydrocarbon by its sliding fracture zone in the side of the footwall. In deep layers, the late fault has the character of "dual-transportation", induced fracture zones in both sides of hanging wall and footwall can transport hydrocarbon. The early fault that only developed in the deep layers is presumed to be unitary structure, which plays a completely sealing role in the process of hydrocarbon migration and accumulation due to inactivity during the hydrocarbon filling period. Controlled by hydrocarbon source, early/late faults, sand bodies and traps, two reservoir-forming models of "inverted L" and "stereo-spiral"can be proposed in middle layers, while two reservoir-forming models of "cross fault" and "lateral fault sealing"are developed in the deep layers of Zhu I Depression.  相似文献   

9.
下刚果—刚果扇盆地油气资源丰富、油气成藏条件优越。但由于受到盐岩的活动及区域构造应力场的作用,形成了复杂的断裂系统。此文系统分析了下刚果—刚果扇盆地的断裂特征及其对油气成藏的影响,研究认为该区平面上主要发育5个断裂带,纵向上主要发育上下两套断裂系统。断裂的形成和演化可分为三个期次,相对应可将断层分为三个级别的断层。断层的形成机制主要有盐活动及盐构造、重力滑脱作用以及古地貌格局。烃源岩的排烃时间与第三期断层活动时间相匹配,非常有利于油气沿断层进行垂向和斜侧向运移。分析认为研究区主要发育沿断阶带—碳酸盐岩运聚成藏模式、沿断层垂向运聚成藏模式以及沿盐下砂体—盐窗和Focus点运聚成藏模式共三种成藏模式。断层封堵较好,油源断层高度决定了油气运移高度和油气田规模,直接控制着油气的分布层系及规模。研究成果可指导研究区或类似地区的油气勘探。  相似文献   

10.
莱州湾西构造带断裂特征及其对油气成藏的控制   总被引:1,自引:0,他引:1  
受古近纪莱州湾凹陷大规模断陷、郯庐断裂右旋走滑和垦东凸起大规模隆升三方面因素共同作用,莱州湾西构造带断裂系统发育,根据断裂性质及发育规模将断裂划分为3组不同方向的断裂组合,对油气的运移、聚集及保存都产生重要影响。根据莱州湾地区油气成藏规律并结合渤海其他区域近年勘探成果综合分析,莱北1号断层、斜坡区东西向反向正断层和走滑末端雁行式断层三类大规模调节断层对于油气成藏影响作用较大,这三类断层所控制的圈闭也是莱州湾凹陷及围区下一步勘探获得突破的重点区域。  相似文献   

11.
The interior basins of Turkey remain effectively unexplored and their petroleum systems are poorly understood. This paper presents a comparative summary of the geological evolution, petroleum potential and prospectivity of the Central (Tuz Gölü, Sivas and Çankırı) and East Anatolian (Muş-Hınıs, Pasinler-Horasan and Tercan-Aşkale) basins using geological, seismic, geochemical and petrophysical data, and a series of quantitative basin models. The studied basins are ranked on the basis of source effectiveness, reservoir quality, seal efficiency, and the timing of hydrocarbon expulsion and migration relative to trap formation. A qualitative risk assessment, based on the elements of the petroleum system, is used to evaluate the likelihood of hydrocarbon discovery in each of the basins. This study shows that the chance of hydrocarbon discovery in the East Anatolian basins is unlikely-very unlikely and Tuz Gölü, Sivas and Çankırı basins are equally likely/unlikely-unlikely, likely and unlikely, respectively. Heavy oil and minor gas associated with two mature petroleum systems were discovered in the Tuz Gölü basin. Various trap forming mechanisms such as salt tectonics and Middle Eocene compression, accompanied by the effective sealing capacity of the Eocene evaporites favor the hydrocarbon exploration potential of the Tuz Gölü basin. The highest exploration risk in the Tuz Gölü basin arises from the poor quality sandstone reservoirs. The biggest risk factor in the Eastern Anatolian basins is insufficient thermal maturity, despite the presence of good quality source rocks. The Sivas basin is one of the most promising interior basins of Turkey due to the presence of multiple mature petroleum systems and high quality reservoirs. There is a high chance of accumulation of multi-phase hydrocarbons in the Eocene and Miocene traps. The major problem in the Sivas basin is the lack of an efficient seal rock. The Çankırı basin contains all of the necessary elements of an ideal petroleum system except the presence of an organic-rich source rock. Thus, the chance of hydrocarbon discovery in the Çankırı basin is low.  相似文献   

12.
Understanding the impact of faults on fluid flow in the subsurface is important for the extraction of oil, gas and groundwater as well as the geological storage of waste products. We address two problems present in current industry-standard workflows for fault seal analysis that may lead to fault rocks not being represented adequately in computational fluid flow models. Firstly, fluid flow properties of fault rocks are often measured only for small-scale faults with throws not exceeding a few centimetres. Large seismic-scale faults (throws >20 m) are likely to act as baffles or conduits to flow but they are seldom recovered from subsurface cores and consequently fault rock data for them is sparse. Secondly, experimental two-phase fluid flow data is lacking for fault rocks and, consequently, uncertainties exist when modelling flow across faults in the presence of two or more immiscible phases. We present a data set encompassing both single- and two-phase fluid flow properties of fault and host rocks from the 90-Fathom fault and its damage zone at Cullercoats Bay, NE England. Measurements were made on low-throw single and zones of deformation bands as well as on slip-surface cataclasites present along the ~120 m throw main fault. Samples were analysed using SEM and X-ray tomography prior to petrophysical measurements. We show that single deformation bands, deformation band zones and slip-surface cataclasites exhibit dissimilar single- and two-phase fluid flow properties. This is due to grain-size reduction being more pronounced in slip-surface cataclasites and changes in microstructure being fault-parallel for deformation bands but mostly fault-perpendicular for slip-surface cataclasites. A trend of fault rocks with low absolute permeabilities exhibiting lower relative permeabilities than more permeable rocks at the same capillary pressure is evident.  相似文献   

13.
旅大6构造是渤海海域新近发现的一个中型油田.该构造位于辽东低凸起中南段陡坡带,为层状构造油气藏,垂向上多层系含油,形成典型的“阶梯式”陡坡带复式油气藏.走滑作用对构造形成、储层发育、断层封堵、油气运移都有重要的作用.构造转折端对沉积卸载形成优质储层具有重要作用,奠定了旅大6构造是辽东低凸起中南段有利成藏区的物质基础;辽中一号断层与区域走滑断层同向,具有走滑压扭性质是控圈断层侧封的关键.南北区块以及东二下段、东三段油气丰度迥异,伸展断层的运移能力和控圈断层的封堵能力共同决定了旅大6构造南区东二下段油气的差异富集成藏.  相似文献   

14.
苏北盆地盐城组天然气藏成藏条件及控制因素探讨   总被引:2,自引:0,他引:2  
苏北盆地天然气资源丰富,已经在盐城组发现两个气田———周庄气田和溪桥气田。盐城组天然气藏埋藏浅(<1000m),研究盐城组天然气的成藏条件及控制因素,对苏北盆地的下步勘探具有非常现实的指导意义。全面阐述了苏北盆地盐城组的成藏条件,探讨了其成藏的控制因素。通过研究,认为苏北盆地盐城组本身虽不具备生烃条件,但储盖条件较好,下部烃源岩生成的天然气沿断层向上运移,在盐城组圈闭配置理想的条件下形成气藏。天然气藏受气源、生气强度、断裂和盖层4个因素控制。  相似文献   

15.
海底浅层圈闭与浅层气地震反射特征对比   总被引:2,自引:0,他引:2  
海底浅层圈闭条件是决定浅层气反射特征的重要因素,根据海底浅层圈闭条件的分析、国内外浅层气分布区反射特征与底质类型对比分析和南黄海西部地区浅部断层分析,得出结论:(1)浅层气的圈闭条件主要受海底底质类型与浅部断层控制,常见圈闭类型为岩性圈闭和断层圈闭;(2)底质类型是决定浅层气反射特征的重要因素。分析认为海底表层沉积物的泥砂含量决定了圈闭中盖层封闭能力,进而决定了浅层气聚集能力和储集量,形成不同浅层气地震反射特征;(3)某些现代三角洲地区,受潮流或河流与海洋共同作用影响,表层底质经常与整个浅层的物质组成差别较大。由于其内部一般含有较厚的细颗粒黏土质粉砂和粉砂质黏土,封闭能力较强,可封闭较多浅层气,能形成大规模的声学空白反射,但常观察到浅层气反射顶界面局部突起呈旗舰状;(4)浅部断层既可形成断层圈闭,也可充当浅层气的运移通道。断层圈闭通常较少见且难以识别,浅部断层在第四纪松散地层中更多地充当了浅层气运移的通道;(5)浅部地层存在多套含泥较多的地层且形成圈闭时,浅层气被多次圈闭,会在不同深度形成"楼层式"的多个强反射界面、声学扰动。  相似文献   

16.
Faults play an intricate role in hydrocarbon migration and accumulation since they can serve either as a conduit or a seal. Quantitative evaluation of fault opening/sealing properties requires the selection of valid and optimal parameters among numerous geological factors to characterize the hydraulic behaviors of faults. The present study focuses on the Chengbei Step-Fault Area in the Qikou Depression, Bohai Bay Basin, NE China, because hydrocarbon migration and accumulation in this area occurred in a relatively short period so that accumulated hydrocarbons can be used as an indicator to deduce hydraulic connectivity of a fault zone between two sites. Various geological parameters pertinent to a fault, such as burial depth, dip angle, throw, strike, percentage of sandstone of faulted intervals, fluid pressure in faulted mudstone, stress normal to the fault plane, and shale gouge ratio, are analyzed to assess their effectiveness in characterizing fault connectivity. An index, the fault-connectivity probability (Np), is proposed to evaluate the possibility that a fault has been once serving as a migration pathway. The statistical relationship between Np and any a geological parameter may be used to indicate the effectiveness of this parameter in characterizing the connectivity of a fault during hydrocarbon migration. The correlation coefficient of a relationship is a good indicator of the effectiveness; and the results are generally in agreement with qualitative assessments. Parameters representing a single geological factor are generally ineffective, whereas those representing implicitly or explicitly two or more factors, such as shale gouge ratio, stress normal to the fault plane, and fault opening index, are more effective.  相似文献   

17.
根据对海礁凸起地区的地质、地球物理和地球化学资料的分析,将海礁凸起划分为性质截然不同的南、北两个部分,推测南部海礁凸起尤其是东南翼具有较好的油气潜力。因为南部海礁凸起紧邻主要生油凹陷(即西湖凹陷);储集性能较好的渐新统花港组可能在凸起的东南翼分布较厚;NWW向的深部断裂为南部海礁凸地区的断块圈闭、潜山和披覆构造的形成提供了条件,同时也起着油气运移通道的作用。从地化异常指标来看,该区油气运移的方向也是从SE向到NW向。因此,加大对南部海礁凸起的勘探力度,并重视南部凸起区可能具有的油气潜力,将有可能发现类似于流花11-1、崖城13-1和绥中36-1的大型油气田。  相似文献   

18.
近期在琼东南盆地超深水区发现了L18气田上新统地层圈闭气田,但在聚气背景、烃源岩、储层沉积成因及天然气输导体系等气田形成条件和成藏模式认识存在争议。通过对该气田形成条件的综合分析,认为上新世轴向古洼槽内地层圈闭、陵水凹陷东洼下渐新统崖城组浅海相烃源岩、上新统限制型重力流砂岩储层和渐新统-中新统断裂垂向沟源通道是形成上新统地层圈闭气田的4个基本条件。中中新世以来盆地中央继承性发育轴向古洼槽和限制型重力流沉积,随着后期地层沉积迁移、差异压实作用,上新统莺歌海组砂岩顶面在轴向洼槽内起伏,并被周边泥岩封盖、封堵,形成了地层圈闭;约3.4 Ma BP,陵水凹陷东洼下渐新统崖城组浅海相烃源岩生成了成熟天然气,沿渐新统-中新统断裂向上运移到上新统莺歌海组重力流沉积砂岩中,再侧向运移至地层圈闭中聚集成藏,具有"烃源岩、圈闭、断裂+砂岩输导层"三要素控藏的上新统地层圈闭成藏模式。  相似文献   

19.
A Natural active oil seepage occurs at the intersection of the NW-oriented rift coastal fault and a NE-oriented cross fault which bound the southwest dipping Little Zeit tilted fault block at the southwestern side of the Gulf of Suez, Egypt. Detailed surface geological mapping followed by subsurface mapping using aeromagnetic, seismic and borehole data of Ras El Ush oilfield (the nearest oil field to the seepage) provide a reliable hydrocarbon migration pathway model of the area.The proposed model suggests that hydrocarbons migrated upward at the intersection of a NE-oriented and the NW-oriented rift coastal faults where they found their way to the surface. The Nubia Sandstone occurs south of Ras El Ush oilfield in a trap door structure and probably entrapped some of the migrating hydrocarbons while a probable oil-water-contact at −1000 m which resulted into the migration of hydrocarbon through the damage zone of the northeast fault.The original oil in place of the predicted reservoir is estimated to be more than 47.5 MMBO which encourages the design makers for more investigation of this reservoir to increase its certainty and putting it in the plan of the future investments.  相似文献   

20.
琼东南盆地深水区断层垂向输导及成藏模式   总被引:2,自引:1,他引:1  
In the Qiongdongnan Basin, faults are well developed.Based on the drilling results, the traps controlled two or more faults are oil-rich. However, when only one fault cut through the sand body, there is no sign for hy-drocarbon accumulation in the sandstone. In terms of this phenomenon, the principle of reservoir-forming controlled by fault terrace is proposed, i.e., when the single fault activates, because of the incompressibility of pore water, the resistance of pore and the direction of buoyancy, it is impossible for hydrocarbon to ac-cumulate in sandstone. But when there are two or more faults, one of the faults acts as the spillway so the hydrocarbon could fill in the pore of sandstone through other faults. In total five gas bearing structures and four failure traps are considered, as examples to demonstrate our findings. According to this theory, it is well-advised that south steep slope zone of Baodao-Changchang Depression, south gentle slope zone of Lingshui Depression, north steep slope zone of Lingshui Depression, and north steep slope zone of Baodao Depression are the most favorable step-fault zones, which are the main exploration direction in next stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号